JPS58132958A - Integrated capacitance - Google Patents
Integrated capacitanceInfo
- Publication number
- JPS58132958A JPS58132958A JP1509182A JP1509182A JPS58132958A JP S58132958 A JPS58132958 A JP S58132958A JP 1509182 A JP1509182 A JP 1509182A JP 1509182 A JP1509182 A JP 1509182A JP S58132958 A JPS58132958 A JP S58132958A
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- layer
- type
- capacitance
- inversion layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000758 substrate Substances 0.000 claims abstract description 16
- 239000003990 capacitor Substances 0.000 claims description 30
- 239000004020 conductor Substances 0.000 claims description 3
- 239000004065 semiconductor Substances 0.000 claims description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 8
- 229910052814 silicon oxide Inorganic materials 0.000 abstract description 8
- 238000009825 accumulation Methods 0.000 abstract description 3
- 238000009792 diffusion process Methods 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 7
- 230000007423 decrease Effects 0.000 description 5
- 239000000969 carrier Substances 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/86—Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
- H01L29/92—Capacitors having potential barriers
- H01L29/94—Metal-insulator-semiconductors, e.g. MOS
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Semiconductor Integrated Circuits (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は半導体集積回路に於ける集積化容量の構造に関
するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the structure of an integrated capacitor in a semiconductor integrated circuit.
本発明の目的は広い使用電圧範囲に於て容量値が一定な
集積化容量を提供する事にある。An object of the present invention is to provide an integrated capacitor whose capacitance value is constant over a wide operating voltage range.
以下図面に基づいて詳細に説明すると、第1図は集積回
路に於ける基本的な集積化容量の構造を示す断面図であ
って、N型基板1の上に薄い酸化シリコン層2が誘電体
として設けられ、更にその上に導体材料による第1の電
極6が設けられ、更に前記N型基板1内にN 層の第2
の電極5が設けられている。この型の容量はMO8容量
と呼ばれる。A detailed explanation will be given below based on the drawings. FIG. 1 is a cross-sectional view showing the structure of a basic integrated capacitor in an integrated circuit, in which a thin silicon oxide layer 2 is formed on an N-type substrate 1 as a dielectric layer. A first electrode 6 made of a conductive material is provided thereon, and a second N layer is provided in the N type substrate 1.
electrodes 5 are provided. This type of capacitor is called MO8 capacitor.
第1図に示した構造のMO8容量は容量値が電圧依存性
を有する事は良く知られて層り、その特性は第2図の特
性図中で実線に示す如くとなる。It is well known that the capacitance value of the MO8 capacitor having the structure shown in FIG. 1 has voltage dependence, and its characteristics are as shown by the solid line in the characteristic diagram of FIG.
即ち第2の電極5を基準とし、第1の電極6に印加する
電圧が正方向であると前記容量値はCoの値を示すが、
第1の電極6に負方向の電圧を印加すると、ある電圧V
xから前記容量値が減少を始め、電圧がVyの所から減
少する割合は小さくなる。That is, when the voltage applied to the first electrode 6 is in the positive direction with the second electrode 5 as a reference, the capacitance value shows the value of Co;
When a negative voltage is applied to the first electrode 6, a certain voltage V
The capacitance value begins to decrease from x, and the rate at which the voltage decreases from Vy becomes smaller.
上記の現象はN型基板1表面に於ける空乏層の発生によ
り説明される。第1図に於て、第1の電極6に正電圧を
印加した場合には前記N型基板1の表面付近にはN 蓄
積層が形成されるが、このN 蓄積層は単に第2の電極
5の導電率を上げるだけで容量値には関係せず、従って
全体としての容量値は第1の電極6と前記N型基板10
表面との間に於ける容量(第1の容量とする)の値C8
が直接現れる。The above phenomenon is explained by the generation of a depletion layer on the surface of the N-type substrate 1. In FIG. 1, when a positive voltage is applied to the first electrode 6, an N accumulation layer is formed near the surface of the N type substrate 1, but this N accumulation layer is simply connected to the second electrode. The conductivity of the first electrode 6 and the N-type substrate 10 is not related to the capacitance value.
