JPS6044163A - Method for predicting breakout in continuous casting - Google Patents

Method for predicting breakout in continuous casting

Info

Publication number
JPS6044163A
JPS6044163A JP15137383A JP15137383A JPS6044163A JP S6044163 A JPS6044163 A JP S6044163A JP 15137383 A JP15137383 A JP 15137383A JP 15137383 A JP15137383 A JP 15137383A JP S6044163 A JPS6044163 A JP S6044163A
Authority
JP
Japan
Prior art keywords
breakout
mold
casting
temperature detection
shell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15137383A
Other languages
Japanese (ja)
Inventor
Masami Tenma
天満 雅美
Wataru Ohashi
渡 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP15137383A priority Critical patent/JPS6044163A/en
Publication of JPS6044163A publication Critical patent/JPS6044163A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/20Controlling or regulating processes or operations for removing cast stock
    • B22D11/207Controlling or regulating processes or operations for removing cast stock responsive to thickness of solidified shell

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

PURPOSE:To decrease erroneous judgement of breakout and to judge exactly the breakout with a method for predicting the breakout from the value detected by plural temp. detecting ends embedded into the side wall of a casting mold by judging abnormality when the detected values deviate specifically. CONSTITUTION:Plural pieces of temp. detecting ends 2 are embedded like A-C in the copper plate wall 1 of a casting mold in the moving direction of a billet. When a molten steel 4 forms a solidified shell 5 of a billet and the broken part 6 of the shell 5 owing to the seizure or the like between the shell 5 and the wall 1 which is the cause for breakout, the broke part 6 moves downward on progressing of casting and when said part deviates from the bottom end of the mold 1, breakout arises. The values detected by the ends A-C in this stage transfer from A to B and from B to C in temp. rise with the delay time proportional to the casting speed. The breakout is thus predicted and judged from the deviation of the >=2 consecutive values detected by the detecting ends to the high temp. side from a stationary level in succession.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は連続鋳造方法において発生するブレークアウト
を事前に予知する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for predicting breakouts occurring in a continuous casting method.

〔従来技術〕[Prior art]

連続鋳造方法において、操業を阻害する大きな要因とし
て、ブレークアウトがあけられる。ブレークアウトが発
生すれば、操業が中断され、生産性が極端に低減する。
In continuous casting methods, breakouts are a major factor that hinders operations. If a breakout occurs, operations will be interrupted and productivity will be extremely reduced.

特に最近指向されているような連続鋳造−圧延の直結ラ
インではその生産性低減は圧延ラインへも大きな影響を
及ぼす。
Particularly in the type of continuous casting-rolling line that has recently been developed, the reduction in productivity has a large impact on the rolling line.

また設備的にも連続鋳造用鋳型の損傷はもちろん鋳型下
方のロール群へもブレークアウトによる地金の固着等で
損傷を与え、その影響は非常に大きい。従来よフ、前記
ブレークアウトを防止することは連続鋳造方法において
、安定操業を行う上で重要であり、そのブレークアウト
の予知を行うことが指向されてきた。
Furthermore, in terms of equipment, not only the continuous casting mold is damaged, but also the roll group below the mold is damaged due to the sticking of base metal due to breakout, which has a very large impact. Conventionally, preventing breakout is important for stable operation in continuous casting methods, and attempts have been made to predict breakout.

