JPH0127012B2 - - Google Patents

Info

Publication number
JPH0127012B2
JPH0127012B2 JP57173562A JP17356282A JPH0127012B2 JP H0127012 B2 JPH0127012 B2 JP H0127012B2 JP 57173562 A JP57173562 A JP 57173562A JP 17356282 A JP17356282 A JP 17356282A JP H0127012 B2 JPH0127012 B2 JP H0127012B2
Authority
JP
Japan
Prior art keywords
weight
heat
binder
composite
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57173562A
Other languages
English (en)
Other versions
JPS5964558A (ja
Inventor
Tadayoshi Murakami
Yasuhiko Ikeda
Isao Ishii
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ryoden Kasei Co Ltd
Mitsubishi Electric Corp
Original Assignee
Ryoden Kasei Co Ltd
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ryoden Kasei Co Ltd, Mitsubishi Electric Corp filed Critical Ryoden Kasei Co Ltd
Priority to JP57173562A priority Critical patent/JPS5964558A/ja
Priority to US06/533,793 priority patent/US4486546A/en
Priority to EP83109288A priority patent/EP0105400B1/en
Publication of JPS5964558A publication Critical patent/JPS5964558A/ja
Publication of JPH0127012B2 publication Critical patent/JPH0127012B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B40/00Preventing adhesion between glass and glass or between glass and the means used to shape it, hold it or support it
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • C04B35/19Alkali metal aluminosilicates, e.g. spodumene
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/20Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in magnesium oxide, e.g. forsterite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S106/00Compositions: coating or plastic
    • Y10S106/03Mica

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Insulating Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Devices For Use In Laboratory Experiments (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

