JPH0557412A - Method for predicting constrained breakout in continuous casting - Google Patents
Method for predicting constrained breakout in continuous castingInfo
- Publication number
- JPH0557412A JPH0557412A JP21742591A JP21742591A JPH0557412A JP H0557412 A JPH0557412 A JP H0557412A JP 21742591 A JP21742591 A JP 21742591A JP 21742591 A JP21742591 A JP 21742591A JP H0557412 A JPH0557412 A JP H0557412A
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- breakout
- shell
- mold
- time
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Continuous Casting (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、連続鋳造において発生
する可能性がある拘束性ブレ−クアウトの予知に関す
る。FIELD OF THE INVENTION This invention relates to the prediction of constrained breakouts that can occur in continuous casting.
【0002】[0002]
【従来技術】連続鋳造において発生するブレ−クアウト
には様々な種類のものがあるが、拘束性ブレ−クアウト
は、操業条件に表面上は何ら変化がない場合にも突然発
生するので、それの予知及び予防は難しい。拘束性ブレ
−クアウトは、溶鋼が凝固して形成されるシェルの一部
分が、鋳型に固着し、それがひきちぎられて発生するも
のと考えられているが、実際にブレ−クアウトに至るま
で、鋳片に外観上の変化は認められない。2. Description of the Related Art There are various types of breakouts that occur in continuous casting, but restraint breakouts occur suddenly even when there is no apparent change in operating conditions. Prediction and prevention are difficult. Restraintable breakout is considered to occur when a part of the shell formed by solidification of molten steel is fixed to the mold and it is torn off, but until actually breakout occurs. No change in appearance is observed in the slab.
【0003】拘束性ブレ−クアウトを予知する方法は、
例えば、特公昭63−47545号公報に開示されてい
る。この方法では、鋳型に埋設された複数の熱電対によ
って、鋳型各部の温度を測定し、1つの熱電対の検出温
度が、それの平均検出温度より一担上昇し続いて下降し
た場合に隣接する他の熱電対によっても同様な温度変化
パタ−ンが検出された時に、ブレ−クアウトの可能性あ
りとみなす。A method of predicting restraint breakout is as follows.
For example, it is disclosed in Japanese Patent Publication No. 63-47545. In this method, the temperature of each part of the mold is measured by a plurality of thermocouples embedded in the mold, and when the detected temperature of one thermocouple is higher than its average detected temperature and then decreased, it is adjacent. When a similar temperature change pattern is detected by another thermocouple, it is considered that there is a possibility of breakout.
【0004】[0004]
【発明が解決しようとする課題】しかしながら従来の拘
束性ブレ−クアウト予知方法では、予知精度が比較的低
く、実際にブレ−クアウトが生じない場合にも、それを
ブレ−クアウトと誤認識する可能性が高い。連続鋳造に
おいて拘束性ブレ−クアウトの発生が予知された場合に
は、それを防止するために、直ちに鋳造鋼の引き抜きを
停止しなければならない。しかし、一時的な鋳造鋼の引
き抜き停止は、鋳造鋼の部分的な材質変化を伴なうの
で、引き抜き停止時形成された部分は製品にすることは
できず、歩留り低下を伴なう。従って、ブレ−クアウト
の誤認識の可能性が高いと、必要以上に歩留り低下を助
長することになる。However, in the conventional constraint breakout prediction method, the prediction accuracy is relatively low, and even if breakout does not actually occur, it can be erroneously recognized as a breakout. It is highly likely. When the occurrence of restraint breakout is predicted in continuous casting, in order to prevent it, the drawing of the cast steel must be stopped immediately. However, the temporary stoppage of the withdrawal of the cast steel involves a partial change in the material quality of the cast steel, so the portion formed when the withdrawal is stopped cannot be made into a product, and the yield is reduced. Therefore, if the possibility of erroneous recognition of breakout is high, the yield will be reduced more than necessary.
【0005】鋳型の側面に2次元方向に複数個の温度セ
ンサを埋設しそれらの検出温度を測定すると、拘束性ブ
レ−クアウトが発生する場合、ある点に時系列で温度上
昇が現れる。そこで、本発明者等は、このような現象に
着目して、温度上昇点を検出しそれらの連なりが所定パ
タ−ンとなって鋳造速度に実質上連動して下移動すると
き、拘束性ブレ−クアウトに至ると予知する方法を提供
した(特願平1−276711号および特願平2−30
6669号)。本願発明はこの種の拘束性ブレ−クアウ
ト予知方法の改良に関する。When a plurality of temperature sensors are embedded in the side surface of the mold in the two-dimensional direction and the detected temperatures thereof are measured, if restraint breakout occurs, a temperature rise appears at a certain point in time series. Therefore, the inventors of the present invention have paid attention to such a phenomenon, and when the temperature rising points are detected and a series of them becomes a predetermined pattern and moves downward in essence in conjunction with the casting speed, the restraining blur is caused. -Provided a method of predicting that a quout will occur (Japanese Patent Application No. 1-276711 and Japanese Patent Application No. 2-30).
