JPH0126791B2 - - Google Patents

Info

Publication number
JPH0126791B2
JPH0126791B2 JP17464480A JP17464480A JPH0126791B2 JP H0126791 B2 JPH0126791 B2 JP H0126791B2 JP 17464480 A JP17464480 A JP 17464480A JP 17464480 A JP17464480 A JP 17464480A JP H0126791 B2 JPH0126791 B2 JP H0126791B2
Authority
JP
Japan
Prior art keywords
mold
breakout
temperature
distance
casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17464480A
Other languages
Japanese (ja)
Other versions
JPS5797854A (en
Inventor
Seiji Itoyama
Toshikazu Sakuratani
Yasuhiro Kakio
Takao Koshikawa
Masanori Odawara
Hiroyuki Mitani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP17464480A priority Critical patent/JPS5797854A/en
Publication of JPS5797854A publication Critical patent/JPS5797854A/en
Publication of JPH0126791B2 publication Critical patent/JPH0126791B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Description

【発明の詳細な説明】 本発明は連続鋳造時における鋳片のブレークア
ウトの防止方法に係り、詳しくは、連続鋳造用鋳
型の幅方向の温度を測定してブレークアウトを予
知しかつこれを防止する際に、この幅方向の測温
位置を少なくかつ疎にして、しかも、測定位置の
間隔ならびに鋳込方向の距離をブレークアウトの
徴候を予知してから発生に至るまでに十分に時間
がとれるように定めてブレークアウトを支障なく
防止できる防止方法に係る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for preventing breakout of a slab during continuous casting, and more specifically, a method for predicting and preventing breakout by measuring the temperature in the width direction of a continuous casting mold. In this process, the number of temperature measurement points in the width direction should be small and sparse, and the distance between the measurement points and the distance in the pouring direction should be adjusted to allow enough time to predict the signs of a breakout before it occurs. This relates to a prevention method that allows breakouts to be prevented without any problems by specifying the following.

一般に連続鋳造における鋳片のブレークアウト
とは、連鋳時に鋳片外側の凝固殻が破れ、内部の
溶鋼が外部に流れ出す現象を云う。連鋳操業時に
発生するトラブルのうちで、ブレークアウトは最
も大きな損害を被るものの一つであり、その発生
の予知ならびに防止方法の確立が従来から強く望
まれていたにもかかわらず、その発生原因する明
確に出来ていない現状である。
Generally, the breakout of a slab in continuous casting refers to a phenomenon in which the solidified shell on the outside of the slab breaks during continuous casting, and the molten steel inside flows out. Among the troubles that occur during continuous casting operations, breakouts are one of the ones that cause the most damage, and although there has long been a strong desire to predict their occurrence and establish methods to prevent them, the causes of their occurrence remain unclear. The current situation is that it is not clearly possible to do so.

近年、連鋳機の生産性向上の要望の高まりに呼
応して鋳造速度が大幅に増大するに従い、このブ
レークアウトの発生頻度が目立つて高くなつてお
り、ますますその発生の予知と防止方法確立の要
求が高まつている。
In recent years, as casting speeds have increased significantly in response to the increasing demand for improved productivity in continuous casting machines, the frequency of occurrence of breakouts has become more noticeable, and it is becoming increasingly important to predict their occurrence and establish methods to prevent them. Demand is increasing.

本発明者らは、かかる現状に鑑み、まず、ブレ
ークアウトの発生原因を明らかにすべく、数多く
のブレークアウト発生鋳片を調査した。
In view of the current situation, the present inventors first investigated a large number of slabs in which breakouts occurred in order to clarify the cause of breakouts.

この結果、次の通りの原因が明らかになつた。 As a result, the following causes became clear.