例えば、特開昭51−151624号や、特開昭56−
95461号では、鋳型側壁の銅板壁に埋設された複数
の温度検出端で検出した温度検出値の1つが定常状態よ
シ上昇したことで、ブレークアウトの原因の一つである
鋳片凝固殻が鋳型銅板−焼付くことで生じる鋳片凝固殻
破断現象が鋳型内で生じたものと見做し、ブレークアウ
トの発生を予知していた。上記のように従来法では、温
度検出値が1個所でも定常水準よル上昇すると、ブレー
クアウト予知であると判断していたが、鋳造操業の変動
、例えば鋳造速既や鋳型内溶湯レベル等が変化した時に
は、温度検出値が一時上昇することがあシ、前記従来方
法では誤ってブレークアウト予知を判断する場2合があ
ることが判った。
For example, JP-A-51-151624, JP-A-56-
In No. 95461, one of the temperature detection values detected by multiple temperature detection terminals embedded in the copper plate wall of the side wall of the mold rose above the steady state, indicating that the solidified slab shell, which is one of the causes of breakout. Mold Copper Plate - It was assumed that the phenomenon of solidified slab shell breakage caused by seizing occurred within the mold, and the occurrence of breakout was predicted. As mentioned above, in the conventional method, if the detected temperature value rises above the steady level even in one place, it is judged as a breakout prediction, but due to fluctuations in casting operations, such as the casting speed or the level of molten metal in the mold, etc. When the temperature changes, the detected temperature value may temporarily rise, and it has been found that there are two cases in which the conventional method incorrectly determines that a breakout has been predicted.

第1図に前記特開昭51−151624の従来法によっ
て、溶湯レベル変化時に測定した温度検出値の例を示す
。第1図(a)は鋳型片面を示す図で鋳型銅板壁1に鋳
片移動方向に1列に8ケの温度検出端2が埋設されてい
る。31.32は鋳型内溶湯レベルを示し、該溶湯レベ
ルが吃1よシ32へ上昇した時の温度検出値の変化を第
1図の)に示す。
FIG. 1 shows an example of temperature detection values measured when the molten metal level changes using the conventional method disclosed in Japanese Patent Application Laid-Open No. 51-151624. FIG. 1(a) shows one side of the mold, in which eight temperature detection ends 2 are embedded in a row in the copper plate wall 1 of the mold in the direction of movement of the slab. 31 and 32 indicate the molten metal level in the mold, and the change in the detected temperature value when the molten metal level rises from 1 to 32 is shown in Figure 1).

第1図(b)で、鋳型内溶湯レベルが31に位置する時
の温度検出値分布は41で、鋳型内溶湯レベルが32へ
上昇した時の温度検出値分布は41よル42.43へと
移って行く。温度検出値分布が42の時、定常分布41
に比べて温度分布最大点が1個所増して2個所とな夛、
定常水準よυも1個所だけ検出値が上昇しているが、実
際には鋳型溶湯レベルの変動だけであったのである。こ
のようにブレークアウトの原因である鋳片凝固殻破断等
が生じないのにも拘らず、従来法では誤ってブレークア
ウト予知の判断をしてしまうという欠点がある。
In Fig. 1(b), when the molten metal level in the mold is at 31, the temperature detection value distribution is 41, and when the molten metal level in the mold rises to 32, the temperature detection value distribution is 41 to 42.43. and move on. When the temperature detection value distribution is 42, the steady distribution is 41
Compared to , the number of maximum temperature distribution points is increased by 1 to 2.
Although the detected value increased in only one place compared to the steady level υ, it was actually only due to a change in the level of the molten metal in the mold. As described above, the conventional method has the disadvantage of incorrectly predicting a breakout even though the solidified slab shell fracture, etc., which is the cause of a breakout, does not occur.

また、第2図に前記特開昭56−95461の従来法に
よる誤判断の例を示す。第2図(a)は該従来法の構成
を示すもので、鋳型銅板1に温度検出端2を幅方向に1
列に適宜間隔で9個所に埋設してbる。該方法において
鋳造速度を一旦速くして再び元の速度まで戻すと、第2
図(b)のような温度検出値が温度検出端2のA、B、
0点について、それぞれ得られる。そこで特開昭56−
95461の従来法では前記従来法と同様に温度検出値
のいづれかが高温側へ偏倚したことで実際鋳片凝固殻破
断等が生じないのにも拘らず、誤ってブレークアウトの
予知を判断してしまうという欠点が−ある。
Further, FIG. 2 shows an example of erroneous judgment caused by the conventional method disclosed in Japanese Unexamined Patent Publication No. 56-95461. FIG. 2(a) shows the configuration of the conventional method, in which a temperature sensing end 2 is attached to a molded copper plate 1 in the width direction.
Bury it in nine places at appropriate intervals in the row. In this method, once the casting speed is increased and then returned to the original speed, the second
Temperature detection values as shown in figure (b) are A, B of temperature detection end 2,
For 0 points, each is obtained. Therefore, Japanese Patent Application Publication No. 1983-
In the conventional method of 95461, similar to the conventional method described above, when one of the detected temperature values deviates to the high temperature side, it is incorrectly predicted that a breakout will occur, even though no breakout of the solidified slab shell actually occurs. There is a drawback of storing it away.

