JPS6034819B2 - Storage device - Google Patents

Storage device

Info

Publication number
JPS6034819B2
JPS6034819B2 JP53014940A JP1494078A JPS6034819B2 JP S6034819 B2 JPS6034819 B2 JP S6034819B2 JP 53014940 A JP53014940 A JP 53014940A JP 1494078 A JP1494078 A JP 1494078A JP S6034819 B2 JPS6034819 B2 JP S6034819B2
Authority
JP
Japan
Prior art keywords
semiconductor region
region
conductivity type
thin film
conductive thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53014940A
Other languages
Japanese (ja)
Other versions
JPS54108586A (en
Inventor
敏弘 関川
康夫 垂井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP53014940A priority Critical patent/JPS6034819B2/en
Publication of JPS54108586A publication Critical patent/JPS54108586A/en
Publication of JPS6034819B2 publication Critical patent/JPS6034819B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/34DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells the transistor being at least partially in a trench in the substrate

Description

【発明の詳細な説明】 この発明は、表面からソース,ベース,ドレィンの順に
構成されたV−MOSを用いた1トランジスタの記憶装
置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a one-transistor memory device using a V-MOS configured in the order of source, base, and drain from the surface.

従来例の断面構造図を第1図aに、その等価回路図を第
1図bに示す。
A cross-sectional structural diagram of a conventional example is shown in FIG. 1a, and its equivalent circuit diagram is shown in FIG. 1b.

情報記憶のための電荷蓄積量Csとしては、pナ型の基
板1とn十型のソース領域2との接合容量を用いており
、スイッチ素子としては、表面よりドレィン領域3,ベ
ース領域4,ソース領域2の闇に構成されたV−MOS
トランジスタTr(電源トランジスタ:T.J.Rod
鉾rSetal.lEEEJ.SC−9,No.5,P
.239,Cct.1974参照)が用いられている。
なお、5はシリコン酸化膜、6はアルミニウム電極、7
はV字型溝を示す。V字型溝7(切欠部)は面指数依存
性をもって選択エッチング法で形成され、V字型溝7の
表面開口幅をWとすると、その深さDはほぼDご0.7
Wという一定の関係がある。
As the charge storage amount Cs for information storage, the junction capacitance between the p-na type substrate 1 and the n-type source region 2 is used, and as a switch element, the drain region 3, base region 4, V-MOS configured in the darkness of source area 2
Transistor Tr (power transistor: T.J.Rod
Hoko r Setal. lEEEJ. SC-9, No. 5, P
.. 239, Cct. 1974) is used.
Note that 5 is a silicon oxide film, 6 is an aluminum electrode, and 7 is a silicon oxide film.
indicates a V-shaped groove. The V-shaped groove 7 (notch) is formed by selective etching with surface index dependence, and when the surface opening width of the V-shaped groove 7 is W, the depth D is approximately D 0.7.
There is a certain relationship called W.

この従来例ではげ型のソース領域2が表面より最下層に
形成されており、V−MOSトランジスタTrを正常動
作させるためにはV字型溝7の深さをn十型のソース領
域2に達するまで深く形成しなければならないので、表
面開口幅Wを広くする必要がある。すなわち、素子の平
面寸法はV字型溝7の深さにより制限を受ける。表面と
n+型のソース領域2までの距離は、n十型のドレィン
領域3の拡散層の深さDn+,ベース領域4中のけ型ベ
ース層4′の厚さD汀,p+型のベース層4″の厚さD
p十の和であり、この内の厚さD汀は素子の耐圧を定め
る場合、ある値より薄くすることができなくなる場合が
ある。したがって、平面寸法には素子の微細化加工技術
とは独立な制限がつくことになり素子の微細化にとって
不利となる。また、電荷蓄積容量C3として接合容量を
用いるが、これは周知のように蓄積電荷量Qと両端電圧
Vcとは非線形の関係になり、ほぼQのV8(0<n<
1)である。
In this conventional example, a bare-shaped source region 2 is formed in the lowest layer from the surface, and in order to operate the V-MOS transistor Tr normally, the depth of the V-shaped groove 7 is set to the n-shaped source region 2. Since the surface opening width W must be widened, the surface opening width W must be widened. That is, the planar dimensions of the element are limited by the depth of the V-shaped groove 7. The distance between the surface and the n+ type source region 2 is the depth Dn+ of the diffusion layer of the n+ type drain region 3, the thickness Dn+ of the wedge-shaped base layer 4' in the base region 4, and the p+ type base layer. 4″ thickness D
It is the sum of p0, and when determining the withstand voltage of the element, the thickness D<0> of this may not be able to be made thinner than a certain value. Therefore, the planar dimensions are limited independently of the element miniaturization technology, which is disadvantageous for element miniaturization. In addition, a junction capacitor is used as the charge storage capacitor C3, but as is well known, the amount of stored charge Q and the voltage Vc at both ends have a nonlinear relationship, and V8 of approximately Q (0<n<
1).

