JPH01268048A - Diffused resistor element - Google Patents

Diffused resistor element

Info

Publication number
JPH01268048A
JPH01268048A JP9629088A JP9629088A JPH01268048A JP H01268048 A JPH01268048 A JP H01268048A JP 9629088 A JP9629088 A JP 9629088A JP 9629088 A JP9629088 A JP 9629088A JP H01268048 A JPH01268048 A JP H01268048A
Authority
JP
Japan
Prior art keywords
diffused
semiconductor region
type semiconductor
resistor
conductivity type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9629088A
Other languages
Japanese (ja)
Inventor
Tsugio Yamaguchi
山口 二男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP9629088A priority Critical patent/JPH01268048A/en
Publication of JPH01268048A publication Critical patent/JPH01268048A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/0802Resistors only

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To suppress the effect of a FET and to obtain a stable resistance value, by connecting a second conductivity type semiconductor region as a second diffused resistor in parallel to a first diffused resistor comprising a first conductivity type semiconductor region which is formed in the second conductivity semiconductor region in the first conductivity type semiconductor region. CONSTITUTION:A first diffused resistor comprising a first conductivity type semiconductor region 1 which is formed in a second conductivity type semiconductor region 2 in a first conductivity type semiconductor region 3 is connected to a second diffusion resistor comprising said second conductivity type semiconductor region 2 in parallel. For example, an N<-> type epitaxial layer 2 is separated from other elements and formed on a P-type silicon substrate 3. A P-type impurity diffused region 1 is formed in the layer 2. A pair of N<+> type high concentration impurity diffused regions 6 and 6 are formed in ohmic-contact with the neighboring P-type impurity diffused region on the surface part of the substrate. A pair of opening parts 8 and 8 are formed in an insulating layer 7 which covers the main surface of the substrate. An electrode 4 and an electrode 5 are formed at the opening parts 8 and 8, and a terminal A and a terminal B are provided.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は所要の導電型の半導体領域を用いて構成される
拡散抵抗素子に関し、特に、そのFET効果を抑制した
拡散抵抗素子に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a diffused resistance element constructed using a semiconductor region of a desired conductivity type, and particularly to a diffused resistance element in which the FET effect is suppressed.

〔発明の概要〕[Summary of the invention]

本発明の拡散抵抗素子は、第1導電型半導体領域中の第
2導電型半導体領域に形成された第1導電型半導体領域
からなる第1の拡散抵抗体に、」二記第2導電型半導体
領域を第2の拡散抵抗体として並列接続させることによ
り、そのFET効果を抑制して安定した抵抗値を得るも
のである。
The diffused resistor element of the present invention includes a first diffused resistor made of a first conductive type semiconductor region formed in a second conductive type semiconductor region in a first conductive type semiconductor region, and a second conductive type semiconductor as described above. By connecting the regions in parallel as a second diffused resistor, the FET effect is suppressed and a stable resistance value is obtained.

〔従来の技術〕[Conventional technology]

種々の信号処理回路を半導体集積回路装置で構成する場
合、その抵抗素子として、半導体基板に不純物を拡散さ
せ、その不純物拡散領域から形成した拡散抵抗素子が用
いられることがある。
When various signal processing circuits are constructed using semiconductor integrated circuit devices, a diffused resistance element formed from an impurity diffusion region by diffusing impurities into a semiconductor substrate is sometimes used as the resistance element.

第4図は、従来の拡散抵抗素子の一例であり、P型の半
導体基板4■にN型のエピタキシャル層42が形成され
、そのN型のエピタキシャル層42の表面の一部にP型
の不純物波′#i領域43が形成されている。上記半導
体基板41の表面を覆う絶縁膜44は、上記P型の不純
物拡散g域43の両端及び上記N型のエピタキシャル1
1142の一部で開口され、それら開口部分に電極45
a、45b及び45cが設けられている。ここで、当該
拡数紙抗体の端子は、電FfA45a、45bであり、
電極45cは、所要の電圧印加のために設けられている
FIG. 4 shows an example of a conventional diffused resistance element, in which an N-type epitaxial layer 42 is formed on a P-type semiconductor substrate 4, and a part of the surface of the N-type epitaxial layer 42 is doped with P-type impurities. A wave'#i region 43 is formed. An insulating film 44 covering the surface of the semiconductor substrate 41 covers both ends of the P-type impurity diffusion region 43 and the N-type epitaxial region 1.
1142 are opened, and electrodes 45 are placed in these openings.
a, 45b and 45c are provided. Here, the terminals of the expansion paper antibody are electric FfA45a, 45b,
Electrode 45c is provided for applying a required voltage.