以上のように、従来の方法では単に1個所の温度上昇を
とらえて、ブレークアウト予知を判断するため誤検出が
多い欠点を持っていた。一方、実操業においては、ブレ
ークアウトの予知を判断したことKよってブレークアウ
トを回避するための最良の手段として、鋳造速度を停止
させるか、或いは極端に低減させ鋳型内で鋳片凝固殻破
断部分の正常復帰を待った後、再び鋳造を続行すること
が行われている。しかしこの作業は、一旦鋳造速度を停
止或いは極端に低減するので鋳片段継等の品質異常を生
じた勺、連鋳−圧延直結プロセス等で重要な高温鋳片を
生産すること、及び各プロセスのマツチングにおい、て
非常な悪影響を与える。
As described above, the conventional method simply detects a temperature rise in one location to determine breakout prediction, and therefore has the drawback of many false positives. On the other hand, in actual operation, the best means to avoid breakout is to stop or extremely reduce the casting speed and remove the broken part of the solidified slab shell in the mold, since it has been determined that a breakout has been predicted. After waiting for normality to return, casting is continued again. However, this process requires the casting speed to be stopped or extremely reduced, resulting in quality abnormalities such as step joints of slabs, producing important high-temperature slabs in processes such as continuous casting and direct rolling, and the process of each process. It has a very bad effect on matching.

前記従来法の誤判断による悪影響は、ブレークアウトの
影響よりは軽微であるが、これが多発すると、決して軽
微なものではない。
Although the adverse effects caused by erroneous judgments in the conventional method are less severe than the effects of breakouts, they are by no means insignificant if they occur frequently.

〔発明の構成0作用〕 本発明は、前記従来技術の欠点である誤判断を少なりシ
、適確にブレークアウトの予知を判断することを目的と
するもので、該誤判断によシ生じる鋳片の品質に対する
、又高温鋳片の製造及び工程マツチング等における悪影
響を軽減するものである。
[Structure 0 Effects of the Invention] The present invention aims to reduce the erroneous judgments that are the drawbacks of the above-mentioned prior art, and to accurately predict breakout, and to reduce the erroneous judgments that occur due to the erroneous judgments. This reduces the negative effects on the quality of slabs, as well as on the production of high-temperature slabs, process matching, etc.

而して本発明の要旨は、連続鋳造用鋳型の側壁に鋳片移
動方向に複数個の温度検出端を埋設し、少なくとも連続
する2個の温度検出端の検出値が時間的に引続いて定常
水準よシ高温側に偏倚したとき異常と判断することを特
徴とする連続鋳造のブレークアウト予知方法である。
Therefore, the gist of the present invention is to embed a plurality of temperature detection ends in the side wall of a continuous casting mold in the direction of slab movement, and to detect the detection values of at least two consecutive temperature detection ends in succession over time. This is a breakout prediction method for continuous casting, which is characterized in that an abnormality is determined when the temperature shifts from a steady level to the high temperature side.

以下、本発明を図面に示す実験例に基づいて詳細に説明
する。
Hereinafter, the present invention will be explained in detail based on experimental examples shown in the drawings.