すなわち、鋳込中、正常状態では、鋳片が順次
に下降するが、鋳片の一部が鋳型内で何らかの原
因、例えば、モールド・パウダーの鋳型・鋳片間
への流入不良にもとづく潤滑不良、鋳型の変動、
鋳型コーナー隙間でのフインの生成、鋳型と鋳片
との焼付などにより、鋳型鋼板に拘束されて停滞
する現象が発生すると、鋳片において、拘束され
る停滞部の凝固殻は、鋳型下方に引抜かれる鋳片
の正常部との境界において引張ないしは剪断変形
を受けて、ついには、破断に至る。破断に至つて
も、初期段階では、破断部は鋳型内にあるので、
破断部から漏れた溶鋼は直ちに鋳型で冷却されて
薄殻が形成され、このため、ブレークアウトには
至らない。
In other words, during pouring, under normal conditions, the slab descends one after another, but some parts of the slab may be in the mold for some reason, such as poor lubrication due to poor flow of mold powder between the mold and the slab. , mold variation,
When a phenomenon occurs in which the slab is restrained by the mold steel plate and stagnates due to the formation of fins in the mold corner gaps or the baking of the mold and slab, the solidified shell of the restrained stagnation part of the slab is pulled out below the mold. The slab undergoes tensile or shearing deformation at the boundary with the normal part, and eventually breaks. Even if a break occurs, at the initial stage the break is within the mold, so
The molten steel leaking from the fracture is immediately cooled in the mold and forms a thin shell, thus preventing breakout.

しかしながら、操業を続けると、凝固殻の破
断、漏鋼ならびに薄殻の形成の各プロセスが、鋳
型のオシレーシヨン毎に繰返される結果、時間の
経過と共に、破断部の位置が下方へ移動し、やが
て鋳型下端より下に出たところで、溶鋼が漏れ、
鋳型の外部では、溶鋼を冷却するものがないた
め、ブレークアウトが発生する。
However, as the operation continues, the processes of fracture of the solidified shell, steel leakage, and formation of thin shell are repeated every time the mold oscillates, and as a result, the position of the fracture moves downward over time, and eventually the mold Molten steel leaks when it reaches below the bottom edge,
Breakouts occur because there is nothing outside the mold to cool the molten steel.

従つて、ブレークアウトには、それに先行し
て、鋳片の一部が鋳型内で拘束を受け、停滞する
現象が発生する。
Therefore, prior to breakout, a part of the slab is restrained within the mold and becomes stagnant.

本発明は、上記の新しい知見にもとづいて成立
したものであつて、具体的には、連続操業時に鋳
片のブレークアウトの発生が予知でき、しかも、
その発生を防止できるブレークアウトの予知防止
方法を提案する。
The present invention was established based on the above-mentioned new knowledge, and specifically, it is possible to predict the occurrence of slab breakout during continuous operation, and furthermore,
We propose a method for predicting and preventing breakouts that can prevent their occurrence.

以下、本発明方法について詳しく説明する。 The method of the present invention will be explained in detail below.

まず、鋳片のブレークアウトは、上記した通
り、それに先行して、鋳片の一部が鋳型内で拘束
を受け、停滞する。このため、停滞部分の殻の厚
さは他の正常部分のものに比べ厚くなり、それに
より殻からの鋳型への熱流束が少なくなる。この
点から、本発明においては鋳型の所定位置におけ
る温度変化を検出することにより十分な余裕をも
つてブレークアウトを予知する。
First, as described above, before the breakout of the slab, a part of the slab is restrained within the mold and becomes stagnant. Therefore, the thickness of the shell in the stagnant part is thicker than that in other normal parts, thereby reducing the heat flux from the shell to the mold. From this point of view, in the present invention, breakout is predicted with sufficient margin by detecting temperature changes at predetermined positions of the mold.