また、このような拡散抵抗体に関する技術としては、特
開昭56−50553号公報に記載される先行技術が存
在する。
Further, as a technology related to such a diffused resistor, there is a prior art described in Japanese Patent Application Laid-Open No. 56-50553.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述の拡散抵抗素子を形成する半導体装置では、ローパ
ワーで動作させるためにそのシート抵抗率ρ、が高めら
れ、集積度を高めるために拡散層の接合を浅くする傾向
にある。
In the semiconductor device forming the above-described diffused resistance element, the sheet resistivity ρ is increased in order to operate at low power, and the junction of the diffusion layer tends to be made shallow in order to increase the degree of integration.

ところが、そのような高シート抵抗率化やシャロージヤ
ンクション化を図った場合に、上記拡散抵抗素子では、
FET効果が顕著になり、その抵抗値の変化が問題とな
ってきている。すなわち、第4図の例によると、拡散抵
抗素子は不純物拡散領域43を利用しており、その接合
部46では空乏N47が生ずる。この空乏1i47は、
不純物濃度が低ければ拡がり、接合部46が浅ければそ
れだけ不純物拡散領域43の空乏層47以外の領域の割
合が小さくなる。このため、空乏1i47の拡がりによ
るFET効果が顕著になり、その抵抗値がずれ易くなる
However, when trying to achieve such high sheet resistivity and shallow junction, the above-mentioned diffused resistance element
The FET effect has become significant, and changes in its resistance have become a problem. That is, according to the example of FIG. 4, the diffused resistance element utilizes the impurity diffusion region 43, and a depletion N47 occurs at the junction 46 thereof. This depletion 1i47 is
The lower the impurity concentration, the more it spreads, and the shallower the junction 46, the smaller the proportion of the region other than the depletion layer 47 in the impurity diffusion region 43. Therefore, the FET effect due to the expansion of the depletion 1i47 becomes significant, and its resistance value tends to shift.

また、上記公報に開示される技術は、抵抗体の高い電位
側と、抵抗体を内部に有するウェル(ランド;島状領域
)を短絡して、ウェルの電位を制御するものである。し
かし、DCバイアスを供給するための抵抗分割が%でな
い場合や、抵抗の両端の電位がAC信号によって振られ
る場合には、やはりFET効果から、安定した抵抗値が
得られないという問題が生していた。
Further, the technique disclosed in the above-mentioned publication short-circuits the high potential side of the resistor and a well (land; island-like region) that has the resistor inside to control the potential of the well. However, if the resistance division for supplying DC bias is not %, or if the potential across the resistor is varied by an AC signal, the problem arises that a stable resistance value cannot be obtained due to the FET effect. was.

そこで、本発明は上述の技術的な課題に鑑み、そのFE
T効果を抑制して安定した抵抗値を得るような拡散抵抗
素子の提供を目的とする。
Therefore, in view of the above-mentioned technical problems, the present invention has been developed to
The object of the present invention is to provide a diffused resistance element that suppresses the T effect and obtains a stable resistance value.

〔課題を解決するための手段〕[Means to solve the problem]

上述の目的を達成するため、本発明の拡散抵抗素子は、
第1導電型半導体領域中の第2導電型半導体顛域に形成
された第1導電型半導体領域からなる第1の拡散抵抗体
と、上記第2導電型半導体領域からなる第2の拡散抵抗
体を並列接続したことを特徴とする。
In order to achieve the above object, the diffused resistance element of the present invention has the following features:
A first diffused resistor made of a first conductive type semiconductor region formed in a second conductive type semiconductor area in the first conductive type semiconductor region, and a second diffused resistor made of the second conductive type semiconductor region. It is characterized by being connected in parallel.