第3図は鋳型銅板壁1に温度検出端2を鋳片移動方向に
複数個(図では3個を示す)埋設した実施例で、第4図
に温度検出端2における断面を示す。該断面図において
鋳型銅板1に埋設された温度検出端2(例えば熱電対等
)をA、B、0のように鋳片移動方向に適宜間隔で設置
している。4は溶鋼で5は鋳片凝固殻である。また、ブ
レークアウトの原因である鋳片凝固殻と鋳型銅板壁との
焼付等によって生じた、鋳片凝固殻破断部を6で示す。
FIG. 3 shows an embodiment in which a plurality of temperature detection ends 2 (three shown in the figure) are embedded in the mold copper plate wall 1 in the direction of slab movement, and FIG. 4 shows a cross section of the temperature detection ends 2. In this cross-sectional view, temperature detection ends 2 (for example, thermocouples, etc.) embedded in the mold copper plate 1 are installed at appropriate intervals as indicated by A, B, and 0 in the direction of movement of the slab. 4 is molten steel and 5 is a solidified slab shell. In addition, 6 indicates a broken part of the solidified slab shell, which is caused by the burning of the solidified slab shell and the wall of the copper plate of the mold, which is the cause of the breakout.

この鋳片凝固殻破断部6は、鋳造が進むにつれ下方に移
動することか判っている。その進む様子を第5図に示す
。第5図(a)で鋳片凝固殻破断部6が生じた様子を、
第5図(b)、 (C)で、鋳造が進み鋳片凝固殻破断
部6も、下方に移動する様子を示し、第5図(d)では
、鋳片凝固殻破断部6がさらに下方に移動し、つbに鋳
型下端を外れ、ブレークアウトした様子を示す、該第5
図Kかける温度検出端2のA、B、0それぞれでの温度
検出値の推移を@6図に示す。第6図は鋳造速度に比例
した遅れ時間で温度上昇点がAからB、BからCへ七移
ってゆくことを示している。
It is known that this slab solidified shell fracture portion 6 moves downward as casting progresses. The progress is shown in Figure 5. Figure 5(a) shows how the slab solidified shell fracture part 6 occurs.
FIGS. 5(b) and 5(C) show that the broken part 6 of the slab solidified shell also moves downward as casting progresses, and in FIG. 5(d), the broken part 6 of the solidified slab solidified shell moves further downward. 5, which shows how the lower end of the mold was removed and breakout occurred.
The transition of the temperature detection values at A, B, and 0 of the temperature detection terminal 2 multiplied by Figure K is shown in Figure @6. Figure 6 shows that the temperature rise point moves from A to B and from B to C with a delay time proportional to the casting speed.

本発明では、前記焼付による鋳片凝固殻破断部の移動に
よって、第6図のごとく、鋳片移動方向に埋設した複数
の温度検出端の少くとも連続する2個の温度検出端の検
出値が時間的に引続いて定常水準よシ高温側に偏倚した
ことでブレークアウトの予知を判断する。従って鋳片移
動方向で埋設された複数の温度検出端の値が同時に高温
側へ偏倚した場合は、ブレークアウトの予知と判断しな
い。該同時偏倚は、おおむね操業変動(鋳造速度変動、
溶湯レベル変動等)に”起因し、ブレークアウトを生じ
ない。
In the present invention, as shown in FIG. 6, the detected values of at least two successive temperature detection ends of the plurality of temperature detection ends buried in the direction of movement of the slab change due to the movement of the fractured part of the solidified slab shell due to the baking. A breakout is predicted based on a subsequent shift from the steady level to the high temperature side over time. Therefore, if the values of a plurality of temperature detection ends buried in the slab movement direction simultaneously deviate toward the high temperature side, it is not determined that a breakout is predicted. The simultaneous deviation is mainly due to operational fluctuations (casting speed fluctuations,
Breakouts do not occur due to fluctuations in molten metal level, etc.).