すなわち、ブレークアウトに先立つて鋳片の一
部は鋳型内メニスカス近傍で拘束を受け、停滞す
る現象が起る。この現象が発生すると、当然その
停滞部の殻の厚さは、連続的に引抜かれている部
分の殻の厚さに比べて、鋳込方向において停滞部
と同じ距離のところでも厚くなる。また、停滞部
の鋳片は正常に引抜かれている部分の鋳片との間
では、ほぼ最大せん断応力方向に近い角度(例え
ば、30〜45゜)で破断するため、停滞部の鋳片は
▽形状をなし、この形状が漸次大きく成長し、鋳
片はV字形に破断される。つまり、この現象がブ
レークアウトに先立つて、鋳型内で起り、鋳型内
に例えば熱電対を埋込み鋳型温度を検出すると、
鋳片の上記停滞部が成長し、鋳片の破断部が測温
位置を通過下降すると、その破断部の通過時に
は、温度が急上昇し、その後急下降することにな
る。換言すると、この温度変化を促えると、ブレ
ークアウトに先立つての鋳型内における鋳片の停
滞現象は正確に知ることができ、必然的に、それ
によつてブレークアウトを予知・防止できる。
That is, prior to breakout, a part of the slab is restrained near the meniscus in the mold, and a phenomenon occurs in which the slab stagnates. When this phenomenon occurs, the thickness of the shell in the stagnation area naturally becomes thicker than the thickness of the shell in the continuously drawn part, even at the same distance in the pouring direction as the stagnation area. In addition, the slab in the stagnation area breaks at an angle close to the direction of maximum shear stress (e.g., 30 to 45 degrees) between the slab in the normally drawn part, so the slab in the stagnation area breaks. This shape gradually grows larger and the slab is broken into a V-shape. In other words, this phenomenon occurs in the mold prior to breakout, and if a thermocouple is embedded in the mold to detect the mold temperature,
When the above-mentioned stagnation part of the slab grows and the fractured part of the slab passes through the temperature measurement position and descends, the temperature rises rapidly when passing the fractured part, and then rapidly decreases. In other words, if this temperature change is promoted, the phenomenon of stagnation of the slab in the mold prior to breakout can be accurately known, and breakout can therefore be predicted and prevented.

しかしながら、このように予知する場合、鋳型
の測温位置あるいはその数が適当でないと、ブレ
ークアウトに先立つ鋳型温度の急上昇・急下降現
象はブレークアウト前に促えることができなくな
り、あるいは、その現象をとらえることができて
も、ブレークアウトを防止するための鋳造速度等
の調整が十分な時間的余裕をもつて行うことがで
きず、実際に、ブレークアウトを防止することが
できない。
However, when predicting in this way, if the temperature measurement position of the mold or the number of temperature measurement positions is not appropriate, the sudden rise or fall of the mold temperature that precedes the breakout may not be able to be promoted before the breakout occurs, or the phenomenon may be delayed. Even if it is possible to detect the breakout, it is not possible to adjust the casting speed, etc. to prevent the breakout with sufficient time, and it is not possible to actually prevent the breakout.

この点について本発明方法では数多くの実験や
経験的に得られた知見等にもとづいて研究し、そ
の上にたつて、ブレークアウトに先立つて発生す
る鋳型温度の変化を予め、ブレークアウトが発生
する前に予知し、その後、十分な時間的余裕を持
つて鋳造速度を調整してブレークアウトを防止
し、このところから、温度の変化は適正な測定位
置で測定する。
Regarding this point, the method of the present invention has been researched based on numerous experiments and empirically obtained knowledge, and based on this research, the change in mold temperature that occurs prior to the breakout can be detected in advance so that the breakout occurs. Forecast in advance, then adjust the casting speed with sufficient time to prevent breakout, and from this point on, measure the temperature change at the appropriate measurement location.

すなわち、第1図ならびに第2図に示す如く、
鋳型の短辺1ならびに3と長辺2ならびに4にお
いてその測温位置がメニスカスb1のところから鋳
込方向への距離l(mm)のところとし、このlの
ところで水平方向に測定位置間の間隙wが100mm
以上のもとで例えば熱電対を取付けて測定する。
That is, as shown in FIGS. 1 and 2,
The temperature measurement position on the short sides 1 and 3 and the long sides 2 and 4 of the mold is at a distance l (mm) from the meniscus b 1 in the casting direction, and at this l, the temperature is measured horizontally between the measurement positions. Gap w is 100mm
Under the above conditions, for example, a thermocouple is attached and measured.

測定位置間の間隔wが100mm以上である理由は、
隣接する熱電対の取付け部が接近することによ
る、鋳型の伝熱抵抗の増大とそれにより抜熱不足
を防止するための最小の測温間隔は、伝熱抵抗を
極小に設計している鋳型銅板をバツクプレイトに
固定するボルト間隔が望ましく、100mm以上が好
適である。
The reason why the distance w between measurement positions is 100mm or more is as follows.
In order to prevent an increase in the heat transfer resistance of the mold due to the close proximity of the mounting points of adjacent thermocouples and the resulting insufficient heat removal, the minimum temperature measurement interval is the mold copper plate designed to minimize the heat transfer resistance. It is desirable that the distance between the bolts used to fix it to the back plate is 100 mm or more.