No. 6669). The present invention relates to an improvement in this type of restrictive breakout prediction method.
【0006】従来は、各位置の温度データの時系列変化
を監視し、それが次の第(1)式の条件を満たすか否かに
よってシェル破断の有無を識別する。Conventionally, the time series change of the temperature data at each position is monitored, and the presence or absence of shell breakage is discriminated by whether or not the condition of the following expression (1) is satisfied.
【0007】 T(t)−Ta(t')≧Ts ・・・(1) T(t):時刻tの温度(瞬時値), Ta(t'):1スキャン(2秒)前の移動平均温度, Ts:温度偏差のしきい値。T (t) −Ta (t ′) ≧ Ts (1) T (t): temperature (instantaneous value) at time t, Ta (t ′): movement one scan (2 seconds) before Average temperature, Ts: threshold value of temperature deviation.
【0008】移動平均温度は各時点で過去n点で検出さ
れた瞬時値温度全体の平均値として求められる。第(1)
式の条件を満した場合には、更に次の第(2)式及び第(3)
式により所定時間内に所定の温度降下が現れるか否かを
識別する。The moving average temperature is obtained as an average value of all the instantaneous temperature values detected at the past n points at each time point. Number (1)
If the condition of the formula is satisfied, the following formula (2) and formula (3)
Whether or not a predetermined temperature drop appears within a predetermined time is identified by an expression.
【0009】 〔T(t)−T(t')〕/2<b ・・・(2) t1 −t0 ≦c ・・・(3) T(t):時刻tの温度(瞬時値), T(t'):1スキャン(2秒)前の温度, t0:第(1)式の条件を満足した時刻, t1:第(2)式の条件を満足した時刻, b,c:定数。[0009] [T (t) -T (t ' ) ] / 2 <b ··· (2) t 1 -t 0 ≦ c ··· (3) T (t): Temperature of time t (instantaneous value ), T (t '): temperature before one scan (2 seconds), t 0 : time when the condition of expression (1) is satisfied, t 1 : time when the condition of expression (2) is satisfied, b, c: a constant.
【0010】しかし多様な操業要因によって様々な温度
がデ−タが現われ、そのパタ−ンは様々になり、特にエ
アギャップ等の原因で温度が周期的に変動している場合
には、上記の従来法による識別を行うと、凝固シェル破
断とは無関係な温度変動を異常な温度上昇として識別し
てしまう例が多数発生している。また時系列温度変化パ
タ−ンの降下部分を識別の要素としているために検出が
遅れるといった問題も生じている。本発明はこの種の問
題点を改善することを目的とする。However, due to various operational factors, various temperatures appear data, and the patterns thereof vary, especially when the temperature fluctuates periodically due to an air gap or the like. When identification is performed by the conventional method, there are many cases in which temperature fluctuations unrelated to solidified shell rupture are identified as abnormal temperature rises. Further, since the falling portion of the time-series temperature change pattern is used as an identification element, there is a problem that the detection is delayed. The present invention aims to remedy this kind of problem.
【0011】[0011]
【課題を解決するための手段】連続鋳造設備の鋳型壁に
互いに異なる位置に埋設された複数の温度検出手段によ
って検出される各位置の温度を監視し、拘束性ブレーク
アウトを予知する方法において: (1) シェル破断部位に現れる特徴は、温度急上昇、お
よび、温度上昇後の下降、の2つに分類できるが、早
期検出の視点から破断発生初期に現れる温度急上昇に着
目し、温度偏差ではなく温度勾配のレベル判定を行い、
(2)多様な操業要因によって発生する凝固シェルの破断
とは無関係な温度の変動と、凝固シェルの破断による温
度の変化と区別するために統計的手法を用い、過去n点
のデータのばらつきに応じてしきい値を動的に決定する
ことにより凝固シェルの破断部位を識別する。すなわ
ち、温度検出手段の各々から検出値をサンプリングし、
各検出時刻における温度勾配の標準偏差を計算し、該標
準偏差のα(係数)倍を、拘束性ブレークアウト時に発
生する凝固シェル破断を判定するしきい値とする。In a method of predicting a constrained breakout by monitoring the temperature at each position detected by a plurality of temperature detecting means embedded in different positions on a mold wall of a continuous casting facility: (1) The features that appear at the shell rupture site can be classified into two types: rapid temperature rise and decrease after temperature rise. From the viewpoint of early detection, we focus on the rapid temperature rise that appears at the early stage of fracture occurrence, and not the temperature deviation. The level of the temperature gradient is judged,
(2) Statistical method is used to distinguish the temperature change due to fracture of solidification shell caused by various operation factors and the temperature change due to fracture of solidification shell. The fracture site of the solidified shell is identified by dynamically determining the threshold accordingly. That is, the detected value is sampled from each of the temperature detecting means,
The standard deviation of the temperature gradient at each detection time is calculated, and the standard deviation times α (coefficient) is used as the threshold value for determining the solidification shell rupture that occurs during the restraint breakout.