本実験によれば温度検出端の配置は、鋳型内溶湯メニス
カス位置より下方で、該メニスカスより100m以上下
方にするのが、また配設数は一片移動方向に2個以上と
し、その間隔を5o鰭以上にするのが鋳片#固a破断個
所の移動を適確に把握する上で好ましいことが本発明者
等の実験によって判った。
According to this experiment, the temperature detection ends should be placed below the molten metal meniscus in the mold, at least 100m below the meniscus, and the number of temperature detection ends should be two or more in the moving direction of one piece, with an interval of 5o. It has been found through experiments by the inventors that it is preferable to set the distance above the fin in order to accurately grasp the movement of the broken part of the slab #a.

また、幅方向に同様に配列することによシ幅方向の任意
の個所での鋳片凝固殻破断部の先住を、よシ速やかに、
かつ適確に予知できる。幅方向における温度検出端の配
置は糾片サイズにょシ、決定されるが本発明者等の実験
によれば、幅方向の配置間隔を100m〜300w程度
にすると鋳型全面で、ブレークアウト予知を適確に判断
でき、しかも温度検出端の埋設個数が必要最小数になシ
、最も酔済的な練備になることが判った。
In addition, by arranging the slab in the same manner in the width direction, it is possible to quickly eliminate the occurrence of fractures in the solidified slab shell at any location in the width direction.
And can be predicted accurately. The arrangement of the temperature detection ends in the width direction is determined by the size of the mold, but according to the experiments of the present inventors, if the arrangement interval in the width direction is set to about 100 m to 300 W, breakout prediction can be properly performed over the entire mold surface. It has been found that it is possible to make accurate judgments, and that the number of temperature detection terminals buried is the minimum required, making it the most convenient practice.

〔実施例〕〔Example〕

以下に実施例について述べる。 Examples will be described below.

第7図に鋳片幅Tが1300F+、厚みWが250mの
鋳片を鋳造する長さ870mの鋳型に温度検出端として
熱電対12を埋込んだ本発明方法を。鯛施する鋳片説明
図を示す。熱電対12は第7図に示す通シ鋳片移動方向
に2本取付け、これらの位置はメニスカス30より下方
の200mと3001とした。また、幅方向には短片側
は中央に1列、長片側は中央から幅方向のviRtを約
200mづつとシ、7列配設し、すべての熱電対を鋳型
銅板壁の内面よ、j715mmの深さに埋込んだ。この
鋳型において鋳造基準速度を1.5yrL/−として鋳
造した場合、鋳型の長片側壁に配設した熱電対(イ)列
のA、Bにおいて、温度推移が第8図のようになった。
FIG. 7 shows the method of the present invention in which a thermocouple 12 is embedded as a temperature detection end in an 870 m long mold for casting a slab having a width T of 1300 F+ and a thickness W of 250 m. An explanatory diagram of the slab to be treated with sea bream is shown. Two thermocouples 12 were installed in the direction of movement of the cast slab shown in FIG. 7, and these positions were 200 m and 3001 below the meniscus 30. In addition, in the width direction, one row is placed in the center on the short side, and seven rows are placed on the long side, with viRt approximately 200 m from the center in the width direction. Buried deep. When casting was carried out using this mold at a standard casting speed of 1.5 yrL/-, the temperature changes at A and B of the thermocouple arrays (A) arranged on the long side wall of the mold were as shown in FIG.

該第8図の(a)は鋳造速度の変動時の熱電対AとBの
温度検出値の変動状況を示し、(b)は鋳型内溶湯レベ
ル変動時の熱電対人、Bの温度検出値の変動状況″を示
す。この(a)、 (b)図のように、検出値が殆んど
同時に変動したときには、ブレークアウト予知の判断を
せず、引続いて鋳造し、ブレークアウトは発生しなかっ
た。第8図の(C)は鋳片凝固殻破断時の温度変化が熱
電対A、 Hの検出値に示された場合である。この場合
にはブレークアウト予知の判断をなし警報を発し、鋳造
速度低減によルブレークアウトを防止できた。
(a) of FIG. 8 shows the fluctuations in the temperature detection values of thermocouples A and B when the casting speed fluctuates, and (b) shows the fluctuation of the temperature detection values of thermocouples A and B when the molten metal level in the mold fluctuates. As shown in Figures (a) and (b), when the detected values fluctuate almost simultaneously, a breakout prediction is not made and the casting is continued without a breakout occurring. (C) in Figure 8 is a case where the temperature change at the time of rupture of the solidified slab shell is shown in the detected values of thermocouples A and H. In this case, a breakout prediction is determined and an alarm is issued. It was possible to prevent breakout by reducing the casting speed.