この場合、距離lと間隔wとは次の(1)式の関係
を満足することが必要である。
In this case, it is necessary that the distance l and the interval w satisfy the relationship expressed by the following equation (1).

0.6{(L−l)−k2・VR・tr}×1/k1<w<{(
L−l)−k2・VR・tr}×1/k1……(1) ただし、L:鋳型内の溶融金属メニスカスb1
ら鋳型出口までの距離mm、VR:鋳造速度(mm/
分)、k1、k2:鋳造する溶融金属、鋳型の冷却速
度、鋳造速度等の鋳造条件によつて決定される定
数であつて、k1は0.29〜0.5、k2は0.008〜0.017の
範囲が好ましい値、trはブレークアウト前の鋳型
温度の急変を検出してからブレークアウトが発生
するまでの時間(秒)である。
0.6 {(L-l)-k 2・V R・tr}×1/k 1 <w<{(
L−l)−k 2・V R・tr}×1/k 1 ……(1) However, L: Distance mm from the molten metal meniscus b 1 in the mold to the mold outlet, V R : Casting speed (mm /
minutes), k1 , k2 : constants determined by casting conditions such as molten metal to be cast, mold cooling rate, casting speed, etc. k1 is 0.29 to 0.5, k2 is 0.008 to 0.017. The range is the preferred value, and tr is the time (in seconds) from when a sudden change in mold temperature before breakout is detected until breakout occurs.

また、(1)式によつて間隔wを定めるときに、間
隔wはなるべく上限に近い値に定めるのが望まし
い。すなわち、測温はなるべく数少ない位置で行
なうことは精度が良好であり経済的でブレークア
ウトも正確に予知できる。これに反し、仮りに、
間隔wをせばめて測定位置を密にすると、測温セ
ンサーの取付部で伝熱抵抗が増大して抜熱不足を
招来し、これに伴つて温度応答性が鈍化し、ブレ
ークアウトの予知が不確実になる。更に、測温セ
ンサーの保守作業も増大して好ましくない。な
お、間隔wは上記の如く上限に近いのが望ましい
が、下限は上限値の0.6倍にとどめる。この理由
は、鋳造条件が決められると、k1が間隔wに与え
る影響が大きく、間隔wの最小値と最大値の比
は、k1=0.29〜0.50であるから、0.29/0.50≒0.58
となつて、安全をみると、0.6となるためである。
Furthermore, when determining the interval w using equation (1), it is desirable to set the interval w to a value as close to the upper limit as possible. In other words, measuring temperatures at as few positions as possible provides good accuracy, is economical, and allows accurate prediction of breakouts. On the contrary, if
If the distance w is shortened to make the measurement locations closer together, the heat transfer resistance will increase at the temperature sensor mounting point, resulting in insufficient heat removal, which will slow down the temperature response and make it difficult to predict breakouts. become certain. Furthermore, maintenance work for the temperature sensor also increases, which is undesirable. Note that although it is desirable that the interval w be close to the upper limit as described above, the lower limit is kept at 0.6 times the upper limit. The reason for this is that once the casting conditions are determined, k 1 has a large influence on the interval w, and the ratio of the minimum value to the maximum value of the interval w is k 1 = 0.29 to 0.50, so 0.29/0.50≒0.58
Therefore, in terms of safety, it is 0.6.

また、通常の鋳込みではメニスカスはある程度
変動し、この近傍の鋳型温度はバラツキが大きい
ため、鋳片の停滞現象を明瞭にとらえることが非
常に困難である場合がある。従つて、距離lは通
常30mm以上離間するのが望ましい。また、Lは鋳
型の長さによつてほぼ固定される要因である。ま
た、trはブレークアウト前に鋳型温度の変化が生
じてから、実際にブレークアウトが起こるまでの
時間であつて、このtrのとり方によつてはブレー
クアウトを予知してもあまり短かいと実際にブレ
ークアウトを防止できないことになる。従つて、
実際には、鋳型温度変化が起つてブレークアウト
防止に対処するため鋳造速度を調整するまでどれ
ほど時間を要するかによつて決めれば十分であ
る。要するに、上記(1)式の各条件において、鋳型
の測定位置、つまりw、lの値はtrとの関連のも
とで決めると、鋳型温度変化予知してから十分な
余裕を持つて鋳造速度が調整でき、ブレークアウ
トが防止できる。
In addition, in normal casting, the meniscus fluctuates to some extent, and the mold temperature in the vicinity of this fluctuates widely, so it may be very difficult to clearly grasp the phenomenon of slab stagnation. Therefore, it is desirable that the distance l is usually 30 mm or more. Further, L is a factor that is almost fixed depending on the length of the mold. In addition, tr is the time from when the mold temperature changes before breakout until breakout actually occurs, and depending on how you take this tr, even if you predict breakout, it may actually be too short. breakout cannot be prevented. Therefore,
In practice, it is sufficient to determine how long it takes for mold temperature changes to occur and the casting speed to be adjusted to address breakout prevention. In short, under each condition of equation (1) above, if the measurement position of the mold, that is, the values of w and l, are determined in relation to tr, then the casting speed should be set with sufficient margin after predicting the mold temperature change. can be adjusted and breakouts can be prevented.