〔作用〕[Effect]

FET効果は、PN接合部に形成される空乏層が接合の
両端に加わる逆バイアス電圧に依存して変化することに
起因する。そして、拡散抵抗素子の抵抗値は、その空乏
層の拡がりに応じて変調される。そこで、本発明の拡散
抵抗素子では、上記第2導電型半導体領域からなる第2
の拡散抵抗体を、その内部の本来の拡散抵抗体である第
1導電型半導体領域(第1の拡散抵抗体)と並列接続さ
せ、PN接合の全体に亘って同相の信号の変化がなされ
、全体を零バイアス状態にさせる。その結果、FET効
果による抵抗値の変調が抑制されることになる。
The FET effect is due to the fact that the depletion layer formed at the PN junction changes depending on the reverse bias voltage applied across the junction. Then, the resistance value of the diffused resistance element is modulated according to the spread of its depletion layer. Therefore, in the diffused resistance element of the present invention, the second
The diffused resistor is connected in parallel with the first conductivity type semiconductor region (first diffused resistor) which is the original diffused resistor therein, and the signal changes in the same phase throughout the PN junction, Bring the whole thing to zero bias state. As a result, modulation of the resistance value due to the FET effect is suppressed.

ここで、どのようにFET効果が軽減されるかについて
説明する。まず、従来の拡散抵抗素子において、第1の
不純物拡散領域からなる第1の拡散抵抗体の抵抗値をR
oとし、逆バイアスの電圧をVl  (v)する、さら
に、その時の変調率を100kO(%〕とする。すると
、 Re  (v+ )−(1+に6 )R6(o)−・・
■となる。また、第2導電型半導体領域例えばエピタキ
シャル層からなる抵抗体では、同様に空乏層による影響
から、 Rtp+ (Vl)−(1+kEp+ ) REPI 
(0) −■となる。そして、上記エピタキシャル層か
らなる抵抗体のシート抵抗率ρ、!の上記抵抗R0にお
けるシート抵抗率ρ、1に対する比をN(N>1)とす
ると、 NRe  (0)=Rt□(0)・・・■で表せる。
Here, a description will be given of how the FET effect is reduced. First, in a conventional diffused resistance element, the resistance value of the first diffused resistor made of the first impurity diffusion region is set to R.
o, the reverse bias voltage is Vl (v), and the modulation rate at that time is 100 kO (%). Then, Re (v+) - (6 to 1+) R6 (o) -...
■It becomes. Furthermore, in a resistor made of a second conductivity type semiconductor region, for example, an epitaxial layer, Rtp+ (Vl)-(1+kEp+) REPI due to the influence of a depletion layer.
(0) −■. And the sheet resistivity ρ of the resistor made of the above epitaxial layer,! When the ratio of the sheet resistivity ρ at the resistance R0 to 1 is N (N>1), it can be expressed as NRe (0)=Rt□(0)...■.

次に、零バイアス時の合成抵抗RTOf  (0)に1
+N (°、°第■式より) となる。
Next, the combined resistance RTOf (0) at zero bias is set to 1
+N (°, ° from equation ①).

ところが、本発明の拡散抵抗素子では、k、□は基板と
の関係で変調を受は得る°ものの、koは零となる。す
なわち、第1の拡散抵抗体と第2の拡散抵抗体の間の空
乏層の拡がりは、逆バイアス電圧が増加して行った場合
でも同じ関係で保たれて行き、変調度に0は本発明の拡
散抵抗素子においてに6 =oとなる。従って、電圧v
lのバイアス時において、その合成抵抗Ryot  (
■I)については、第■、■、■式より、 Ro  (Vl)+RFpI (Vl)R,)(0) 
 (i−t−に□+ ) RlPI (0)Re (0
) + (1+kir+ ) Rxr+ (0)1+N
(1+に□、) となる。ここで、その変化率ΔR(v+ )について計
算すると、第■、■式から、 R丁oT  (0) N  (1+に*p+  )     1 +N1+N
  (1+kEr+  )    N1+N (1+k
ir+ ) 十に□。
However, in the diffused resistance element of the present invention, although k and □ receive modulation due to the relationship with the substrate, ko becomes zero. That is, the spread of the depletion layer between the first diffused resistor and the second diffused resistor is maintained in the same relationship even when the reverse bias voltage is increased, and the modulation degree of 0 is the same according to the present invention. 6 = o in the diffused resistance element. Therefore, the voltage v
At the time of bias l, the combined resistance Ryot (
■For I), from formulas ■, ■, and ■, Ro (Vl)+RFpI (Vl)R,)(0)
(□+ to it-) RlPI (0) Re (0
) + (1+kir+) Rxr+ (0)1+N
(□ to 1+) becomes. Here, when calculating the rate of change ΔR (v+), from equations ① and ②, RyoT (0) N (*p+ to 1+) 1 +N1+N
(1+kEr+) N1+N (1+k
ir+) □ to ten.