Value of capacitance (first capacitance) between the surface and the surface C8
appears directly.
一方前記第1の電極6に負電圧を印加した場合には、前
記N型基板10表面付近は、電子が追払われてキャリア
のない空乏層が生ずる。この空乏層はC7なる値を有す
る第2の容量として、前記第1の容量C8に直列に入る
形となるため、全体としての容量値はC1より低下する
。更に大きな負電圧を印加すると、第3図の断面図に示
す如く前記N型基板1の表面にはP型反転層4が生じ始
め、このP型反転層4は導伝層となるため、空乏層10
はこのP型反転層4と前記N型基板1との接合部分に出
来る事となる。前記第1の電極乙に印加する負電圧を更
に大きくした場合、印加された電界のほとんどは前記P
型反転層4の厚みな増大させる事に使われ、前記空乏層
10の厚みはそれ程増加しないため、前記第2の容量C
7ばあ止り変化せず、従って全体の容量値変化は小さく
なる。On the other hand, when a negative voltage is applied to the first electrode 6, electrons are driven away near the surface of the N-type substrate 10, creating a depletion layer without carriers. This depletion layer is connected in series to the first capacitor C8 as a second capacitor having a value of C7, so that the overall capacitance value is lower than C1. When a larger negative voltage is applied, a P-type inversion layer 4 begins to form on the surface of the N-type substrate 1 as shown in the cross-sectional view of FIG. layer 10
is formed at the junction between the P-type inversion layer 4 and the N-type substrate 1. When the negative voltage applied to the first electrode B is further increased, most of the applied electric field is
It is used to increase the thickness of the type inversion layer 4, and since the thickness of the depletion layer 10 does not increase that much,
7, there is no change, and therefore the overall capacitance value change is small.
上述の如き容量を使用する場合、前記第1の電極乙に正
方向の電圧だけが印加される様に使用すれば、容量値は
常に一定となるので問題はない。When using a capacitor as described above, there is no problem as long as only a positive voltage is applied to the first electrode B, since the capacitance value will always be constant.
しかし前記第1の電極乙に正負両方向の電圧が印加され
る様な使用状況下では、容量値が電圧によって変化する
事となり、好ましくない。そこで電圧によって容量値が
変化しない容量が必要となる。However, under usage conditions in which voltages in both positive and negative directions are applied to the first electrode B, the capacitance value changes depending on the voltage, which is not preferable. Therefore, a capacitor whose capacitance value does not change depending on the voltage is required.
上述の如く、第1の容量C1に対し第2の容量C5が直
列に入るために容量値変化が起るのであるから、該第2
の容量C7が十分に大きくなる様にすれば前記容量値変
化は小となる。As mentioned above, the capacitance value changes because the second capacitor C5 is connected in series with the first capacitor C1.
If the capacitance C7 is made sufficiently large, the change in capacitance value will be small.
ところで前記第2の容量値C2は前記空乏層10の厚み
が薄ければ薄い程犬となる。半導体に於ける空乏層1D
の厚みは不純物濃度が濃い程薄くなる。従って第4図の
断面図で示す如く、前記N 型の第2の電極5aを前記
第1の電極30位置に対応する酸化シリコン層2の下ま
で広げると、前記P型反転層4と該N 層の第2の電極
5aとの接合面に生ずる空乏層の厚みは薄くなり、前記
第2の容量C1の値が大きくなるとともに、前記P型反
転層の形成される電圧も犬となるため、第2図の特性図
中で破線に示す如く特性が改善される。Incidentally, the second capacitance value C2 becomes smaller as the thickness of the depletion layer 10 becomes thinner. Depletion layer 1D in semiconductor
The thickness becomes thinner as the impurity concentration increases. Therefore, as shown in the cross-sectional view of FIG. The thickness of the depletion layer formed at the junction surface of the layer with the second electrode 5a becomes thinner, the value of the second capacitance C1 becomes larger, and the voltage at which the P-type inversion layer is formed also becomes smaller. The characteristics are improved as shown by the broken line in the characteristic diagram of FIG.