【発明の詳細な説明】
この発明は500℃付近の温度雰囲気で連続また
は、繰り返し行なうガラス製品などの熱処理の際
製品を支持し、製品に損傷、汚損を与えず、それ
自体も耐損耗性に優れた熱処理治具用支持部材と
しての耐熱軟質複合体の製造法に関するものであ
る。 従来からこれら要求に耐えうる材料として耐熱
温度の高い無機材料が検討され、ガラス製品の熱
処理治具用支持部材としてアスベストテープ、ア
スベストセメント、アスベストケイ酸カルシウ
ム、ボロンナイトライドなどが知られた材料であ
る。 ところでアスベストテープは、金属芯などに巻
回して強度を保有させ使用するが、作業性が非常
に悪い。 アスベストセメントは、アスベストをポルトラ
ンドセメントなどで結着させたものであるが、硬
度が大きいため、ガラス製品に損傷を与える可能
性がある。 アスベストケイ酸カルシウムは非常に多孔質で
軟質材料であり、ガラス製品などを損傷させるこ
とはないが損耗し易く、取り替え作業が複雑であ
る。 また上記材料はいずれも特定化学物質に推定さ
れたアスベストが含まれているため、取扱いには
注意を要する。 ボロンナイトライドは、前記アスベスト材料に
比べ耐損耗性に優れ、取扱いも容易であるが、非
常に高価である。 この発明は、これら従来の材料の熱処理治具用
支持部材としての欠陥を解決するために鋭意究明
したものであり、ガラス製品などを傷つけず、か
つ耐損耗性に優れ、安価な熱処理治具用支持部材
としての耐熱軟質複合体の製造法に関するもので
ある。 ところで本発明に用いた結合剤については、特
公昭54−7359号公報や特公昭54−7360号公報など
で公知であり製造法についても述べられている。
この結合剤は、加熱加圧成形により一種の水和反
応を呈し2ZnO・3B2O3・3H2Oを主成分とする含
水ホウ酸亜鉛塩を生成し、さらに350℃〜450℃の
加熱によりβZnO・B2O3に熱変化し、耐水性、耐
熱性の向上を計つている事が知られている。 この発明はこの種の結合剤を用いて主剤を結着
させるが主剤としてタルク粉末及びマイカ粉末を
組成限定して用いたところがこの発明の特徴とす
るところである。 すなわちガラス製品を500℃付近の温度で熱処
理した場合、ガラスの粘性が低下し、ガラス製品
と接する熱処理治具の支持部材が硬いと当然ガラ
ス製品に傷、あるいは割れなどが発生する。 したがつて熱処理治具の支持部材は500℃以上
の耐熱性を有しかつガラス製品を傷、あるいは割
れなどを生じさせない耐損耗性の優れた耐熱軟質
複合体が要求される。 本発明に用いる結合剤については500℃以上の
耐熱性を有する事が判明していたが、主剤として
耐熱性に優れ、しかも軟質材料となると材料自体
限定される。 本発明者らは、主剤について鋭意究明した結
果、硬度の小さいタルク粉末とマイカ粉末を特許
請求の範囲第2項で述べた組成範囲内に限定して
用いることにより、目標とした耐熱軟質複合体が
得られ、本発明を完成させるに到つた。 タルク粉末は、3MgO・4SiO2・H2Oの組成式
で示され、結晶水の分解温度が850℃と耐熱性に
優れ、モース硬度も1と最も小さく軟かい材料で
ある。 マイカ粉末は、白雲母粉末{KAl2(AlSi3O10
(OH)2}と金雲母粉末{KMg3(AlSi3O10
(OH)2}が適し、結晶水の分解温度がいずれも
700〜900℃で耐熱性に優れている。 モース硬度も2〜3とタルク粉末についで軟か
い材料である。 タルク粉末は本発明の耐熱軟質複合体の軟かさ
を保有させマイカ粉末は、強度を保有させる目的
で用いた。 結合剤は、これら主剤を粘着させ、複合体を形
成させる。つぎにこれら材料の組成範囲について
説明する。 耐熱軟質複合体を構成するマイカ粉末の含有率
は、25〜45重量%が適し、25重量%未満の場合
は、耐熱軟質複合体のモース硬度が3以上とな
り、ガラス製品に傷をつける恐れがでてくる。ま
た45重量%を超えると必然的にマイカならびに結
合剤の含有率が少なくなりそのため耐熱軟質複合
体の強度が劣り熱処理治具用の支持部材として使
用できない。 マイカ粉末は15〜40重量%の範囲が適し、15重
量%未満の場合は、耐熱軟質複合体の強度が劣
り、また40重量%をこえると必然的にタルク粉末
ならびに結合剤の含有率が少なくなり、硬度が大
きくなると同時に強度も低下し熱処理治具用支持
部材として、使用できない。 結合剤として、この発開で用いる範囲は35〜40
重量%の含有率が適し、結合剤を構成する正ホウ
酸は、16.30〜18.63重量%、無水ホウ酸は3.69〜
4.20重量%、酸化亜鉛は15.02〜17.17重量%の範
囲で用いる。 正ホウ酸の含有率が16.30重量%未満の場合は
結着効果が期待できず、また18.63重量%を超え
ると加熱加圧成形時正ホウ酸の溶融物が金型から
流出し易く、均一な密度を有した複合体が得られ
難い。 無水ホウ酸は3.68重量%未満の場合は加熱加圧
成形時正ホウ酸の熱分解により発生する水をガス
抜き操作を入れて、外部に放出させる事が必要と
なり、成形操作が複雑となる。18.63重量%をこ
えると無水ホウ酸自体が複合体中に残存し耐水性
が劣り、また硬度なども大きくなり好ましくな
い。 酸化亜鉛は、15.02重量%未満の場合2ZnO、
3B2O3・3H2OさらにはβZnO・B2O3などの反応
生成物を十分形成させることができず、正ホウ酸
の熱分解物、無水ホウ酸などが複合体中に残存す
る事になりそのため耐水性が劣り、硬度が大きく
なり好ましくない。17.17重量%を超えると、反
応生成物が十分形成されるが結合剤を形成する他
の材料の含有率が少なくなり、結着効果が期待で
きなくなる。 したがつて本発明においては結合剤として35〜
40重量%の範囲でかつ結合剤を構成する材料は前
記の組成範囲内で用いる事が望ましい。 つぎに複合体を形成させる加熱加圧成形法であ
るが加熱温度160〜200℃の範囲が適している。 160℃未満の場合、結合剤が十分その効果(例
えば結着性が劣り、結合剤を構成する材料間の反
応が十分行なわれない。)が期待できない。 200℃を超えても複合体を得る事ができるが、
製造経費が高価となりまた温度が高くなるにした
がい作業性が悪くなり、その意味で上記加熱温度
範囲が好ましい。 加圧力は50〜100Kg/cm2の範囲が適している。
50Kg/cm2未満の場合は、均一な密度を有する複合
体は得られ難く、結合剤を構成する材料間の反応
も十分行なわれない。 100Kg/cm2以上の加圧力でも複合体を得ること
ができるが設備が複雑となり、また加圧力を上げ
るだけの効果もないため本発明では上記範囲内で
十分である。 つぎに得られた複合体を加熱処理して本発明の
耐熱軟質複合体を得るが、加熱処理としては450
〜500℃の温度でするのが望ましい。 本発明の耐熱軟質複合体は少なくとも500℃以
上の耐熱性を有する必要があるため、結合剤の反
応生成物を、2ZnO・3B2O3・3H2Oからβ―
ZnO・B2O3にし、結合水を除去しておくと耐熱
性により優れたものとなるためである。そのため
2ZnO・3B2O3・3H2Oがβ―ZnO・B2O3になる温
度すなわち350〜450℃より高い温度で加熱処理す
る。450〜500℃で加熱処理したものは700℃の雰
囲気温度にさらされても形状変化せず強度劣化も