1+N(1+に、□ ) となり、変化率ΔR(v+ )がkFp+やNの値に依
存することが判る。
1+N (to 1+, □), and it can be seen that the rate of change ΔR(v+) depends on the values of kFp+ and N.

第3図は、従来の拡散抵抗素子(破線)と本発明の拡散
抵抗素子(実線)を比較したものであり、横軸はバイア
ス電圧であり、縦軸は変調率00を示している。従来の
拡散抵抗素子では、逆バイアス電圧が大きくなるに従っ
てその変調率(k)が増大するが、本発明の拡散抵抗素
子では、十分にその変調が抑えられることが示される。
FIG. 3 compares the conventional diffused resistance element (broken line) and the diffused resistance element of the present invention (solid line), where the horizontal axis represents the bias voltage and the vertical axis represents the modulation factor of 00. In the conventional diffused resistance element, the modulation rate (k) increases as the reverse bias voltage increases, but it is shown that the modulation is sufficiently suppressed in the diffused resistance element of the present invention.

次に、どの程度FET効果が改善されるかについて説明
すると、今、変調度に0と第2の拡散抵抗体のエピタキ
シャル層の変調度kir+の比を、Mとすると、 ke −MkFr+ 、  (M’> 1 )・・・■
となり、上記第0式から、 ΔR(V、 ) =に6 / ((1+N)  ・M)
・・・■となって、k、に対して分母に(14N) ・
Mがくる分だけFET効果が軽減されることが判る。
Next, to explain how much the FET effect is improved, if the ratio of the modulation degree of 0 and the modulation degree of the epitaxial layer kir+ of the second diffused resistor is M, then ke -MkFr+ , (M '>1)・・・■
From the above formula 0, ΔR(V, ) = 6/((1+N) ・M)
...■, and the denominator for k is (14N) ・
It can be seen that the FET effect is reduced by the amount of M.

仮に、N−3,M−2,5とした時では、変化率ΔR(
Vl )はk。/10となり、約20dBの改善が行わ
れることになる。
If N-3, M-2, 5, the rate of change ΔR(
Vl) is k. /10, resulting in an improvement of about 20 dB.

(実施例〕 本発明の好適な実施例を図面を参照しながら説明する。(Example〕 Preferred embodiments of the present invention will be described with reference to the drawings.

本実施例の拡散抵抗素子は、並列接続された2つの拡散
抵抗体を利用して、FET効果の抑制を実現するもので
ある。
The diffused resistor element of this example utilizes two diffused resistors connected in parallel to realize suppression of the FET effect.

まず、その構造については、第1図に示すように、P型
のシリコン基板3に形成されたN−型のエピタキシャル
N2と、N−型のエピタキシャル層2に形成されたP型
の不純物拡散領域lとを主たる構成としている。
First, as for its structure, as shown in FIG. The main structure is 1.

