JPH0771726B2 - Continuous casting method - Google Patents

Continuous casting method

Info

Publication number
JPH0771726B2
JPH0771726B2 JP62299885A JP29988587A JPH0771726B2 JP H0771726 B2 JPH0771726 B2 JP H0771726B2 JP 62299885 A JP62299885 A JP 62299885A JP 29988587 A JP29988587 A JP 29988587A JP H0771726 B2 JPH0771726 B2 JP H0771726B2
Authority
JP
Japan
Prior art keywords
temperature
breakout
continuous casting
mold
change rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62299885A
Other languages
Japanese (ja)
Other versions
JPH01143748A (en
Inventor
誓司 糸山
修二 田中
司 寺嶋
啓充 山中
弘明 井口
永康 別所
Original Assignee
川崎製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎製鉄株式会社 filed Critical 川崎製鉄株式会社
Priority to JP62299885A priority Critical patent/JPH0771726B2/en
Priority to US07/251,410 priority patent/US4949777A/en
Priority to AU23317/88A priority patent/AU625284B2/en
Priority to BR8805056A priority patent/BR8805056A/en
Priority to DE8888309107T priority patent/DE3868578D1/en
Priority to EP88309107A priority patent/EP0310420B1/en
Priority to KR1019880012843A priority patent/KR960003717B1/en
Priority to CA000584465A priority patent/CA1328925C/en
Publication of JPH01143748A publication Critical patent/JPH01143748A/en
Publication of JPH0771726B2 publication Critical patent/JPH0771726B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、連続鋳造方法に関し、とくにブレークアウ
ト等の効果的な回避を図ろうとするものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a continuous casting method, and is particularly intended to effectively avoid breakout and the like.

(従来の技術) 連続鋳造を適用する場合に発生が懸念される鋳片のブレ
ークアウトを防止する手法に関しては、これまで連鋳鋳
型の温度挙動を指標としており、具体的には、(1)連
鋳鋳片の引抜方向における連鋳鋳型の上方の測温データ
とそれよりも下方の測温データを比較する方法(特開昭
57−115961号公報参照)や(2)連鋳モールドを形成す
る鋳型銅板の各銅板面の温度差を測定する方法(特公昭
56−7783号公報)、あるいは(3)鋳型壁面に設けた熱
電対による検出温度が検出平均温度より一たん上昇して
から下降した際ブレークアウト発生として予知する方法
(特開昭57−152356号公報参照)などが知られている。
(Prior Art) Regarding the method of preventing breakout of a slab, which may occur when continuous casting is applied, the temperature behavior of the continuous casting mold has been used as an index so far, and specifically, (1) A method for comparing the temperature measurement data above the continuous casting mold and the temperature measurement data below the continuous casting mold in the drawing direction of the continuous casting slab (Patent Document 1)
57-115961) or (2) a method for measuring the temperature difference between the copper plate surfaces of a copper plate for forming a continuous casting mold (Japanese Patent Publication No.
56-7783), or (3) a method of predicting that a breakout will occur when the temperature detected by the thermocouple provided on the wall surface of the mold once rises and then falls below the detected average temperature (JP-A-57-152356). (See the official gazette) and the like are known.

しかしながら、モールドの温度は、鋳込速度が早くなる
と高くなり一方遅くなると低くなるので、上記の如きモ
ールド温度の上下動(変動)のみで判断する手法では、
モールドと鋳片との間へ流入するパウダーの不均一やエ
アーギャップの生成が起った場合などには正確な判断が
できないという問題があった。
However, the mold temperature becomes higher when the casting speed becomes faster and becomes lower when the casting speed becomes slower. Therefore, in the method of judging only the vertical movement (fluctuation) of the mold temperature as described above,
There is a problem that an accurate determination cannot be made when the powder flowing into the space between the mold and the slab is uneven or when an air gap is generated.

これらの対策を含むブレークアウトの予知法として例え
ば、(4)特開昭60−44163号公報には、連鋳鋳型の側
壁に設けた少なくとも2個の温度検出端の値が、時間的
に引続いて定常水準より高温側に偏倚したとき異常と判
断する方法が、また、(5)特開昭61−289954号公報に
は、連鋳鋳型の指標となる複数の設定値に基づいて予知
する方法が、さらに(6)特開昭61−226154号公報に
は、予め求めておいた各測温点における温度と鋳込速度
の関係により、測温した温度から鋳込速度変化による要
因を取除いたのち、所定の測定点の温度の全測定点との
比を相対温度として求め、この相対温度が予め設定され
た上下限値を外れるときブレークアウトとして予知する
方法がそれぞれ開示されている。
As a breakout prediction method including these measures, for example, (4) Japanese Patent Laid-Open No. 60-44163 discloses that the values of at least two temperature detecting ends provided on the side wall of a continuous casting mold are temporally reduced. Subsequently, there is a method of determining an abnormality when the temperature is deviated to a temperature higher than the steady level, and (5) Japanese Patent Laid-Open No. 61-289954 discloses prediction based on a plurality of set values serving as indexes of the continuous casting mold. The method is further described in (6) Japanese Patent Laid-Open No. 61-226154, in which the factor due to the change in the casting speed is determined from the measured temperature based on the relationship between the temperature at each temperature measurement point and the casting speed which is obtained in advance. After the removal, the ratio of the temperature of a predetermined measurement point to all the measurement points is obtained as a relative temperature, and when the relative temperature deviates from a preset upper or lower limit value, a method of predicting a breakout is disclosed.