【0012】[0012]
【作用】シェル破断時には熱電対の温度が急上昇すると
いう特徴があり、これを温度異常として検出することに
よってシェル破断を検知することができる。しかし、鋳
造中の鋳型内の熱電対より得られる温度の挙動は多様な
操業条件に応じて時々刻々変化する。その挙動を温度勾
配で表わし、ある時間間隔(32秒間)毎に挙動の大き
さを標準偏差という指標を用いることにより、温度勾配
の値の異常状態を監視することができる。上記指標を温
度勾配判定の値として用いると、温度の変動が大きいと
きには、しきい値のレベルは非較的高く、変動の一部分
を誤検出することがなくなり、温度の変動が小さいとき
には、しきい値のレベルは低くなり温度異常を高感度に
検出することができる。The shell has a characteristic that the temperature of the thermocouple suddenly rises when the shell breaks, and the shell break can be detected by detecting this as an abnormal temperature. However, the behavior of the temperature obtained from the thermocouple in the casting mold during casting changes from moment to moment depending on various operating conditions. The behavior is represented by a temperature gradient, and the magnitude of the behavior is used at a certain time interval (32 seconds) by using an index called standard deviation, whereby an abnormal state of the value of the temperature gradient can be monitored. If the above-mentioned index is used as the value of the temperature gradient judgment, the threshold level is comparatively high when the temperature fluctuation is large, and a part of the fluctuation is not erroneously detected, and the threshold is detected when the temperature fluctuation is small. The level of the value becomes low, and the temperature abnormality can be detected with high sensitivity.
【0013】以上のように本発明によれば、鋳型内の温
度の挙動にかかわらず温度異常を検出でき、連続鋳造に
おける拘束性ブレークアウト予知精度が高くなる。これ
により、ブレークアウトが未然に防止されると同時に歩
留りの低下が防止される。As described above, according to the present invention, the temperature abnormality can be detected regardless of the temperature behavior in the mold, and the accuracy of predicting the restraint breakout in continuous casting is improved. As a result, breakout is prevented in advance, and at the same time, reduction in yield is prevented.
【0014】本発明の他の目的および特徴は、以下の図
面を参照した実施例の説明より明らかになろう。Other objects and features of the present invention will become apparent from the following description of the embodiments with reference to the drawings.
【0015】[0015]
【実施例】図3に、連続鋳造で使用される鋳型の外観を
示す。この鋳型の壁内部には冷却水の通路が形成されて
おり、冷却水によって鋳型内の溶鋼を冷却するようにな
っている。この鋳型に注入される溶鋼は、冷却の進行に
伴なって鋳型内で徐々に凝固しながら、鋳型の下方から
ゆっくりと一定の速度で引き抜かれる。鋳造幅は成品の
仕様によって異なるが、この例では最大の鋳造幅は22
2cmである。EXAMPLE FIG. 3 shows the appearance of a mold used in continuous casting. A cooling water passage is formed inside the wall of the mold, and the molten steel in the mold is cooled by the cooling water. The molten steel injected into this mold is gradually solidified in the mold as cooling progresses, and is slowly drawn out from below the mold at a constant speed. The casting width depends on the specifications of the product, but in this example the maximum casting width is 22
It is 2 cm.
【0016】次に、拘束性ブレ−クアウトが発生する場
合のプロセスの進行状況を、図6を参照しながら説明す
る。なお図6においては、プロセスは(1)-(2)-(3)-(4)-
(5)の順で進行する。Next, the progress of the process when the restrictive breakout occurs will be described with reference to FIG. In FIG. 6, the process is (1)-(2)-(3)-(4)-
Proceed in the order of (5).
【0017】鋳型(モ−ルド)1内の溶鋼は、冷却を受
ける鋳型の内壁に沿った部分から順次に凝固し、シェル
Bを形成する。シェルBは鋳型の下方から引き抜かれる
ので、下方に向かって進行し、下に進むに従って成長し
それの厚みが大きくなる。シェルBと鋳型1の内面との
間にはパウダ−と呼ばれる介在物が存在するので、シェ
ルBは鋳型1の壁面と分離されているが、メニスカスF
の近傍では、時としてシェルの一部分Aが鋳型1の内面
に固着する場合がある。鋳型1に固着したシェルは、拘
束され動かなくなるので、シェルBに下から引き抜く力
が加わるので、シェルが途中から破断し、一部のシェル
Aが鋳型壁に固着したまま、他の部分のシェルBは下側
に進行する(図1の1)。The molten steel in the mold (mold) 1 is solidified sequentially from a portion along the inner wall of the mold which is cooled to form a shell B. Since the shell B is pulled out from the lower side of the mold, it progresses downward, grows downward, and its thickness increases. Since there is an inclusion called a powder between the shell B and the inner surface of the mold 1, the shell B is separated from the wall surface of the mold 1, but the meniscus F
In the vicinity of, a part of the shell A sometimes sticks to the inner surface of the mold 1. Since the shell fixed to the mold 1 is constrained and does not move, a force for pulling it out from below is applied to the shell B, so that the shell ruptures from the middle, and some shells A remain fixed to the mold wall, while shells of other parts remain. B progresses downward (1 in FIG. 1).