P型のシリコン基板3は接地されており、このシリコン
基板3の他の領域には、例えばトランジスタ等の能動素
子やキャパシタ等の受動素子が形成される。N−型のエ
ピタキシャル層2は、他の素子とは分離されて形成され
、その中には上記P型の不純物拡散領域lが形成されて
いる。N″型のエピタキシャルN2は第2の拡散抵抗体
として機能し、当該エピタキシャル層2に与えられる電
圧から、上記P型の不純物拡散領域lとの間の、PN接
合10に形成される空乏層による抵抗値の変調が抑制さ
れるようにしている。基板の表面部には、P型の不純物
拡散領域lに隣接してオーミンクコンタクトをとるため
の一対のN゛型高濃度不純物拡散領域6.6が形成され
ている。すなわら、それらN゛型高濃度不純物拡散領域
6,6を介してN−型のエピタキシャル層2に電圧が印
加される。第1の拡散抵抗体としてのP型の不純物拡散
領域1は、N−型のエピタキシャル層2に基板内で囲ま
れてなり、絶縁層7で被覆された基板の主面に臨んで形
成されている。P型の不純物拡散領域1の両端部分の絶
縁N7には、電圧を印加するだめの一対の開口部8.8
が形成されている。これら開口部8.8は、P型の不純
物拡散領域1の両端部のみならず上記N゛型高濃度不純
物拡散領域6.6の上部にも延在されている。これら開
口部8,8には、電極4と電極5が形成されており、電
極4が端子A、電極5が端子Bとなっている。
The P-type silicon substrate 3 is grounded, and active elements such as transistors and passive elements such as capacitors are formed in other regions of the silicon substrate 3. The N- type epitaxial layer 2 is formed separated from other elements, and the P-type impurity diffusion region 1 is formed therein. The N'' type epitaxial layer N2 functions as a second diffused resistor, and from the voltage applied to the epitaxial layer 2, the depletion layer formed in the PN junction 10 between the P type impurity diffusion region 1 and the P type impurity diffusion region l is detected. Modulation of the resistance value is suppressed.On the surface of the substrate, a pair of N-type high concentration impurity diffusion regions 6. are provided adjacent to the P-type impurity diffusion region 1 to establish an ohmink contact. 6 is formed. That is, a voltage is applied to the N- type epitaxial layer 2 through these N-type high concentration impurity diffusion regions 6, 6. P-type as the first diffused resistor The impurity diffusion region 1 is surrounded by an N-type epitaxial layer 2 in the substrate and is formed facing the main surface of the substrate covered with the insulating layer 7. The insulation N7 at both ends has a pair of openings 8.8 for applying voltage.
is formed. These openings 8.8 extend not only to both ends of the P-type impurity diffusion region 1 but also to the upper part of the N''-type high concentration impurity diffusion region 6.6. An electrode 4 and an electrode 5 are formed in these openings 8 and 8, with the electrode 4 serving as a terminal A and the electrode 5 serving as a terminal B.

このような構造を有する本実施例の拡散抵抗素子は、第
2図に示すような等価回路で表すことができる。第2図
では、端子Aと端子Bの間に、2つの抵抗R0と抵抗R
1PIが並列に接続されており、抵抗R6はP型の不純
物拡散領域1による第1の拡散抵抗体であり、抵抗R1
,1はN−型のエピタキシャル層2による第2の拡散抵
抗体である。
The diffused resistance element of this example having such a structure can be represented by an equivalent circuit as shown in FIG. In Figure 2, two resistors R0 and R0 are connected between terminal A and terminal B.
1PI are connected in parallel, the resistor R6 is the first diffused resistor formed by the P-type impurity diffusion region 1, and the resistor R1
, 1 is a second diffused resistor formed of an N-type epitaxial layer 2.

N−型のエピタキシャル層2は、P型の不純物拡散領域
1よりも抵抗値が高い、そして、このような構造からな
る本実施例の拡散抵抗素子のFET効果の低減について
は、上記〔作用〕の第0式のように、 ΔR(V+ )=ko / ((1+N)  ・M)(
イ旦し、N=Rtp璽/R・、M−ka/にア2.)と
される。
The N-type epitaxial layer 2 has a higher resistance value than the P-type impurity diffusion region 1, and the reduction of the FET effect of the diffused resistance element of this embodiment having such a structure is described in the above [effect]. As in the 0th equation, ΔR(V+)=ko/((1+N)・M)(
Then, N=Rtp/R., M-ka/A2. ).

ここで、本実施例の拡散抵抗素子を適用した各種の抵抗
体(TYPE1〜3)についてのデータを第1表に示す
と、次のようになる。
Table 1 shows data regarding various resistors (TYPEs 1 to 3) to which the diffused resistance element of this example is applied.

第1表 (但し、ktr+=2.7%(電圧5■))上記第1表
からも明らかなように、変化率ΔR(V+ )は、ko
/10〜に076程度の値を示し、エピタキシャル層2
の並列接続によって、FET効果が小さくなることが判
る。
Table 1 (ktr+=2.7% (voltage 5■)) As is clear from Table 1 above, the rate of change ΔR(V+) is ko
/10 ~ shows a value of about 076, and epitaxial layer 2
It can be seen that the FET effect is reduced by parallel connection of .