しかしながら前記第1の電極乙に印加する負電圧を更に
犬きくすると、前記P型反転層4の厚みはどんどん大き
くなって、やがて前記N 層の第2の電極5aを突破っ
てしまう。すると該P型反転層4と前記N型基板1との
間の空乏層は厚みが増大し、再び全体の容量値が低下し
てしまう。前記N 層の第2の電極5aを十分に深くま
で設けて置けば上記問題は防げるが、通常前記N 層の
第2の電極5aは他のトランジスタのドレイン又はソー
ス電極の製造工程に於て同時に作るため、十分に深く作
る事は困難である。However, if the negative voltage applied to the first electrode B is further increased, the thickness of the P-type inversion layer 4 becomes larger and larger, and eventually exceeds the second electrode 5a of the N layer. Then, the thickness of the depletion layer between the P-type inversion layer 4 and the N-type substrate 1 increases, and the overall capacitance value decreases again. The above problem can be avoided if the second electrode 5a of the N layer is provided deep enough, but usually the second electrode 5a of the N layer is formed at the same time in the manufacturing process of the drain or source electrode of another transistor. It is difficult to make it deep enough.
そこで本発明の他の目的は上記の問題を解決するために
なされたものであって、特別な工程を追加する事なく優
れた特性の容量を提供するものである。Another object of the present invention is to solve the above-mentioned problems, and to provide a capacitor with excellent characteristics without adding any special steps.
第5図は本発明の第1の実施例である集積化容量の構造
を示す断面図であって、前記第2の電極5とは別にN型
基板1内にP型拡散層による第3の電極6を設ける。こ
の様にすると前記第1の電極已に負電圧を印加した時生
ずるP型反転層4は前記第3の電極6と接続してしまう
ため、第1の電極3と第2の電極50間の容量は減少し
ても、第1の電極3と第3の電極6との間にC8なる容
量が出来る事になる。従って前記第2の電極5と第3の
電極6を共通に接続し、これと前記第1の電極6との間
の容量を見れば第6図の特性図中実線に示す如く特性が
改善される。FIG. 5 is a cross-sectional view showing the structure of an integrated capacitor according to the first embodiment of the present invention. An electrode 6 is provided. In this way, the P-type inversion layer 4 that is generated when a negative voltage is applied across the first electrode is connected to the third electrode 6, so that the Even if the capacitance decreases, a capacitance C8 is created between the first electrode 3 and the third electrode 6. Therefore, by connecting the second electrode 5 and the third electrode 6 in common and looking at the capacitance between them and the first electrode 6, the characteristics are improved as shown by the solid line in the characteristic diagram of FIG. Ru.
第7図は本発明の第2の実施例である集矛β化容量の構
造を示す断面図であって、第6図に示す特性に於ける、
比較的低い電圧領域に於ける容量値変化をより小さくぜ
んとするものであって、第5図と同様に前記第3の電極
6をN型基板1内に設けると同時に、前記第1の電極3
の位置に対応した酸化シリコン層2の下にN 層の第2
の電極5bを広げた場合を示すものである。この場合の
特性は第6図に破線で示す。FIG. 7 is a cross-sectional view showing the structure of a β-concentrating capacitor according to a second embodiment of the present invention, in which the characteristics shown in FIG.
The capacitance value change in a relatively low voltage region is made smaller and more stable, and at the same time as the third electrode 6 is provided in the N-type substrate 1 as shown in FIG. 3
A second N layer is formed under the silicon oxide layer 2 corresponding to the position of
This shows the case where the electrode 5b is expanded. The characteristics in this case are shown by broken lines in FIG.