【0018】シェルの破断によって形成された開口部
(シェルAとBの間)では、溶鋼が直接、鋳型壁に接触
し急激に冷却されるので、その部分に新しいシェルCが
形成される(図1の2)。At the opening formed between the fractures of the shell (between shells A and B), the molten steel directly contacts the mold wall and is rapidly cooled, so that a new shell C is formed there (Fig. 1 of 2).
【0019】新しいシェルCは、下側のシェルBと上側
の拘束されたシェルAの両者に固着するが、下側のシェ
ルBが下方に移動するので、厚みの小さい新しいシェル
Cはその力によって引きちぎられ、下方のシェルBに固
着した部分Cbと上側のシェルAに固着した部分Caと
に分かれる(図1の3)。The new shell C adheres to both the lower shell B and the upper restrained shell A, but since the lower shell B moves downward, the new shell C having a small thickness is moved by its force. It is torn off and divided into a portion Cb fixed to the lower shell B and a portion Ca fixed to the upper shell A (3 in FIG. 1).
【0020】分離したシェルCa−Cbの間には再び溶
鋼が侵入して鋳型壁と接触し、冷却されて新しいシェル
を形成し、そのシェルが再び引きちぎられる。これらの
プロセスが繰り返される(図1の4)。Molten steel again invades between the separated shells Ca-Cb and comes into contact with the mold wall, is cooled and forms a new shell, and the shell is torn off again. These processes are repeated (4 in FIG. 1).
【0021】新しいシェルが形成される位置は、しだい
に鋳型の下方に移動する。その位置が鋳型1の下端に達
するとブレ−クアウトが生じる(図4の5)。The position where the new shell is formed gradually moves below the mold. When the position reaches the lower end of the mold 1, breakout occurs (5 in FIG. 4).
【0022】鋳造中に拘束性ブレ−クアウトを生じたス
ラブの外観を図7に示す。図7を参照すると、拘束性ブ
レ−クアウトを生じた部分は、側面で略V字形を形成し
ていることが分かる。ブレ−クアウトを生じる部分は、
シェルの厚みが非常に薄いので、鋳型壁における温度
は、通常よりも高くなる。このような異常温度上昇を生
じる部分(シェルの厚みの薄い部分:V字形に分布)は
徐々に下方に移動する。そこで、上述の特許出願の発明
および本願の発明においては、鋳型の各位置で温度を測
定し、異常な温度上昇が発生した部分に注目し、それの
位置分布を識別するとともに、それが下方へ所定の速度
で進行するか否かを識別することによって、拘束性ブレ
−クアウトの予知を行なっている。The appearance of the slab in which the constrained breakout occurred during casting is shown in FIG. Referring to FIG. 7, it can be seen that the portion where the restrictive breakout has occurred forms a substantially V-shape on the side surface. The part that causes breakout is
Due to the very thin thickness of the shell, the temperature at the mold wall will be higher than normal. The portion where such an abnormal temperature rise occurs (thick shell portion: V-shaped distribution) gradually moves downward. Therefore, in the invention of the above-mentioned patent application and the invention of the present application, the temperature is measured at each position of the mold, attention is paid to a portion where an abnormal temperature rise occurs, and the position distribution thereof is identified and By discriminating whether or not the vehicle advances at a predetermined speed, the restraint breakout is predicted.
【0023】この実施例においては、図4及び図5に示
すように、鋳型の4面の各々に多数の熱電対TCを埋設
してある。具体的には、コンスタンタンで構成されるロ
ッドを先端以外を絶縁材で被覆し、それを、鋳型を構成
する銅板の各位置に形成した穴に挿入し固着してある。
各々の熱電対から得られる電気信号を処理することによ
って、各部の温度を測定できる。In this embodiment, as shown in FIGS. 4 and 5, a large number of thermocouples TC are embedded in each of the four surfaces of the mold. Specifically, a rod made of constantan is covered with an insulating material except for the tip, and the rod is inserted and fixed in holes formed at respective positions of a copper plate constituting the mold.
By processing the electric signal obtained from each thermocouple, the temperature of each part can be measured.
【0024】次に本発明の一実施例の拘束性ブレ−クア
ウト予知の処理概要を図1に示す。以下図1に沿って一
実施例を説明する。なお、図1に示す処理P1〜P3
は、周期Ts=2secで実行されるものである。Next, FIG. 1 shows an outline of the processing of predictive breakout prediction according to an embodiment of the present invention. An embodiment will be described below with reference to FIG. The processes P1 to P3 shown in FIG.
Is executed at a cycle Ts = 2 sec.