(発明が解決しようとする問題点) ところで、上記の技術における(4)は、鋳造速度が変
化している場合や湯面変動時にはブレークアウトを予知
することができず、また(5)は設定値(パラメータ)
が多く、鋳造条件が変化すると誤報の増加が懸念され、
さらに(6)については、測温位置や鋳造条件が変化す
ると温度指示値も変化するのでその度パラメータを測定
する必要があり、汎用性、応用性に欠けるという問題が
あった。
(Problems to be solved by the invention) By the way, (4) in the above technique cannot predict breakout when the casting speed is changed or when the molten metal level changes, and (5) is set. Value (parameter)
There is a concern that false alarms will increase when casting conditions change.
Further, with respect to (6), when the temperature measurement position or the casting condition changes, the temperature instruction value also changes, so that it is necessary to measure the parameter each time, and there is a problem that versatility and applicability are lacking.

鋳造速度、湯面変動等の鋳造条件の変化に対して影響を
受けることなく正確な予知が実現できる、連続鋳造方法
を与えることがこの発明の目的である。
It is an object of the present invention to provide a continuous casting method that can realize accurate prediction without being affected by changes in casting conditions such as casting speed and fluctuations in molten metal surface.

(問題点を解決するための手段) 連続鋳造中の鋳型の測温値は、鋳造速度の増減、湯面変
動、モールドパウダーの成分や変化によって、全測温点
において、ほぼ同時に類似した挙動を示す一方、その変
化は測温深さ(鋳型銅板表面から測温素子先端部に至る
までの距離)、鋳造鋼種、モールドパウダーの種類、鋳
造温度、増減前の鋳造速度などによって大きく異なる。
(Means for solving the problem) The temperature measurement value of the mold during continuous casting shows similar behavior at all temperature measurement points at almost the same time due to increase / decrease in casting speed, fluctuations in the molten metal level, and components and changes in the mold powder. On the other hand, the change largely depends on the temperature measurement depth (distance from the surface of the mold copper plate to the tip of the temperature measuring element), the type of cast steel, the type of mold powder, the casting temperature, the casting speed before and after the increase and decrease, and the like.

そのため、これらの要因の影響による測温値や測温値の
挙動をブレークアウト時のそれらと区別することが重要
である。
Therefore, it is important to distinguish the temperature measurement value and the behavior of the temperature measurement value from those at the time of breakout due to the influence of these factors.

そこでこの発明では、連鋳鋳型の各測温点の温度変化速
度と、全測温点の平均温度変化速度との差を求め、これ
を指標とすることにより、所期した目的を有利に達成し
たものである。
Therefore, in the present invention, the difference between the temperature change rate of each temperature measurement point of the continuous casting mold and the average temperature change rate of all temperature measurement points is obtained, and this difference is used as an index to advantageously achieve the intended purpose. It was done.

すなわちこの発明は、連鋳モールドの形成する鋳型銅板
の内壁温度を、メニスカス相当部より下方において鋳片
引抜き方向と交差する向きに所定間隔で一列に配置した
3個以上の測温素子群にて測定し、得られた測定値から
各測温点におえる温度変化速度と全測温点の平均温度変
化速度との差を求め、この値が、予め設定した、鋳造速
度・湯面変動に依存しない温度変化速度設定値を超え、
かつ各測温点における温度変化速度の経時的な変動に伴
う伝播パターンが、予め把握してあるブレークアウト時
の伝播パターンの一致する場合に、ブレークアウトの危
険性を回避すべく操業条件の変更を行うことを特徴とす
る連続鋳造方法である。
That is, according to the present invention, the temperature of the inner wall of the mold copper plate formed by the continuous casting mold is determined by a group of three or more temperature-measuring elements arranged in a row at a predetermined interval in a direction below the meniscus-equivalent portion and in a direction intersecting the slab drawing direction. The difference between the temperature change rate at each temperature measurement point and the average temperature change rate at all temperature measurement points is calculated from the measured values, and this value depends on the preset casting speed and melt level fluctuations. Do not exceed the temperature change speed set value,
In addition, if the propagation pattern due to the temporal change in the temperature change rate at each temperature measurement point matches the previously known propagation pattern at breakout, change the operating conditions to avoid the risk of breakout. Is a continuous casting method.