第8図は第7図の場合とは逆に第1の電極3の位置に対
応する酸化シリコン層2の下に前記第3の電極6aを押
し広げた本発明の第3実施例である集積化容量の構造を
示す断面図であって、その特性は第6図に破線で示した
特性の正負が逆になった特性となる。ただしこの場合、
蓄積層はP型で反転層はN型であるから、P型電極を第
2の電極、N型電極を第3の電極と考え直す方が良い。FIG. 8 shows a third embodiment of the present invention, in which the third electrode 6a is spread under the silicon oxide layer 2 corresponding to the position of the first electrode 3, contrary to the case of FIG. 7 is a cross-sectional view showing the structure of a capacitor, the characteristics of which are the opposite signs of the characteristics shown by the broken line in FIG. 6. FIG. However, in this case,
Since the storage layer is P type and the inversion layer is N type, it is better to consider the P type electrode as the second electrode and the N type electrode as the third electrode.
第9図は本発明の第4の実施例である集積化容量の構造
を示す断面図であって、第2の電極5Cと第3の電極6
bを共に第1の電極層の位置に対応する酸化シリコン層
2の下に広げた場合であって、その特性は第10図の特
性図に示す如く左右対称となるため、使用目的によって
は使い易い容量となる。FIG. 9 is a sectional view showing the structure of an integrated capacitor according to a fourth embodiment of the present invention, in which a second electrode 5C and a third electrode 6
b is spread under the silicon oxide layer 2 corresponding to the position of the first electrode layer, and its characteristics are symmetrical as shown in the characteristic diagram in Figure 10, so it may be used depending on the purpose of use. Easy capacity.
以上の各実施例で明らかな如く、本発明の第1の主旨は
、MO8容量に於て、蓄積層と同型の第反転層と接続可
能な位置に設け、前記第2及び第3の電極を共通にして
一方の電極とする事により、正負の広い電圧範囲に渡っ
て容量値変化の少い集積化容量を提供する事にある。As is clear from the above embodiments, the first gist of the present invention is that the second and third electrodes are provided in the MO8 capacitor at a position where it can be connected to a second inversion layer of the same type as the storage layer. By using one electrode in common, it is possible to provide an integrated capacitor whose capacitance value changes little over a wide positive and negative voltage range.
次に第11図(a)及び(b)は本発明の第5実施例で
ある集積化容量の構造を示す平面図及び断面図であって
、上記第1乃至第4実施例を更に改良を行ったものであ
る。即ち上記第1乃至第4実施例に於ては反転層4が生
じた時、この反転層4を導伝体として利用するのである
が、一般に反転層4は抵抗値が大きく、そのため特に電
圧が低い領域では容量のQ値が低下してしまう。そこで
反転層4は出来るだけ短い距離で前記第3の賃上シロ(
又は第3の電極6aや6.b )と接続させた方が良い
。従って第11図(’a)及び(b)で示す如く例えば
第2の電極5dと第3の電極6cを共に櫛歯形状とし、
且つ互いに入り込むように配設した構造とすれば、前記
反転層4は極〈短距離で前記第3の電極6と接触出来る
から、従って容量のQ値は著しく増大する。尚、図面の
都合上、第11図(b)の平面図は酸化シリコン層2及
び第1の電極3を省略した状態で示されている。Next, FIGS. 11(a) and 11(b) are a plan view and a sectional view showing the structure of an integrated capacitor according to a fifth embodiment of the present invention, which is a further improvement of the first to fourth embodiments. That's what I did. That is, in the first to fourth embodiments described above, when the inversion layer 4 is formed, this inversion layer 4 is used as a conductor, but the inversion layer 4 generally has a large resistance value, and therefore, the voltage is particularly high. In a low region, the Q value of the capacitance decreases. Therefore, the reversal layer 4 is connected to the third wage level (
Or the third electrode 6a or 6. It is better to connect it with b). Therefore, as shown in FIGS. 11('a) and (b), for example, both the second electrode 5d and the third electrode 6c are shaped like comb teeth,
If the inversion layer 4 is arranged so as to penetrate into each other, the inversion layer 4 can come into contact with the third electrode 6 over a very short distance, so that the Q value of the capacitance increases significantly. Note that, for convenience of drawing, the plan view of FIG. 11(b) is shown with the silicon oxide layer 2 and the first electrode 3 omitted.