【0025】処理P1では、鋳型に装着された各熱電対
の出力する電圧を所定時間おきにサンプリングし、得ら
れた電圧をデジタルデータに変換し温度の情報を得る。
温度サンプリングをした熱電対毎に、今回の読込み値と
過去少くとも16回の読込み値とをメモリ上に記憶保持
する。In process P1, the voltage output from each thermocouple mounted on the mold is sampled at predetermined intervals, and the obtained voltage is converted into digital data to obtain temperature information.
For each thermocouple whose temperature is sampled, the read value of this time and the read value of at least 16 times in the past are stored and held in the memory.
【0026】処理P2では、処理P1で得られる多数の
温度の時系列情報を本発明により処理し、各点の温度異
常を検出する。In process P2, the time series information of a large number of temperatures obtained in process P1 is processed by the present invention to detect the temperature abnormality at each point.
【0027】処理P3では、処理P2で温度異常が検出
された点について、その点を破断部とみなし、破断部の
位置関係からブレークアウトの判定を行う。In process P3, regarding the point where the temperature abnormality is detected in process P2, the point is regarded as a fractured part, and the breakout is determined from the positional relationship of the fractured part.
【0028】図2に、「温度異常の検出」P2の内容を
説明する。The contents of the "temperature abnormality detection" P2 will be described with reference to FIG.
【0029】処理P21では温度サンプリングをした熱
電対毎に、今回の読み込み値と過去少なくとも16回の
読み込み値とをメモリ上に記憶保持する。In process P21, the read value of this time and the read value of at least 16 times in the past are stored and held in the memory for each thermocouple whose temperature is sampled.
【0030】処理P22において、今回有効な熱電対を
選択し、以下の処理に移る。In process P22, the thermocouple effective this time is selected, and the process proceeds to the following.
【0031】このように熱電対の温度サンプリングを行
うと、温度サンプリングをした熱電対(位置)毎に、今
回の読み込み値と過去少なくとも16回の読み込み値に
基づいてP23以下の処理により温度異常検出を行う。When the temperature of the thermocouple is sampled as described above, the temperature abnormality is detected by the processing of P23 and below based on the read value of this time and the read value of at least 16 times in the past for each thermocouple (position) for which the temperature is sampled. I do.
【0032】処理P23では、先の読み込み値から、温
度勾配ΔT(t)を、 ΔT(t)=〔Tb(t)−Tb(t−1)〕/2 ・・・(1) ΔT(t):時刻(t)における温度勾配, Tb(t):時刻(t)における検出温度(瞬時値), Tb(t−1):時刻(t−1)における検出温度(瞬時
値)、 なる演算式によって求める。In process P23, the temperature gradient ΔT (t) is calculated from the previous read value as follows: ΔT (t) = [Tb (t) -Tb (t-1)] / 2 (1) ΔT (t) ): Temperature gradient at time (t), Tb (t): detected temperature (instantaneous value) at time (t), Tb (t-1): detected temperature (instantaneous value) at time (t-1), Calculate by formula.
【0033】次に処理P24ではP23で求めた温度勾
配ΔT(t)から、読み込み数分の温度勾配の標準偏差σ
を、Next, in process P24, the standard deviation σ of the temperature gradient corresponding to the number of readings is calculated from the temperature gradient ΔT (t) obtained in P23.
To
【0034】[0034]
【数2】 [Equation 2]
【0035】σ:温度勾配の標準偏差, ΔTa(t):温度勾配の移動平均値, n:読み込み数、 なる演算式によって求めている。Σ: standard deviation of temperature gradient, ΔTa (t): moving average value of temperature gradient, n: number of readings.
【0036】次の処理P25では、温度異常を識別する
ためのしきい値ΔTs(t)を各スキャンタイム毎に、 ΔTs(t)=α×σ ・・・(3) ΔTs(t):時刻tにおける温度勾配のしきい値, α:係数、 なる演算式によって求めている。In the next process P25, the threshold value ΔTs (t) for identifying the temperature abnormality is set for each scan time ΔTs (t) = α × σ (3) ΔTs (t): time The temperature gradient threshold value at t, α: coefficient, is calculated by the following equation.
【0037】処理P26では、各位置データから第(1)
式によって求められる温度勾配が次の第(4)式を満たす
かどうか識別する。 ΔT(t)−ΔTa(t)>ΔT ・・・(4) ΔT(t):時劾における温度勾配, ΔTs(t):時劾tにおける温度勾配, ΔTa(t):温度勾配の移動平均値。 第(4)式を満した場合には、温度異常と検出する。In process P26, the first (1) is obtained from each position data.
Identify whether the temperature gradient determined by the equation satisfies the following equation (4). ΔT (t) -ΔTa (t)> ΔT (4) ΔT (t): temperature gradient at time t, ΔTs (t): temperature gradient at time t, ΔTa (t): moving average of temperature gradient value. When the expression (4) is satisfied, it is detected that the temperature is abnormal.