以上のように、本実施例の拡散抵抗素子では、本来のP
型の不純物拡散領域1と並列にシート抵抗の高いN°型
のエピタキシャル層2を設けている。このN−型のエピ
タキシャル層2は、並列接続されることから、その接合
lOのどの部分も零バイアスとされ、空乏層の電圧に依
存した変調が抑えられ、従って、P型の不純物拡散領域
lはFET効果を受けない。N−型のエピタキシャル層
2は、下部のP型のシリコン基板3との間で変調(kt
r+ )を受けるが、その値は並列接続しない場合のP
型の不純物拡散領域lの変調度(k6)に比較して小さ
い。従って、合成抵抗からる本実施例の拡散抵抗体のF
ET効果は著しく低減されることになる。
As described above, in the diffused resistance element of this example, the original P
An N° type epitaxial layer 2 having a high sheet resistance is provided in parallel with the type impurity diffusion region 1. Since this N- type epitaxial layer 2 is connected in parallel, any part of the junction 10 is set to zero bias, and voltage-dependent modulation of the depletion layer is suppressed. is not affected by the FET effect. The N-type epitaxial layer 2 is modulated (kt
r+ ), but its value is P when not connected in parallel.
It is small compared to the modulation degree (k6) of the type impurity diffusion region l. Therefore, F of the diffused resistor of this example made of composite resistance
The ET effect will be significantly reduced.

このように、FET効果が低減される本実施例の拡散抵
抗素子の用途としては、あらゆる用途に用いることがで
きる。例示すれば、DCバイアスの設定用の抵抗や、ア
ンプ、フィルター等が挙げられる。特に歪みを除去する
ことが要求される回路に有効である。
In this way, the diffused resistance element of this embodiment, in which the FET effect is reduced, can be used for all kinds of applications. Examples include resistors for setting DC bias, amplifiers, filters, and the like. This is particularly effective for circuits that require distortion removal.

なお、上述の実施例において、N−型のエピタキシャル
層2の表面にN゛型の高濃度不純物拡散領域6,6を形
成したが、他の手段でコンタクトをとっても良い。また
、開口部8,8は、P型の不純物拡散領域1とN−型の
エピタキシャル層2で共通のコンタクトホールとなって
いるが、並列接続を実現するものであれば別個のコンタ
クトホールであっても良い。また、第1導電型をN型。
In the above-described embodiment, the N-type high concentration impurity diffusion regions 6, 6 were formed on the surface of the N-type epitaxial layer 2, but contact may be made by other means. Further, the openings 8 and 8 are common contact holes for the P-type impurity diffusion region 1 and the N-type epitaxial layer 2, but they can be separate contact holes if parallel connection is to be realized. It's okay. Also, the first conductivity type is N type.

第2摩電型をP型としたが、P、Nを逆にしても良い。Although the second electrostatic type is P type, P and N may be reversed.

また、本発明の拡散抵抗素子は、上述の実施例に限定さ
れず、その要旨を逸脱しない範囲での種々の変更が可能
である。
Further, the diffused resistance element of the present invention is not limited to the above-described embodiments, and various changes can be made without departing from the gist thereof.

〔発明の効果] 本発明の拡散抵抗素子は、第1の拡散抵抗体と接合を生
ずる第2の拡散抵抗体が並列に接続されることから、そ
のFET効果を十分に小さくして、動作上の歪みを抑え
ることができる。また、FET効果が抑えられることか
ら、設計上、抵抗を配置しやすくなり、シミュレーショ
ンの手間等も省くことができる。
[Effects of the Invention] In the diffused resistance element of the present invention, since the first diffused resistor and the second diffused resistor that form a junction are connected in parallel, the FET effect can be sufficiently reduced to improve operational performance. distortion can be suppressed. Furthermore, since the FET effect is suppressed, it becomes easier to arrange the resistors in terms of design, and the effort of simulation can be saved.

さらに、本発明の拡散抵抗素子では、電源電圧Vccよ
りも高い電圧まで使用しても、十分抵抗体として機能す
る。原理的には、基板とエビタキ・シャル層との耐圧ま
での実力が備わる。
Furthermore, the diffused resistance element of the present invention functions satisfactorily as a resistor even when used up to a voltage higher than the power supply voltage Vcc. In principle, it has the ability to withstand pressure between the substrate and the epitaxy layer.