次に、実施例ついて説明する。 Next, examples will be described.

まず、前記(1)の条件式において、VR:1000
mm/分、L=600mm、tr=25sec、l=200mmと設
定し、測定位置を求めると、l=200mmのところ
で、間隔w=約300mmをとつて測定することが好
ましいことがわかつた。そこで、熱電対を第2図
の通りにa1〜a10のところに埋込み、鋳造サイズ
200×1300mmスラブを鋳造し、各位置での温度変
化を測定し、この結果は第3図の通じであつた。
この第3図において各測定位置のブレークアウト
までの鋳型温度変化を示し、とくに、ブレークア
ウトに先行して、鋳型の拘束による鋳片停滞部と
正常に引抜かれている鋳片との間での破断位置、
つまり上記V字形が下降し、この部分が各測定位
置を通過することによつて特徴的な温度の急上
昇・急下降現象が生じるが、この現象は測定位置
a2、a3で見られる。この時のブレークアウトはb2
で発生する。この場合、測定位置a3、a4はそのブ
レークアウト発生前約30秒で温度の変化をとらえ
る位置にあつて、温度変化を予知してから、15秒
以内に鋳込みを中断し、凝固殻の薄いところの殻
厚の回復を持つて、とくに、停滞部の拘束強度よ
り殻強度の方が上廻るようになつてから鋳造速度
を元に戻すことができたので、停滞部の拘束が解
けて、通常の状態に復帰でき、ブレークアウトを
防止できた。比較のために、鋳型でl=300mm、
w=1500mm(ただし、この位置は(1)式は満足され
ていない。)として第2図において鋳型長辺2,
4の巾方向の中央部に熱電対を埋込んで、上記の
ところと同一条件で鋳造したところ、その温度変
化は第4図の通りであつた。この第4図ではイは
長辺2、ロは長辺4であつて、ブレークアウト発
生した時の鋳型温度の特徴的変化を示した。この
場合は鋳型の温度変化が促えられてからブレーク
アウトまで僅か5secであつて、ブレークアウトを
防止するため、鋳造速度を調整する時間的余裕が
なく、ブレークアウトが発生することは予知でき
たが、防止できなかつた。
First, in the conditional expression (1) above, V R :1000
By setting mm/min, L = 600 mm, tr = 25 sec, and l = 200 mm and finding the measurement position, it was found that it is preferable to measure at l = 200 mm with an interval w = approximately 300 mm. Therefore, we embedded thermocouples at points a 1 to a 10 as shown in Figure 2, and adjusted the casting size.
A 200 x 1300 mm slab was cast and the temperature changes at each location were measured, and the results were as shown in Figure 3.
Figure 3 shows the mold temperature changes up to breakout at each measurement position, and especially, prior to breakout, the change in temperature between the slab stagnation due to mold restraint and the normally drawn slab. fracture position,
In other words, when the V-shape mentioned above descends and this part passes through each measurement position, a characteristic phenomenon of sudden rise and fall in temperature occurs.
Seen in a 2 and a 3 . The breakout at this time is b 2
Occurs in In this case, measurement positions a 3 and a 4 are positioned to detect temperature changes approximately 30 seconds before the breakout occurs, and after predicting the temperature change, casting is interrupted within 15 seconds and the solidified shell is removed. After recovering the shell thickness in the thin part, especially after the shell strength became stronger than the restraint strength in the stagnation part, we were able to restore the casting speed to the original value, so the restraint in the stagnation part was released. , it was possible to return to normal conditions and prevent a breakout. For comparison, the mold l=300mm,
Assuming that w = 1500 mm (however, equation (1) is not satisfied at this position), mold long side 2,
When a thermocouple was embedded in the center of the widthwise direction of 4 and cast under the same conditions as above, the temperature change was as shown in FIG. In FIG. 4, A indicates long side 2 and B indicates long side 4, which shows the characteristic change in mold temperature when breakout occurs. In this case, it took only 5 seconds from the temperature change in the mold to breakout, and there was no time to adjust the casting speed to prevent breakout, so it was foreseeable that breakout would occur. However, it could not be prevented.