【0038】処理P27では、P26で温度異常を検出
した点(単数又は複数)のモ−ルド上の位置分布を求
め、シェル破断位置を判定する。In process P27, the position distribution on the mold of the point (single or plural) where the temperature abnormality is detected in P26 is obtained to determine the shell breakage position.
【0039】以上のP21〜P27の処理すなわち「温
度異常の検出」P2を終えると、P3のブレークアウト
判定に進む。When the above-described processing of P21 to P27, that is, "detection of temperature abnormality" P2 is completed, the process proceeds to breakout determination of P3.
【0040】拘束性ブレ−クアウトが生じる過程におい
ては、鋳型壁に沿って形成されるシェルに部分的な破断
部が生じ、これが図7に示すようにV字形になるので、
互いに異なる位置の少なくとも3点、例えば、特願平1
−276711号に提示した基準点,上方向関連点,及
び横方向関連点、もしくは、基準点,上方向関連点,及
び横方向横関連点において、該破断部の有無とそれが生
じるタイミングのずれを識別することによって、それが
拘束性ブレ−クアウトに関連する位置分布パタ−ンか否
かを判定できる。また、各点間で異常温度上昇が生じる
タイミングのずれと各点間の距離から、シェル破断領域
の移動速度を検出し、それが拘束性ブレ−クアウトに関
連するものか否かを判定できる。P3のブレークアウト
判定では、「温度異常の検出」P2で得たシェル破断位
置情報の時系列処理により、この、拘束性ブレ−クアウ
トの予知判定を行なう。During the process of restraint breakout, the shell formed along the wall of the mold has a partial breakage, which is V-shaped as shown in FIG. 7.
At least 3 points at different positions, for example, Japanese Patent Application No. 1
-276711, the reference point, the upward direction related point, and the lateral direction related point, or the reference point, the upward direction related point, and the lateral direction lateral related point, the presence or absence of the breakage portion and the timing difference at which it occurs. , It is possible to determine whether or not it is the position distribution pattern associated with the constrained breakout. In addition, it is possible to detect the movement speed of the shell rupture region from the deviation of the timing at which the abnormal temperature rise occurs between the points and the distance between the points, and determine whether or not it is related to the restrictive breakout. In the breakout judgment of P3, the predictive judgment of the restrictive breakout is performed by the time series processing of the shell break position information obtained in "Detection of temperature abnormality" P2.
【0041】[0041]
【効果】以上のとおり本発明によれば、鋳型内の熱電対
の温度変動の状況に応じて動的にしきい値を決定して温
度異常の有無すなわちシェルの破断の有無を識別してい
るので、様々な操業要因によって起こりうる定常的な温
度変動発生領域でも高精度かつ早期に温度異常が検出さ
れ、連続鋳造における拘束性ブレ−クアウト予知の精度
が高くなる。これにより、ブレ−クアウトが未然に防止
されると同時に、誤検出による歩留りの低下が防止され
る。[Effect] As described above, according to the present invention, the threshold value is dynamically determined according to the temperature fluctuation condition of the thermocouple in the mold to identify the presence or absence of temperature abnormality, that is, the presence or absence of shell breakage. Even in the steady temperature fluctuation occurrence region which may occur due to various operation factors, the temperature abnormality is detected with high accuracy and early, and the accuracy of the constraint breakout prediction in the continuous casting becomes high. As a result, breakout is prevented in advance, and at the same time, reduction in yield due to erroneous detection is prevented.
【0042】図8,図9は、鋳造中の鋳型内の熱電対か
ら得た検出値から温度勾配としきい値を第(1)式〜第(3)
式によって計算し、各々破線と実線で時系列に表したも
のである。横軸の時間の単位は秒、縦軸の温度勾配の単
位は℃/秒である。図8,図9で、破線で示す温度勾
配が、一点鎖線で示すしきい値を越えた時点が、シェ
ルの破断検知が成立した時点である。図8は横軸の−2
0の時点で、シェルの破断が発生した状態を表わしてお
り、図9は、シェル破断以外の何らかの要因によって温
度変動している状態を表している。この場合には、温度
変動が激しいが、破断とは検知しない。このように第
(3)式によって求めたしきい値による破断有無の判定を
行うことによって、シェル破断以外の温度変動をシェル
破断と誤検出する確率が低減する。FIGS. 8 and 9 show the temperature gradient and the threshold value expressed by the expressions (1) to (3) based on the detected values obtained from the thermocouple in the casting mold.
It is calculated by an equation and is shown in a time series with a broken line and a solid line. The unit of time on the horizontal axis is seconds, and the unit of temperature gradient on the vertical axis is ° C / sec. In FIGS. 8 and 9, the time point when the temperature gradient shown by the broken line exceeds the threshold value shown by the alternate long and short dash line is the time point when the fracture detection of the shell is established. Figure 8 is -2 on the horizontal axis
At time 0, the shell is broken, and FIG. 9 shows that the temperature is fluctuating due to some factor other than the shell break. In this case, the temperature fluctuates significantly, but the fracture is not detected. Like this
By determining the presence or absence of breakage based on the threshold value obtained by the equation (3), the probability of erroneously detecting temperature fluctuation other than shell breakage as shell breakage is reduced.