なく不燃性で耐熱性に優れたものとなる。 本発明により得た耐熱軟質複合体を種々の形状
に加圧して、ガラス製品などの熱処理治具の支持
部材として用いることにより前記従来品の欠陥を
すべて排折した支持部材としての特性を有する。 また本発明により得た耐熱軟質複合体は電気絶
縁性に優れている特徴もあるため耐熱不燃性の電
気絶縁物としても十分使用に耐えうるものであ
る。 つぎに代表的な実施例に基き、本発明をさらに
具体的に説明する。 実施例 1 主剤としてのタルク粉末(3MgO・4SiOz・
H2O;松村産業K・K・)は粒度40〜80μの白色
粉末を用いた。 同じくマイカ粉末{KAl2(AlSi3O10)(OH)2
岡部マイカK・K}は50〜300μ白雲母粉末を用
いた。 結合剤としての正ホウ酸(H3B3;20頭馬車印
ボラツクス)は74μ以下に粉砕したものを用い
た。無水ホウ酸(B2O3;20頭馬車印ボラツクス)
は200μ以下のものを用いた。 酸化亜鉛(ZnO;堺化学K・K)は粒度10μ以
下のものを用いた。 以上の材料を下記に示す組成比率になるように
調合し擂潰機、ボールミル、ミキサーなどで混合
し本発明の複合材料を得た。 主 剤;タルク粉末 45重量% マイカ粉末 20重量% 結合剤;正ホウ酸 16.30重量% 無水ホウ酸 3.68重量% 酸化亜鉛 15.02重量% この複合材料を高さ100mm、幅300mm、長さ300
mmの金型に3300g充填し、熱盤間(熱盤温度185
〜195℃)に挿入し、加圧力60Kg/cm2で30min間
加熱加圧成形した。(金型の温度は170〜180℃に
なつている。)つぎに加圧を保持したまま、熱盤
の熱源を断ち、熱盤に設けた冷却管に水を流して
熱盤温度を下げ、金型温度が100℃以下になつて
から加圧をとき、厚さ約15mm、幅300mm、長さ300
mmの複合体を得た。 つぎにこの複合体を、電気に入れ、5〜10
℃/Hrの昇温速度で常温から500℃まで昇温させ
熱処理を行なつた。 その後徐冷して本発明の耐熱軟質材料を得た。 一般特性と実機特性の結果を第1表に示す。 一般特性のうち硬度はモース硬度計により測定
した。曲げ強さは、JISC2210の6.3項により常態、
600℃―3Hr加熱したもの、700℃―3Hr加熱した
ものについて測定した。絶縁抵抗については、
JISK6911の5.12.3項により常態時及び25℃―90%
RH中100Hr後の条件で測定した。 耐アーク性はJISK6911の5.15項により常態時
の耐アーク性を測定した。 実機特性は、本発明の耐熱軟質材料より、11〜
12mmφ、長さ150〜200mmの丸棒に加工し、ガラス
製品(陰極線管)の熱処理治具の支持部材として
取りつけ、一年間の期間を、設定し、常温から
500℃まで10〜20℃/minで昇温し、徐冷すると
いうサイクル(1サイクルの所要時間は3〜
4Hr)で連続して繰返えしガラス製品の傷、割れ
などの有無を調べると同時に支持部材とした材料
の損耗も調べ、使用できる期間を求めた。 実施例 2 材料の組成を下記に示す比率にした以外は実施
例1と同じ製造法で本発明の耐熱軟質材料を得
た。 一般特性および実機特性の結果を第1表に示
す。 試験方法も実施例1と同じである。 主 剤;タルク粉末 25重量% マイカ粉末 40重量% 結合剤;正ホウ酸 16.30重量% 無水ホウ酸 3.68重量% 酸化亜鉛 15.02重量% 実施例 3 材料の組成を下記に示す比率にした以外は、実
施例1と同じ製造法で本発明の耐熱軟質材料を得
た。 一般特性および実機特性の結果を第1表に示
す。 試験方法も実施例1と同じである。 主 剤;タルク粉末 45重量% マイカ粉末 15重量% 結合剤;正ホウ酸 18.63重量% 無水ホウ酸 4.20重量% 酸化亜鉛 17.17重量% 実施例 4 材料の組成を下記に示す比率にした以外は、実
施例1と同じ製造法で本発明の耐熱軟質材料を得
た。 一般特性および実機特性の結果を第1表に示
す。 試験方法も実施例1と同じである。 主 剤;タルク粉末 30重量% マイカ粉末 30重量% 結合剤;正ホウ酸 18.63重量% 無水ホウ酸 4.20重量% 酸化亜鉛 17.17重量% 比較例 1 主剤としてタルク粉末のみと結合剤から構成さ
れた材料組成とした以外は、実施例1と同じ製造
法で得た。一般特性および実機特性の結果を第1
表に示す。 試験法も実施例1と同じである。 主 剤;タルク粉末 65重量% 結合剤;正ホウ酸 16.30重量% 無水ホウ酸 3.68重量% 酸化亜鉛 15.02重量% 比較例 2 主剤としてマイカ粉末のみと結合剤から構成さ
れた材料組成とした以外は、実施例1と同じ製造
法で得た。 一般特性および実機特性の結果を第1表に示
す。 試験法も実施例1と同じである。 主 剤;マイカ粉末 65重量% 結合剤;正ホウ酸 16.30重量% 無水ホウ酸 3.68重量% 酸化亜鉛 15.02重量% 比較例 3 従来品としてアスベストケイ酸カルシウムを入
手し、実機特性を把握し第1表に示す。 比較例 4 従来品としてボロンナイトライドを入手し実機
特性を把握し第1表に示す。
【表】 第1表の結果で明らかなように本発明で得た耐
熱軟質材料は、モース硬度2.0〜2.5、曲げ強さ
370〜535Kg/cm2を有し、700℃までの加熱におい
ても強度劣化がほとんどない耐熱性に優れた材料
であり、絶縁抵抗耐アーク性も優れている。 またガラス製品などを熱処理する際、使用する
熱処理治具の支持部材として用いてもガラス製品
に傷、割れなどの欠陥を生じさせることなく耐損
耗性も従来品より優れたものである。尚実施例で
は白雲母粉末を代表例に用いたが金雲母粉末も同
様な効果を有することはいうまでもない。 比較例1は、耐損耗性に問題があり、比較例2
は、ガラス製品に傷を発生させる欠陥がありこの
結果より特許請求の範囲、第2項に記載の材料組
成範囲が適していることを意味する。 比較例3は、アスベストケイ酸カルシウムを用
いたものであるが材料の寿命が非常に短かく、こ
れを用いた場合、取り換え作業がひんぱんとなり
材料が安価にもかかわらずトータルコストが高い
ものとなる。また最大の欠陥としてはこの材料に
は、アスベストが多く含有されており、取り扱い
に注意を要する。また粉塵が作業環境を悪化さ
せ、労働衛生面で問題を起し易い。本発明による
耐熱軟質材料はアスベストのごとき特定化学物質
に指定された材料は含有されておらず、取り扱い
上安全である。 ニユーセラミツクスの一種であるボロンナイト
ライドは、熱処理治具の支持部材として多く用い
られ、耐損耗性に優れた材料であるが、ガラス製
品に付着した場合、例えば陰極線管などに付着し
た場合は、製品自体が絶縁不良などを起し易い欠
陥があり使用途を限定して用いたり、またコスト
が非常に高い材料であることも欠陥として挙げら
れる。 本発明による耐熱軟質材料は、材料自体が安価
であり、加工性も優れているため、これら従来品
の欠陥をいずれも排折できる新しい材料として提
供するものである。 本発明による耐熱軟質複合体は比較例1、比較
例2も含め電気絶縁性、耐アーク性に優れている
ところから耐熱、不燃性の要求される電気、あ
るいは車両などの絶縁スペーサー、ワツシヤー、
消弧材料などにも適用でき実用上の効果が極めて
大きいものである。