例えば階段接合の場合にはn=1/2,直線傾斜接合の
場合にはn=2′3である。したがって、同一電荷量を
蓄積するための電圧が普通の線形容量、例えばポリシリ
コン,Si02,n+層で形成される容量に較べてより
大さ.な電圧が必要である。この発明は、上記の点にか
んがみてなされたものである。
For example, in the case of a stepped joint, n=1/2, and in the case of a straight slope joint, n=2'3. Therefore, the voltage required to store the same amount of charge is higher than that of an ordinary linear capacitor, for example, a capacitor formed of polysilicon, Si02, n+ layer. voltage is required. This invention has been made in view of the above points.

以下、この発明について説明する。この発明の基本素子
の一実施例の断面構造図を第2図aに、その等価回路図
を第2図bに示す。スイッチ素子は、基板11の表面よ
りソース領域12,ベース領域13(V字型溝に露出し
た部分にチャンネルが形成される領域),ドレィン領域
14の順に構成されている。素子の耐圧はドレィン領域
14を構成する高抵抗ドレィン領域14′と低抵抗ドレ
ィン領域14″のうち高抵抗ドレィン領域14′の厚さ
を十分厚くすることにより十分大きくすることができる
。この場合第1図aと異なり、V字型溝20の深さはベ
ース領域13とドレィン領域14の境界をわずかに越え
る程度でよいので、V字型溝20の深さはドレィン領域
1 34の厚さにより制限を受けない。すなわち、同一
耐圧の従来構造に較べて素子の平面寸法をより小さくす
ることができる。また、電荷蓄積容量CSとしては、ソ
−ス領域1 2とその上にSi02膜1 5を介して形
成された4ポリシリコン層16との間で構成される容量
を用いており、これは接合容量と異なり線形容量、すな
わちQMVcなので、電荷蓄積のための電圧も第1図の
従釆のものより小さくてよく、微細化に有利である。
This invention will be explained below. A cross-sectional structural diagram of one embodiment of the basic element of the present invention is shown in FIG. 2a, and an equivalent circuit diagram thereof is shown in FIG. 2b. The switch element includes a source region 12, a base region 13 (a region where a channel is formed in the exposed portion of the V-shaped groove), and a drain region 14 in this order from the surface of the substrate 11. The breakdown voltage of the device can be made sufficiently large by making the high resistance drain region 14' sufficiently thick among the high resistance drain region 14' and the low resistance drain region 14'' that constitute the drain region 14. 1a, the depth of the V-shaped groove 20 only needs to slightly exceed the boundary between the base region 13 and the drain region 14, so the depth of the V-shaped groove 20 depends on the thickness of the drain region 134. In other words, the planar dimensions of the element can be made smaller than the conventional structure with the same breakdown voltage.Furthermore, as the charge storage capacitor CS, the source region 12 and the Si02 film 15 thereon are used as the charge storage capacitor CS. A capacitance formed between the four polysilicon layers 16 formed through the capacitance is used, and unlike a junction capacitance, this is a linear capacitance, that is, QMVc, so the voltage for charge storage is also the same as in Figure 1. It may be smaller than that of the conventional one, and is advantageous for miniaturization.

なお、17はアルミニウムのゲート電極、18はアルミ
ニウムのドレィン領域、19はコンタクト層を示す。
Note that 17 is an aluminum gate electrode, 18 is an aluminum drain region, and 19 is a contact layer.

第3図a,b,cに第2図で示されたような構成を用い
た記憶装置の平面パターン図とその断面構造図を示す。
FIGS. 3a, 3b, and 3c show a planar pattern diagram and a sectional structural diagram of a storage device using the configuration shown in FIG. 2.

これらの図で、21は前記ポリシリコン層16のアルミ
ニウムの電極、18′,21′はいずれも0コンタクト
ホ−ルを示す。n十型の低抵抗ドレィン領域14″、n
型の高抵抗ドレィン領域14′は、例えばイオン注入法
を用いてp型の基板11中に順次形成することができる
In these figures, 21 is an aluminum electrode of the polysilicon layer 16, and 18' and 21' are contact holes. n-type low resistance drain region 14'', n
The type high-resistance drain regions 14' can be sequentially formed in the p-type substrate 11 using, for example, ion implantation.