【図1】本発明の一実施例における拘束性ブレ−クアウ
ト予知のための処理概要を示すブロック図である。FIG. 1 is a block diagram showing an outline of a process for predicting restrictive breakout according to an embodiment of the present invention.
【図2】図1に示す「温度異常の検出」P2の内容を示
すフローチャートである。FIG. 2 is a flowchart showing the content of “detection of temperature abnormality” P2 shown in FIG.
【図3】本発明を一態様で実施する鋳型の外観を示す斜
視図である。FIG. 3 is a perspective view showing an appearance of a mold for carrying out the present invention in one aspect.
【図4】図3に示す鋳型1のF,L面の外表面を示す平
面図である。FIG. 4 is a plan view showing outer surfaces of F and L surfaces of the mold 1 shown in FIG.
【図5】図3に示す鋳型1のE,W面の外表面を示す平
面図である。5 is a plan view showing outer surfaces of E and W surfaces of the mold 1 shown in FIG.
【図6】拘束性ブレ−クアウトの発生プロセスを示す鋳
型内縦断面図である。FIG. 6 is a vertical cross-sectional view in a mold showing a process of generating a constrained breakout.
【図7】拘束性ブレ−クアウトを生じたスラブの外観を
示す斜視図である。FIG. 7 is a perspective view showing the external appearance of a slab having a constrained breakout.
【図8】本発明によって求められるしきい値の時系列推
移の一例を示すグラフであり、横軸は時間を、縦軸は温
度勾配を示す。FIG. 8 is a graph showing an example of a time series transition of a threshold value obtained by the present invention, in which the horizontal axis represents time and the vertical axis represents temperature gradient.
【図9】本発明によって求められるしきい値の時系列推
移のもう1つの例を示すグラフであり、横軸は時間を、
縦軸は温度勾配を示す。FIG. 9 is a graph showing another example of time series transition of threshold values obtained by the present invention, in which the horizontal axis represents time,
The vertical axis represents the temperature gradient.
1:鋳型 2,TC:熱電対 1: mold 2, TC: thermocouple
─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───
【手続補正書】[Procedure amendment]
【提出日】平成3年10月9日[Submission date] October 9, 1991
【手続補正1】[Procedure Amendment 1]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0034[Correction target item name] 0034
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0034】[0034]
【数2】 [Equation 2]
【手続補正2】[Procedure Amendment 2]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0037[Name of item to be corrected] 0037
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0037】処理P26では、各位置データから第(1)
式によって求められる温度勾配が次の第(4)式を満たす
かどうか識別する。 ΔT(t)−ΔTa(t)>ΔTs(t) ・・・(4) ΔT(t):時劾における温度勾配, ΔTs(t):時劾tにおける温度勾配のしきい値。 ΔTa(t):温度勾配の移動平均値。 第(4)式を満した場合には、温度異常と検出する。In process P26, the first (1) is obtained from each position data.
Identify whether the temperature gradient determined by the equation satisfies the following equation (4). ΔT (t) -ΔTa (t)> ΔTs (t) (4) ΔT (t): temperature gradient at time t, ΔTs (t): threshold value of temperature gradient at time t . ΔTa (t): moving average of temperature gradient. When the expression (4) is satisfied, it is detected that the temperature is abnormal.
Claims (1)
に埋設された複数の温度検出手段によって検出される各
位置の温度を監視し、拘束性ブレークアウトを予知する
方法において:温度検出手段の各々の検出温度をサンプ
リングし、各検出時刻における温度勾配の標準偏差を計
算し、該標準偏差に所定係数αを乗じた値を、拘束性ブ
レークアウト時に発生する凝固シェル破断を判定するし
きい値とすることを特徴とする、連続鋳造の拘束性ブレ
ークアウトの予知方法。1. A method for predicting a constrained breakout by monitoring the temperature at each position detected by a plurality of temperature detecting means embedded in different positions on a mold wall of a continuous casting facility: Each detected temperature is sampled, the standard deviation of the temperature gradient at each detection time is calculated, and the value obtained by multiplying the standard deviation by a predetermined coefficient α is a threshold value for determining the solidification shell rupture that occurs at the time of restraint breakout. A method for predicting a constrained breakout in continuous casting, characterized by:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21742591A JPH0557412A (en) | 1991-08-28 | 1991-08-28 | Method for predicting constrained breakout in continuous casting |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21742591A JPH0557412A (en) | 1991-08-28 | 1991-08-28 | Method for predicting constrained breakout in continuous casting |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0557412A true JPH0557412A (en) | 1993-03-09 |
Family
ID=16704013
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21742591A Pending JPH0557412A (en) | 1991-08-28 | 1991-08-28 | Method for predicting constrained breakout in continuous casting |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0557412A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009152940A1 (en) * | 2008-06-17 | 2009-12-23 | Sms Siemag Ag | Device and method for detecting the danger of a breakout of a steel strand during the continuous casting of steel |