〔効 果〕〔effect〕

以上の実験例、実施例の説明から明らかなように、本発
明によれば、ブレークアウト予知の判断を適確に行うこ
とができ、従って、誤判断による操業対応に基づく鋳片
品質の低下や鋳片温度低下。
As is clear from the explanation of the above experimental examples and examples, according to the present invention, breakout prediction can be accurately determined, and therefore, it is possible to prevent deterioration in slab quality due to operational response due to misjudgment. Slab temperature decreases.

及び後工程とのマツチング不良等の悪影響を与えること
がなくなり、その効果は非常に大きい。
Also, there are no adverse effects such as poor matching with subsequent processes, and the effect is very large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は従来方法による判断を行った時の概要
を示す図で、第3図は本発明の実験の鋳型構成図、第4
図、第5図は、本発明の実験で鋳型でブレークアウトす
る鋳片の移動を示す図、第6図は第5図の場合の各温度
検出端の温度検出値を示す。第7図は本発明の実施例の
構成を示し、第8図に本発明の実施例で測定した温度検
出値の例を示す。 1・・−鋳型銅板壁、2・・・温度検出端、31.32
・・・鋳型内溶湯レベル、4・・・溶鋼、5・・・鋳片
凝固殻、41.42.43・・・温度検出値分布。 左1図 (e) 岸2図 片乙図 (の (6) (C) (d3 25図
Figures 1 and 2 are diagrams showing an overview of judgments made using the conventional method, Figure 3 is a diagram of the mold configuration of the experiment of the present invention, and Figure 4
5 is a diagram showing the movement of a slab that breaks out in the mold in an experiment of the present invention, and FIG. 6 shows the detected temperature values at each temperature detection end in the case of FIG. 5. FIG. 7 shows the configuration of an embodiment of the present invention, and FIG. 8 shows an example of temperature detection values measured in the embodiment of the present invention. 1...-Mold copper plate wall, 2...Temperature detection end, 31.32
... Molten metal level in the mold, 4... Molten steel, 5... Solidified slab shell, 41.42.43... Temperature detection value distribution. Left Figure 1 (e) Bank Figure 2 Kataotsu Figure (6) (C) (d3 Figure 25

Claims (1)

【特許請求の範囲】[Claims] (1) 連続鋳造用鋳型の側壁に鋳片移動方向に複数個
の温度検出端を埋設し、少なくとも連続する2個の温度
検出端の検出値が、時間的に引続いて定常水準より高温
側に偏倚したとき異常と判断することを特徴とする連続
鋳造のブレークアウト予知方法。
(1) A plurality of temperature detection ends are embedded in the side wall of the continuous casting mold in the direction of slab movement, and the detected values of at least two consecutive temperature detection ends are temporally higher than the steady level. A method for predicting a breakout in continuous casting, characterized in that it is determined that an abnormality occurs when the deviation occurs.
JP15137383A 1983-08-19 1983-08-19 Method for predicting breakout in continuous casting Pending JPS6044163A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15137383A JPS6044163A (en) 1983-08-19 1983-08-19 Method for predicting breakout in continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15137383A JPS6044163A (en) 1983-08-19 1983-08-19 Method for predicting breakout in continuous casting

Publications (1)

Publication Number Publication Date
JPS6044163A true JPS6044163A (en) 1985-03-09

Family

ID=15517137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15137383A Pending JPS6044163A (en) 1983-08-19 1983-08-19 Method for predicting breakout in continuous casting