p+型のベース領域13,n+型のソース領域12はェ
ピタキシャル成長、イオン注入法または不純物拡散法で
形成することができる。その他V字型溝20,ポリシリ
コン膜16,Si02膜15,アルミニウム配線等は従
来技術により容易に形成することができ、この素子の製
造上特に困難な点はない。素子寸法の微細化に主に寄与
する部分は第1図の従来例では半導体内部のび型ソース
領域2の面積であるが、この発明では表面のn+型のソ
−ス領域12の面積であり、いずれもその寸法の微細化
加工が必要となる。
The p+ type base region 13 and the n+ type source region 12 can be formed by epitaxial growth, ion implantation, or impurity diffusion. Other components such as the V-shaped groove 20, the polysilicon film 16, the Si02 film 15, and the aluminum wiring can be easily formed using conventional techniques, and there are no particular difficulties in manufacturing this device. In the conventional example shown in FIG. 1, the area that mainly contributes to the miniaturization of device dimensions is the area of the elongated source region 2 inside the semiconductor, but in the present invention, it is the area of the n+ type source region 12 on the surface. In either case, miniaturization of the dimensions is required.

そして、従来例ではn十型のソース領域2は製造工程の
内初期の段階で形成され、その後ベース領域4を形成し
、n十型のドレィン領域3形成のための熱工程が入るた
め、その都度ソース領域2は不純物の熱拡散により増大
する。このことは面積微小化に不利な点となる。これに
対し、この発明では表面にソース領域12があるため最
後の熱工程でソース領域12を形成することができ、前
述した欠点は著しく軽減される。かように、この発明に
よれば、素子寸法の微細化に寄与する部分は表面のソー
ス領域であるため最後の製造工程で形成すればよく、し
たがって、複数の工程による不純物の熱拡散による変化
がなく、微細化にきわめて適する利点がある。
In the conventional example, the n0-type source region 2 is formed at an early stage of the manufacturing process, and then the base region 4 is formed and a thermal process is performed to form the n0-type drain region 3. In each case, the source region 2 increases due to thermal diffusion of impurities. This is a disadvantage in miniaturizing the area. In contrast, in the present invention, since the source region 12 is present on the surface, the source region 12 can be formed in the final thermal step, and the above-mentioned drawbacks are significantly alleviated. As described above, according to the present invention, since the part that contributes to the miniaturization of device dimensions is the source region on the surface, it can be formed in the last manufacturing process, and therefore changes due to thermal diffusion of impurities caused by multiple processes can be avoided. It has the advantage of being extremely suitable for miniaturization.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a,bは従来例の断面構造図とその等価回路図、
第2図a,bはこの発明の一実施例の断面構造図とその
等価回路図、第3図a,b,cは第2図で示されたよう
な構成を用いた記憶装置の平面パターン図、そのX−X
線による断面図、およびY−Y線による断面図である。 図中、11は基板、12はソース領域、13はベース領
域、14はドレィン領域、15はSj02膜、16はポ
リシリコン層、17はゲート電極、18はドレィン電極
、19はコンタクト層、20はV字型造、21は電極で
ある。第1図 第2図 第3図 第3図
Figures 1a and 1b are a cross-sectional structural diagram of a conventional example and its equivalent circuit diagram,
Figures 2a and 2b are cross-sectional structural diagrams and equivalent circuit diagrams of one embodiment of the present invention, and Figures 3a, b, and c are planar patterns of a storage device using the configuration shown in Figure 2. Figure, its X-X
They are a cross-sectional view taken along a line and a cross-sectional view taken along a Y-Y line. In the figure, 11 is a substrate, 12 is a source region, 13 is a base region, 14 is a drain region, 15 is an Sj02 film, 16 is a polysilicon layer, 17 is a gate electrode, 18 is a drain electrode, 19 is a contact layer, and 20 is a V-shaped structure, 21 is an electrode. Figure 1 Figure 2 Figure 3 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 1 第1導電型の半導体基板中に一定深さをもつて形成
された前記第1導電型と逆導電型である第2導電型の第
1半導体領域と、前記第1半導体領域上に接して一部半
導体基板中に延在するごとく形成された第1導電型の第
2半導体領域と、前記第2半導体領域中に前記第1半導
体領域とは分離して形成された第2導電型の第3半導体
領域と、前記第3半導体領域上に絶縁膜を介して形成さ
れた第1良導電性薄膜と、前記第3半導体領域の表面か
ら形成され、前記第1半導体領域と第2半導体領域との
境界を越える深さを有するV字型溝の面上に露出された
前記第2半導体領域の表面上に前記絶縁膜を介して形成
された第2良導電性薄膜とを少なくとも有してなり、前
記第1良導電性薄膜と前記第3半導体領域とで構成され
る容量を電荷蓄積手段とし、前記第1半導体領域をドレ
イン領域,前記第2半導体領域をチヤンネル形成領域,
前記第3半導体領域をソース領域とし、前記第2良導電
性薄膜をゲート電極とする電界効果トランジスタをスイ
ツチ素子として単位記憶部を構成したことを特徴とする
記憶装置。
1. A first semiconductor region of a second conductivity type, which is an opposite conductivity type to the first conductivity type, formed at a certain depth in a semiconductor substrate of a first conductivity type, and a first semiconductor region in contact with the first semiconductor region. a second semiconductor region of a first conductivity type formed so as to partially extend into the semiconductor substrate; and a second semiconductor region of a second conductivity type formed in the second semiconductor region separately from the first semiconductor region. a first highly conductive thin film formed on the third semiconductor region via an insulating film; and a first conductive thin film formed from the surface of the third semiconductor region, and the first semiconductor region and the second semiconductor region a second highly conductive thin film formed via the insulating film on the surface of the second semiconductor region exposed on the surface of the V-shaped groove having a depth exceeding the boundary of , a capacitor constituted by the first highly conductive thin film and the third semiconductor region is used as a charge storage means, the first semiconductor region is a drain region, the second semiconductor region is a channel forming region,
A memory device characterized in that a unit memory section is constructed by using a field effect transistor as a switch element, with the third semiconductor region serving as a source region and the second highly conductive thin film serving as a gate electrode.
JP53014940A 1978-02-14 1978-02-14 Storage device Expired JPS6034819B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53014940A JPS6034819B2 (en) 1978-02-14 1978-02-14 Storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53014940A JPS6034819B2 (en) 1978-02-14 1978-02-14 Storage device