CN103639385A (en) * | 2013-12-05 | 2014-03-19 | 中冶连铸技术工程股份有限公司 | Bleed-out forecasting method and system based on least squares |
JP2017024047A (en) * | 2015-07-23 | 2017-02-02 | Jfeスチール株式会社 | Method and apparatus for prediction of restrictive breakout |
CN109365769A (en) * | 2018-12-18 | 2019-02-22 | 重庆邮电大学 | A kind of crystallizer bleedout prediction electric thermo method based on mixed model judgement |
WO2020179698A1 (en) * | 2019-03-06 | 2020-09-10 | Jfeスチール株式会社 | Method for continuous casting of slab |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63104766A (en) * | 1986-10-21 | 1988-05-10 | Sumitomo Metal Ind Ltd | Predicting method for breakout in continuous casting |
JPS63203260A (en) * | 1987-02-17 | 1988-08-23 | Sumitomo Metal Ind Ltd | Method for predicting breakout in continuous casting |
-
1991
- 1991-08-28 JP JP21742591A patent/JPH0557412A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63104766A (en) * | 1986-10-21 | 1988-05-10 | Sumitomo Metal Ind Ltd | Predicting method for breakout in continuous casting |
JPS63203260A (en) * | 1987-02-17 | 1988-08-23 | Sumitomo Metal Ind Ltd | Method for predicting breakout in continuous casting |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009152940A1 (en) * | 2008-06-17 | 2009-12-23 | Sms Siemag Ag | Device and method for detecting the danger of a breakout of a steel strand during the continuous casting of steel |
CN103639385A (en) * | 2013-12-05 | 2014-03-19 | 中冶连铸技术工程股份有限公司 | Bleed-out forecasting method and system based on least squares |
JP2017024047A (en) * | 2015-07-23 | 2017-02-02 | Jfeスチール株式会社 | Method and apparatus for prediction of restrictive breakout |
CN109365769A (en) * | 2018-12-18 | 2019-02-22 | 重庆邮电大学 | A kind of crystallizer bleedout prediction electric thermo method based on mixed model judgement |
WO2020179698A1 (en) * | 2019-03-06 | 2020-09-10 | Jfeスチール株式会社 | Method for continuous casting of slab |
CN113543907A (en) * | 2019-03-06 | 2021-10-22 | 杰富意钢铁株式会社 | Continuous casting method of slab casting blank |
JPWO2020179698A1 (en) * | 2019-03-06 | 2021-11-25 | Jfeスチール株式会社 | Continuous casting method for slab slabs |
US11648607B2 (en) | 2019-03-06 | 2023-05-16 | Jfe Steel Corporation | Continuous casting method of cast slab |
CN113543907B (en) * | 2019-03-06 | 2023-09-05 | 杰富意钢铁株式会社 | Continuous casting method for slab casting blank |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101275035B1 (en) | Process for predicting the emergence of longitudinal cracks during continuous casting | |
JP6950860B1 (en) | Breakout prediction method, continuous casting machine operation method, and breakout prediction device | |
JP5673100B2 (en) | Breakout prediction method | |
CN108705058A (en) | A method of forecast Crystallizer bleed-out is clustered based on K-Means | |
JPH0557412A (en) | Method for predicting constrained breakout in continuous casting | |
JP7115240B2 (en) | Breakout prediction method in continuous casting | |
JP2001162358A (en) | Method for preventing restrictive breakout in continuous casting | |
JPH0575503B2 (en) | ||
JP5906814B2 (en) | Method and apparatus for predicting constraining breakout in continuous casting equipment | |
JPH0775766B2 (en) | Method for detecting vertical crack in slab in continuous casting | |
JPH0724927B2 (en) | Constrained breakout prediction method for continuous casting | |
JP5593801B2 (en) | Breakout prediction method for continuous casting | |
JPH0722811B2 (en) | Constrained breakout prediction method for continuous casting | |
JPS6044163A (en) | Method for predicting breakout in continuous casting | |
JP5482418B2 (en) | Breakout prediction method | |
JPH0771726B2 (en) | Continuous casting method | |
JPS6347545B2 (en) | ||
JPH0790343B2 (en) | Breakout prediction method in continuous casting | |
JPH09248661A (en) | Method for predicting breakout caused by foreign matter biten in continuous casting | |
JPS61176456A (en) | Predict method of breakout caused by entrainment of inclusion | |
JP6347236B2 (en) | Breakout prediction method, breakout prediction apparatus, and continuous casting method | |
JP5375622B2 (en) | Breakout prediction method for continuous casting | |
WO2021256063A1 (en) | Breakout prediction method, method for operating continuous casting apparatus, and breakout prediction device | |
JPH0751263B2 (en) | Breakout prediction method in continuous casting mold | |
JP2005296979A (en) | Method for predicting break-out in continuous casting for molten metal |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 19960109 |