以上の通り、本発明方法は、鋳型幅方向におい
て測定位置の間隔や鋳込方向の距離を、ブレーク
アウト予知後発生までの時間が十分にとれるよう
に定めて、鋳型温度の変化を検出してブレークア
ウトを予知しかつ防止するものである。従つて、
本発明方法によつ鋳型内での鋳片の拘束・停滞現
象を検出すると、十分の余裕を持つてブレークア
ウトが防止でき、鋳型はオシレーシヨン機構のあ
るもの以外に固定鋳型使用時、いわゆる水平連鋳
においても適用できる。
As described above, the method of the present invention detects changes in mold temperature by determining the interval between measurement positions in the mold width direction and the distance in the casting direction so that there is sufficient time from the prediction of breakout to the occurrence of breakout. It predicts and prevents breakouts. Therefore,
By detecting the phenomenon of restraint and stagnation of the slab in the mold by the method of the present invention, breakout can be prevented with sufficient margin, and when using a fixed mold other than one with an oscillation mechanism, the so-called horizontal connection It can also be applied to casting.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は連鋳鋳型の一例を示す斜視図、第2図
はその鋳型を展開した状態を示す温度の測定位置
の説明図、第3図は本発明法によつてブレークア
ウトを予知しかつ防止した時の各測定位置の温度
経時変化を示すグラフ、第4図は比較例の同様な
関係を示すグラフである。 符号 1,3…鋳型の短辺、2,4…鋳型の長
辺、a1〜a10…測定位置、b1…メニスカス、b2
ブレークアウト位置。
Figure 1 is a perspective view showing an example of a continuous casting mold, Figure 2 is an explanatory diagram of the temperature measurement position showing the mold in an expanded state, and Figure 3 is a diagram showing a method for predicting breakout and FIG. 4 is a graph showing temperature changes over time at each measurement position when prevention is achieved, and FIG. 4 is a graph showing a similar relationship in a comparative example. Code 1, 3... Short side of the mold, 2, 4... Long side of the mold, a 1 to a 10 ... Measurement position, b 1 ... Meniscus, b 2 ...
breakout position.

Claims (1)