即ち本発明の第2の主旨は、前記第1の主旨に於て、少
なくとも前記第3の電極を平面的に櫛歯状に設ける事に
より、Q値が高く且つ正負の広い電圧範囲に渡って容量
値変化の少い集積化容量を提供する事にある。That is, the second gist of the present invention is based on the first gist, but by providing at least the third electrode in a comb-like shape on a plane, the Q value is high and can be applied over a wide positive and negative voltage range. The purpose is to provide an integrated capacitor with little change in capacitance value.
以上述べた如く、本発明によれば正負のどちらの電圧に
対しても容量値変化の少ない、且つQ値の高い集積化容
量が得られ、その効果は非常に大である。なお上記説明
中、基板をN型としたがP型の基板であっても同種の実
施が行える事は熱論である。また第9図、第11図の如
く、第2の電極と第3の電極の役割が明確でなく、それ
ぞれ相補的に働く場合もある。As described above, according to the present invention, an integrated capacitor with a small change in capacitance value and a high Q value can be obtained with respect to both positive and negative voltages, and its effects are very large. In the above description, the substrate is of N type, but it is a matter of course that the same type of implementation can be performed even if the substrate is of P type. Further, as shown in FIGS. 9 and 11, there are cases where the roles of the second electrode and the third electrode are not clear, and they work complementary to each other.
更に上記説明中、前記第2及び第3の電極は共通にして
使用するものとして説明したが、両電極をそれぞれ独立
別個に使用しても良い。Further, in the above description, the second and third electrodes are used in common, but the two electrodes may be used independently.
第1図は従来のMO8型集積化容量の構造を示す断面図
である。
第2図は第1図に示した容量の特性図である。
第3図は第1図に示した容量の欠点を説明すイ。
ための模式的断面図である。
第4図は従来の他のMO8型集積化容量の構造を示す断
面図である。
第5図、第7図、第8図及び第9図は本発明の各実施例
のMO8型集積化容量の構造を示す各断面図である。
第6図は第5図及び第7図に示す各実施例の牡性を示す
特性図、第10図は第9図に示す実施例の特性を示す特
性図、第11図(a)及び第11図(b)は本発明の更
に他の実施例であるM OS型集積化容量の構造を示す
平面図及び断面図である。
1・・・・・・N型基板、2・・・・・・酸化シリコン
層、6・・・・・・第1の電極、4・・・・・・反転層
、5.5a、5b、、5c、5d−・・・=第2の電極
層、6.6a、6b、6c・・・・・・第3の電極層
−7ど+iTADAFIG. 1 is a sectional view showing the structure of a conventional MO8 type integrated capacitor. FIG. 2 is a characteristic diagram of the capacitance shown in FIG. Figure 3 explains the drawbacks of the capacity shown in Figure 1. FIG. FIG. 4 is a sectional view showing the structure of another conventional MO8 type integrated capacitor. FIG. 5, FIG. 7, FIG. 8, and FIG. 9 are sectional views showing the structure of MO8 type integrated capacitors according to each embodiment of the present invention. FIG. 6 is a characteristic diagram showing the male characteristics of each example shown in FIGS. 5 and 7, FIG. 10 is a characteristic diagram showing the characteristics of the example shown in FIG. 9, and FIGS. FIG. 11(b) is a plan view and a sectional view showing the structure of a MOS type integrated capacitor which is still another embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... N-type substrate, 2... Silicon oxide layer, 6... First electrode, 4... Inversion layer, 5.5a, 5b, , 5c, 5d-...=second electrode layer, 6.6a, 6b, 6c......third electrode layer
-7do+iTADA
Claims (3)
、該酸化膜上に設けられた導体材料を第1の電極とする
MO8型集積化容量に於て、蓄積層と同型の第2の電極
の他に、反転層と同型の第3の電極を該反転層と接触可
能な如く設けた事を特徴とする集積化容量。(1) In an MO8 integrated capacitor in which an oxide film provided on the surface of a semiconductor substrate is used as a dielectric and a conductive material provided on the oxide film is used as a first electrode, a second electrode of the same type as the storage layer is used. An integrated capacitor characterized in that, in addition to the electrode, a third electrode of the same type as the inversion layer is provided so as to be able to contact the inversion layer.