また、その用途としては、あらゆる回路に対して適用さ
せることができ、低歪みな信号処理回路を得るのに好適
である。
Moreover, it can be applied to any circuit, and is suitable for obtaining a low-distortion signal processing circuit.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の拡散抵抗素子にかかる一実施例の要部
断面図1、第2図はその等価回路図、第3図は本発明の
拡散抵抗素子と従来の拡散抵抗素子を比較した場合の特
性図、第4図は従来の拡散抵抗素子の一例の要部断面図
である。 1・・・P型の不純物拡散領域 2・・・N−型のエピタキシャル層 3・・・P型のシリコンミt反 4.5・・・電極 特許出願人   ソニー株式会社 代理人弁理士 小池 蒐(他2名) A         Ro          B第2
Fig. 1 is a cross-sectional view of essential parts of an embodiment of the diffused resistance element of the present invention, Fig. 2 is its equivalent circuit diagram, and Fig. 3 is a comparison between the diffused resistance element of the present invention and a conventional diffused resistance element. FIG. 4 is a sectional view of a main part of an example of a conventional diffused resistance element. 1...P-type impurity diffusion region 2...N-type epitaxial layer 3...P-type silicon layer 4.5...Electrode patent applicant Sony Corporation representative patent attorney Akira Koike ( 2 others) A Ro B 2nd
figure

Claims (1)

【特許請求の範囲】[Claims]  第1導電型半導体領域中の第2導電型半導体領域に形
成された第1導電型半導体領域からなる第1の拡散抵抗
体と、上記第2導電型半導体領域からなる第2の拡散抵
抗体を並列接続したことを特徴とする拡散抵抗素子。
A first diffused resistor made of a first conductive type semiconductor region formed in a second conductive type semiconductor region in the first conductive type semiconductor region, and a second diffused resistor made of the second conductive type semiconductor region. A diffused resistance element characterized by being connected in parallel.
JP9629088A 1988-04-19 1988-04-19 Diffused resistor element Pending JPH01268048A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9629088A JPH01268048A (en) 1988-04-19 1988-04-19 Diffused resistor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9629088A JPH01268048A (en) 1988-04-19 1988-04-19 Diffused resistor element

Publications (1)

Publication Number Publication Date
JPH01268048A true JPH01268048A (en) 1989-10-25

Family

ID=14160942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9629088A Pending JPH01268048A (en) 1988-04-19 1988-04-19 Diffused resistor element

Country Status (1)

Country Link
JP (1) JPH01268048A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2884050A1 (en) * 2005-04-01 2006-10-06 St Microelectronics Sa Integrated circuit for e.g. voltage controlled oscillator supplying regulator, has resistor with deep buried layer, electrically connecting N-conductivity access wells and covered by P-conductivity casing, and siliconizing protection layer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2884050A1 (en) * 2005-04-01 2006-10-06 St Microelectronics Sa Integrated circuit for e.g. voltage controlled oscillator supplying regulator, has resistor with deep buried layer, electrically connecting N-conductivity access wells and covered by P-conductivity casing, and siliconizing protection layer
US7714390B2 (en) 2005-04-01 2010-05-11 Stmicroelectronics S.A. Integrated circuit comprising a substrate and a resistor

Similar Documents

Publication Publication Date Title
US4053916A (en) Silicon on sapphire MOS transistor
US3333166A (en) Semiconductor circuit complex having low isolation capacitance and method of manufacturing same
US4109273A (en) Contact electrode for semiconductor component
JPH01268048A (en) Diffused resistor element
US4223335A (en) Semiconductor device body having identical isolated composite resistor regions
JPH01268049A (en) Diffused resistor element
JPH01268050A (en) Diffused resistor element
JPS59100570A (en) Mos transistor
JPS62234363A (en) Semiconductor integrated circuit
JPH03155659A (en) Semiconductor device
JPS6355871B2 (en)
JPS601843A (en) Semiconductor integrated circuit
JPH05864B2 (en)
JPS58139471A (en) Mis field effect transistor
JPS6110990B2 (en)
JPH027553A (en) Semiconductor integrated circuit device
JPS6036104B2 (en) Semiconductor integrated circuit device
JPS594082A (en) Semiconductor integrated circuit
JPS6027193B2 (en) semiconductor circuit device
JPS6031105B2 (en) semiconductor equipment
JPS60183762A (en) Semiconductor integrated circuit device
JPS61150262A (en) Input protection resistor
JPH0493081A (en) Semiconductor device
JPS63181475A (en) Junction type field effect transistor
JPS58132958A (en) Integrated capacitance