【特許請求の範囲】 1 連続鋳造用鋳型の幅方向の温度を測定してブ
レークアウトの徴候を予知してブレークアウト防
止する際に、その幅方向の温度は、少数個の測定
位置でしかもこれら測定位置間の間隔(w)が
100mm以上でありかつ該間隔wならびに鋳込方向
の距離lが次の式を満足するように定めれらた各
測温位置で検出し、 0.6{(L−l)−k2・VR・tr}×1/k1<w<{(
L−l)−k2・VR・tr}1/k1 ただし、 w:鋳型の水平方向の測定位置相互間の間隔
(mm)、 l:鋳型内の溶融金属のメニスカスから測定位
置までの鋳込方向の距離(mm)、 L:鋳型内の溶融金属のメニスカスから鋳型出
口までの距離(mm)、 VR:鋳造速度(mm/分) k1、k2:鋳造金属、鋳型の冷却条件、鋳造速度
等の鋳造条件によつて決定される定数で、
k1=0.29〜0.5、k2=0.008〜0.017、 tr:鋳型の温度が急変した時からブレークアウ
トが発生するまでの時間(sec)、 これら各測定位置の検出温度を比較して鋳型温
度の急変によりブレークアウトの徴候を予知し、
この鋳型温度の急変よりブレークアウト発生する
までの時間(tr)内に鋳造速度を調整することを
特徴とする鋳片のブレークアウトの防止方法。
[Scope of Claims] 1. When measuring the temperature in the width direction of a continuous casting mold to predict signs of breakout and prevent breakout, the temperature in the width direction is measured at a small number of measurement positions and at only a small number of measurement positions. The distance (w) between measurement positions is
Detect at each temperature measurement position that is 100 mm or more and is determined such that the distance w and the distance l in the casting direction satisfy the following formula, 0.6 {(L-l)-k 2・V R・tr}×1/k 1 <w<{(
L-l)-k 2・V R・tr}1/k 1 However, w: Distance between measurement positions in the horizontal direction of the mold (mm), l: Distance from the meniscus of molten metal in the mold to the measurement position Distance in the casting direction (mm), L: Distance from the meniscus of molten metal in the mold to the mold outlet (mm), V R : Casting speed (mm/min) k 1 , k 2 : Cast metal, cooling of the mold A constant determined by casting conditions such as casting conditions and casting speed.
k 1 = 0.29 to 0.5, k 2 = 0.008 to 0.017, tr: time (sec) from when the temperature of the mold suddenly changes until breakout occurs, and calculate the temperature of the mold by comparing the detected temperatures at each measurement position. Predict signs of breakout due to sudden changes,
A method for preventing breakout of slabs, which is characterized by adjusting the casting speed within the time (tr) from the sudden change in mold temperature until breakout occurs.
JP17464480A 1980-12-12 1980-12-12 Method for prevention of breakout of ingot in continuous casting Granted JPS5797854A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17464480A JPS5797854A (en) 1980-12-12 1980-12-12 Method for prevention of breakout of ingot in continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17464480A JPS5797854A (en) 1980-12-12 1980-12-12 Method for prevention of breakout of ingot in continuous casting

Publications (2)

Publication Number Publication Date
JPS5797854A JPS5797854A (en) 1982-06-17
JPH0126791B2 true JPH0126791B2 (en) 1989-05-25

Family

ID=15982191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17464480A Granted JPS5797854A (en) 1980-12-12 1980-12-12 Method for prevention of breakout of ingot in continuous casting

Country Status (1)

Country Link
JP (1) JPS5797854A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU562731B2 (en) * 1985-02-01 1987-06-18 Nippon Steel Corporation Preventtion of casting defects in continuous casting
US4949777A (en) * 1987-10-02 1990-08-21 Kawasaki Steel Corp. Process of and apparatus for continuous casting with detection of possibility of break out
KR100848627B1 (en) * 2002-06-04 2008-07-28 주식회사 포스코 Apparatus for detecting the break-out of molten steel from continuous casting mould

Also Published As

Publication number Publication date
JPS5797854A (en) 1982-06-17

Similar Documents

Publication Publication Date Title
JP3501054B2 (en) Method for preventing constraining breakout in continuous casting
JPH0126791B2 (en)
JP7115240B2 (en) Breakout prediction method in continuous casting
JP2972051B2 (en) Steel continuous casting mold and continuous casting method
JPH01210160A (en) Method for predicting longitudinal crack in continuous casting
JPH0790343B2 (en) Breakout prediction method in continuous casting
JP3103498B2 (en) Predicting and preventing breakouts in continuous casting.
JPS5929353B2 (en) Breakout prediction method
JPH0747199B2 (en) Continuous casting method and its mold
JPH01143748A (en) Continuous casting method
JPH0929407A (en) Continuous caster
JP5593801B2 (en) Breakout prediction method for continuous casting
JP2000079445A (en) Mold for continuously casting steel
JP7421103B2 (en) Breakout prediction method in continuous casting
JP3093586B2 (en) Vertical crack detection method for continuous cast slab
JPS61176456A (en) Predict method of breakout caused by entrainment of inclusion
JPS6044163A (en) Method for predicting breakout in continuous casting
JPS62203652A (en) Method and apparatus for finishing casting work of steel strip casting apparatus
JPS61226154A (en) Method for predicting breakout in continuous casting
JPH0251698B2 (en)
JPH0575502B2 (en)
JPS6347545B2 (en)
JPH05277681A (en) Continuous casting method
KR950012629B1 (en) Method for foreknowledge break-out of continous casting mold
JPH05305408A (en) Casting method at the time of lacking in continuous casting