Country Status (1)

Country Link
JP (1) JPS6044163A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0310420A2 (en) * 1987-10-02 1989-04-05 Kawasaki Steel Corporation Process of continuous casting with detection of possibility of break out
JPH03138059A (en) * 1989-10-24 1991-06-12 Nippon Steel Corp Method for predicting constrained breakout in continuous casting
JP2011224582A (en) * 2010-04-15 2011-11-10 Nippon Steel Corp Method for predicting breakout of continuous casting
JP2013052431A (en) * 2011-09-06 2013-03-21 Jfe Steel Corp Method for measuring temperature in mold for continuous casting
CN111570748A (en) * 2020-04-28 2020-08-25 中冶南方连铸技术工程有限责任公司 Crystallizer bleed-out forecasting method based on image processing

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57115961A (en) * 1981-01-08 1982-07-19 Nippon Steel Corp Detection for abnormality of cast steel in continuous casting mold

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57115961A (en) * 1981-01-08 1982-07-19 Nippon Steel Corp Detection for abnormality of cast steel in continuous casting mold

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0310420A2 (en) * 1987-10-02 1989-04-05 Kawasaki Steel Corporation Process of continuous casting with detection of possibility of break out
US4949777A (en) * 1987-10-02 1990-08-21 Kawasaki Steel Corp. Process of and apparatus for continuous casting with detection of possibility of break out
JPH03138059A (en) * 1989-10-24 1991-06-12 Nippon Steel Corp Method for predicting constrained breakout in continuous casting
JPH0575503B2 (en) * 1989-10-24 1993-10-20 Nippon Steel Corp
JP2011224582A (en) * 2010-04-15 2011-11-10 Nippon Steel Corp Method for predicting breakout of continuous casting
JP2013052431A (en) * 2011-09-06 2013-03-21 Jfe Steel Corp Method for measuring temperature in mold for continuous casting
CN111570748A (en) * 2020-04-28 2020-08-25 中冶南方连铸技术工程有限责任公司 Crystallizer bleed-out forecasting method based on image processing
CN111570748B (en) * 2020-04-28 2021-08-06 中冶南方连铸技术工程有限责任公司 Crystallizer bleed-out forecasting method based on image processing

Similar Documents

Publication Publication Date Title
EP0389139B1 (en) Break-out detection in continuous casting
JP5579709B2 (en) Method for predicting the occurrence of vertical cracks during continuous casting.
JP5673100B2 (en) Breakout prediction method
JPS6044163A (en) Method for predicting breakout in continuous casting
JP5407987B2 (en) Method for detecting longitudinal cracks in slabs
JPS6061151A (en) Foreseeing method of breakout
JP5906814B2 (en) Method and apparatus for predicting constraining breakout in continuous casting equipment
JPH01210160A (en) Method for predicting longitudinal crack in continuous casting
JPS61176456A (en) Predict method of breakout caused by entrainment of inclusion
JPS5929353B2 (en) Breakout prediction method
JPH0775766B2 (en) Method for detecting vertical crack in slab in continuous casting
JPH0575502B2 (en)
JPH0557412A (en) Method for predicting constrained breakout in continuous casting
JPH08159883A (en) Normality and abnormality judging method for thermocouple for mold in continuous casting facility and break-out detecting method utilizing the same thermocouple
JPH01143748A (en) Continuous casting method
JPS6347545B2 (en)
JPH0259157A (en) Method for detecting surface defect on continuous casting round cast billet
JPS61289954A (en) Detection of rupture of ingot shell in casting mold for continuous casting
JPH0929407A (en) Continuous caster
JPH0126791B2 (en)
JPH0575503B2 (en)
JP2661375B2 (en) Method for predicting longitudinal cracks in continuous cast slabs
JPS63256250A (en) Method for predicting breakout in continuous casting
JPS63119963A (en) Method for predicting breakout in continuous casting
JP2002361382A (en) Detecting method for restraining breakout