Claims (1)

  1. 【特許請求の範囲】 1 タルク粉末とマイカ粉末を主剤とし、正ホウ
    酸ならびに無水ホウ酸、および酸化亜鉛から構成
    された結合剤を用いて160〜200℃の加熱温度、な
    らびに50〜100Kg/cm2の加圧力で複合体を得た後、
    この複合体を450〜500℃の温度で加熱処理して得
    る事を特徴とする耐熱軟質複合体の製造法。 2 耐熱軟質複合体は、下記組成比率内の複合材
    料で構成された事を特徴とする特許請求の範囲第
    1項に記載の耐熱軟質複合体の製造法。 主剤;タルク粉末 25〜45重量% マイカ粉末 15〜40重量% 結合剤;正ホウ酸 16.30〜18.63重量% 無水ホウ酸 3.68〜4.20重量% 酸化亜鉛 15.0.2〜17.17重量%
JP57173562A 1982-09-30 1982-09-30 耐熱軟質複合体の製造法 Granted JPS5964558A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP57173562A JPS5964558A (ja) 1982-09-30 1982-09-30 耐熱軟質複合体の製造法
US06/533,793 US4486546A (en) 1982-09-30 1983-09-19 Process for preparing a heat resistant soft composite
EP83109288A EP0105400B1 (en) 1982-09-30 1983-09-19 Process for preparing a heat resistant soft composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57173562A JPS5964558A (ja) 1982-09-30 1982-09-30 耐熱軟質複合体の製造法