徴とする特許請求の範囲第1項記載の集積化容量。(2) The integrated capacitor according to claim 1, wherein the second electrode and the third electrode are commonly connected.
した事を特徴とする特許請求の範囲第1項記載の集積化
容量。(3) The integrated capacitor according to claim 1, characterized in that the third electrode is placed in comb-like contact with the inversion layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1509182A JPS58132958A (en) | 1982-02-02 | 1982-02-02 | Integrated capacitance |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1509182A JPS58132958A (en) | 1982-02-02 | 1982-02-02 | Integrated capacitance |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS58132958A true JPS58132958A (en) | 1983-08-08 |
Family
ID=11879168
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1509182A Pending JPS58132958A (en) | 1982-02-02 | 1982-02-02 | Integrated capacitance |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58132958A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5360989A (en) * | 1990-06-18 | 1994-11-01 | Kabushiki Kaisha Toshiba | MIS type capacitor having reduced change in capacitance when biased in forward and reverse directions |
-
1982
- 1982-02-02 JP JP1509182A patent/JPS58132958A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5360989A (en) * | 1990-06-18 | 1994-11-01 | Kabushiki Kaisha Toshiba | MIS type capacitor having reduced change in capacitance when biased in forward and reverse directions |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5401985A (en) | Low voltage monolithic protection diode with a low capacitance | |
JPH0358187B2 (en) | ||
US5360989A (en) | MIS type capacitor having reduced change in capacitance when biased in forward and reverse directions | |
US4704625A (en) | Capacitor with reduced voltage variability | |
US5793074A (en) | Metal oxide semiconductor capacitors having uniform C-V characteristics over an operating range and reduced susceptibility to insulator breakdown | |
US4651178A (en) | Dual inverse zener diode with buried junctions | |
US3882529A (en) | Punch-through semiconductor diodes | |
JPS58132958A (en) | Integrated capacitance | |
US4969019A (en) | Three-terminal tunnel device | |
US4680605A (en) | High voltage depletion mode transistor with serpentine current path | |
US4331969A (en) | Field-controlled bipolar transistor | |
US4665416A (en) | Semiconductor device having a protection breakdown diode on a semi-insulative substrate | |
JPS59100570A (en) | Mos transistor | |
US5805410A (en) | MOS capacitor for improving electrostatic durability by using of a transistor | |
JPS6034819B2 (en) | Storage device | |
JPS6329421B2 (en) | ||
JPH0475657B2 (en) | ||
JPS6118344B2 (en) | ||
JPH0745789A (en) | Mos capacitance of semiconductor device | |
JPH01146351A (en) | Semiconductor device | |
JPH07254707A (en) | Semiconductor device | |
KR0183046B1 (en) | Gate electrode and method thereof | |
JPH03155659A (en) | Semiconductor device | |
KR100232222B1 (en) | Capacitor of semiconductor device | |
JPS6355976A (en) | Field effect semiconductor device |