Publications (2)

Publication Number Publication Date
JPS54108586A JPS54108586A (en) 1979-08-25
JPS6034819B2 true JPS6034819B2 (en) 1985-08-10

Family

ID=11874946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53014940A Expired JPS6034819B2 (en) 1978-02-14 1978-02-14 Storage device

Country Status (1)

Country Link
JP (1) JPS6034819B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5953713B2 (en) * 1981-01-20 1984-12-26 日本電信電話株式会社 integrated circuit device
US4503598A (en) * 1982-05-20 1985-03-12 Fairchild Camera & Instrument Corporation Method of fabricating power MOSFET structure utilizing self-aligned diffusion and etching techniques
US4672407A (en) * 1984-05-30 1987-06-09 Kabushiki Kaisha Toshiba Conductivity modulated MOSFET
JPH0793365B2 (en) * 1984-09-11 1995-10-09 株式会社東芝 Semiconductor memory device and manufacturing method thereof
US4914739A (en) * 1984-10-31 1990-04-03 Texas Instruments, Incorporated Structure for contacting devices in three dimensional circuitry
US4791463A (en) * 1984-10-31 1988-12-13 Texas Instruments Incorporated Structure for contacting devices in three dimensional circuitry

Also Published As

Publication number Publication date
JPS54108586A (en) 1979-08-25

Similar Documents

Publication Publication Date Title
TWI619254B (en) Ferroelectric field effect transistors, pluralities of ferroelectric field effect transistors arrayed in row lines and column lines, and methods of forming a plurality of ferroelectric field effect transistors
KR950005969B1 (en) Process for producing memory cell having stacked capacitor
US4920389A (en) Memory call array structure and process for producing the same
KR860001469A (en) Semiconductor Memory and Manufacturing Method
KR960043238A (en) Semiconductor device having recess channel structure and manufacturing method thereof
JPS6237545B2 (en)
KR890013777A (en) Semiconductor integrated circuit device and manufacturing method thereof
US4763180A (en) Method and structure for a high density VMOS dynamic ram array
US4419682A (en) Three level poly dynamic ram with poly bit lines
KR0140044B1 (en) Semiconductor memory device having improved isolation structure among memory cells
JPS6034819B2 (en) Storage device
JPS6040707B2 (en) semiconductor memory
JPS6155258B2 (en)
JPH0349259A (en) Semiconductor memory device and its manufacture
KR930007522B1 (en) Semiconductor memory using a trench capacitor
JPS5856267B2 (en) Manufacturing method of semiconductor integrated circuit
US4063267A (en) MNOS Memory device
KR100421521B1 (en) Semiconductor device and manufacturing method thereof
JPS62257763A (en) Semiconductor memory device
US3875656A (en) Fabrication technique for high density integrated circuits
JPS63184360A (en) Semiconductor storage device and manufacture of the same
JPS6249649A (en) Semiconductor device
JPS6244427B2 (en)
JPH0213829B2 (en)
JPS6110271A (en) Semiconductor device