Publications (2)

Publication Number Publication Date
JPS5964558A JPS5964558A (ja) 1984-04-12
JPH0127012B2 true JPH0127012B2 (ja) 1989-05-26

Family

ID=15962850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57173562A Granted JPS5964558A (ja) 1982-09-30 1982-09-30 耐熱軟質複合体の製造法

Country Status (3)

Country Link
US (1) US4486546A (ja)
EP (1) EP0105400B1 (ja)
JP (1) JPS5964558A (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62246855A (ja) * 1986-04-18 1987-10-28 ニチアス株式会社 フロア板の製造法
US5204078A (en) * 1988-01-21 1993-04-20 Co-Op Chemical Co., Ltd. Method for producing fluorine mica
US5338349A (en) * 1992-08-27 1994-08-16 Firecomp, Inc. Fire resistant and high temperature insulating composition
EP1660458B1 (en) * 2003-08-15 2012-01-25 Novartis AG 2, 4-pyrimidinediamines useful in the treatment of neoplastic diseases, inflammatory and immune system disorders
US7083758B2 (en) * 2003-11-28 2006-08-01 Les Produits Industriels De Haute Temperature Pyrotek Inc. Free flowing dry back-up insulating material
EP4208418A2 (en) * 2020-09-01 2023-07-12 Corning Incorporated Apparatus for holding glassware during processing

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2382137A (en) * 1944-05-17 1945-08-14 Henry L Crowley & Company Inc Steatite-type body and method of producing same
JPS57187827A (en) * 1981-05-15 1982-11-18 Mitsubishi Electric Corp Dielectric firing insulator
JPS5812221A (ja) * 1981-07-15 1983-01-24 三菱電機株式会社 消弧室用焼成部材

Also Published As

Publication number Publication date
EP0105400A1 (en) 1984-04-18
US4486546A (en) 1984-12-04
EP0105400B1 (en) 1985-12-11
JPS5964558A (ja) 1984-04-12

Similar Documents

Publication Publication Date Title
US4985163A (en) Shaped heat-insulating body and process of making the same
JPH0127012B2 (ja)
JPS6111399B2 (ja)
CA2097074C (en) Insulating material containing pitch based graphite fiber
CN106746673B (zh) 一种Co-Ni共掺的耐蚀玻璃及其制备和使用方法
RU2324991C1 (ru) Поглощающий свч-энергию материал и способ его изготовления
KR20170103386A (ko) 비석면 절연·단열판 및 그 제조방법
CN106746672B (zh) 一种Fe-Ni共掺的耐蚀玻璃及其制备和使用方法
US3623897A (en) Novel foamable glass compositions comprising copper
JPS59232964A (ja) マイカ複合セラミツクスの製造法
CN106746623B (zh) 一种Fe-Co共掺的耐蚀玻璃及其制备和使用方法
JPS6233684B2 (ja)
JPS6115528B2 (ja)
US4412010A (en) Arc resistant insulator
JPH02225370A (ja) マイカ複合セラミックスの製法
TWI844921B (zh) 鎂碳磚之回收方法
CN117510234A (zh) 一种石英坩埚的制备方法和石英坩埚
CN116731542A (zh) 一种涂层组合物、涂层及其制备方法与包含涂层的制品
JPS6115527B2 (ja)
GB2108977A (en) Water resistant and thermally insulating silicate articles and compositions and method for the production thereof
JPS616149A (ja) 無機絶縁体の製法
JP3461907B2 (ja) 消弧材料組成物およびそれを用いた消弧室の製法
JPS6022677B2 (ja) 窒化珪素系複合焼結体及びその製造方法
JPS6115524B2 (ja)
JPS6115525B2 (ja)