(作 用) さてこの発明では、連鋳モールドを形成する鋳型銅板
に、第1図に示すように鋳片の引抜き方向と交差する向
きに所定間隔になる測温素子を3個以上にして一列設け
る。そして連続鋳造中において各測温点の温度変化速度
を求める。ここに測温位置i点における温度変化速度
は、 また全測温点i=1〜nの平均温度変化速度avは、 N:全測温度点数 にて求める。
(Operation) According to the present invention, as shown in FIG. 1, a mold copper plate forming a continuous casting mold is provided with three or more temperature-measuring elements arranged at a predetermined interval in a direction intersecting the drawing direction of the slab and arranged in a row. Set up. Then, the temperature change rate at each temperature measurement point is obtained during continuous casting. The temperature change speed at the temperature measurement position i
i is Further, the average temperature change rate av of all the temperature measurement points i = 1 to n is N: Calculated based on all measured temperature points.

そして、上記(1)及び(2)式から相対温度変化速度
r i▼を、 ▲r i▼=av ……(3) より求める。
Then, the relative temperature change rate ▲ r i ▼ is calculated from the above equations (1) and (2) by the following: ▲ r i ▼ = i - av ... (3).

各測温点における相互間の測温値の類似的挙動がブレー
クアウト以外の他の要因により生じている場合は
av、▲r i▼=0℃/sとなるので、鋳造条件等の変化
による影響を容易に除去することが可能となる。
If a similar behavior of the temperature measurement value of mutual at each temperature measuring point is caused by other factors other than breakout i
Since av and ▲ r i ▼ = 0 ° C / s, it becomes possible to easily remove the influence of changes in casting conditions and the like.

これらの指標値が上昇する異常時期の、各測温点におけ
る温度変化速度の経時的な変動に伴う伝播パターンが、
ブレークアウトの発生時に、どのような状況にあるかを
説明すると、例えば上掲第1図におけるi点と(i+
1)点の間で又はi近傍のA点のメニスカス部で凝固殻
が焼付き破断したとする。
During the abnormal period when these index values rise, the propagation pattern due to the temporal change of the temperature change rate at each temperature measurement point,
Explaining what kind of situation there is when a breakout occurs, for example, point i and (i +
It is assumed that the solidified shell is seized and fractured between points 1) or at the meniscus portion of point A near i.

鋳造の進行により、i点と、(i+1)点では、▲r i
▼と▲r i+1▼がほぼ同時に、又は▲r i▼に引続き▲
r i+1▼が上昇する。さらに鋳造が進行すると(i+
2)点と(i−1)点でそれぞれ▲r i+2▼と▲r i+1
▼がほぼ同時に又は(i−1)点の▲r i-1▼に次いで
(i+2)点の▲r i+2▼が上昇する。このように測温
点iと(i+1)の間で焼付きが発生すると▲r i▼→
r i+1▼→▲r i-1▼→▲r i+2▼の順に左右(又は
右左)交互に温度変化速度が上昇することになる。な
お、測温点の熱電対が断線している場合、例えば、(i
−1)点において熱電対が断線している場合、i→(i
+1)→(i+2)の順序で温度上昇が検知されるので
右方向(一方向)に規則的・連続的に変化することにな
る。
Due to the progress of casting, at points i and (i + 1), ▲ r i
▼ and ▲ r i + 1 ▼ are almost simultaneously, or continue to ▲ r i ▼ ▲
r i + 1 ▼ increases. As casting continues, (i +
2) Point and (i-1) point are ▲ r i + 2 ▼ and ▲ r i + 1 respectively
▼ almost simultaneously or ▲ r i-1 ▼ at the (i-1) point, and then ▲ r i + 2 ▼ at the (i + 2) point rises. In this way, if seizure occurs between the temperature measurement points i and (i + 1), ▲ r i ▼ →
The temperature change speed increases alternately left and right (or right and left) in the order of ▲ r i + 1 ▼ → ▲ r i-1 ▼ → ▲ r i + 2 ▼. If the thermocouple at the temperature measuring point is broken, for example, (i
If the thermocouple is broken at point -1), i → (i
Since the temperature rise is detected in the order of +1) → (i + 2), the temperature changes regularly and continuously in the right direction (one direction).

以上の現象は、焼付き性(拘束性)ブレークアウトが発
生する直前の特徴であることを連続鋳造における数十列
の温度挙動のデータを解析した結果に基づくものであ
る。
The above phenomenon is a characteristic immediately before the seizure (restraint) breakout occurs, and is based on the result of analysis of data of several tens of rows of temperature behavior in continuous casting.

従って、上記した例でi点における▲r i▼を基準とし
て、i点と隣接する各測温点で得られる値の異常を検知
し、その異常の伝わり方をパターン(伝播パターン)
を、ブレークアウトが発生した時の伝わり方(伝播パタ
ーン)と比較して、同一であるかどうかを判定すること
によって、精度の高い予知が可能である。とくに従来の
連続鋳造におけるブレークアウトは、温度測定点または
その時間的・空間的な変化率を、鋳造条件に依存する特
定の値と比較することで予知していたが、この発明にお
いては、温度測定値またはその時間的・空間的な変化率
を、鋳造条件に依存しない特定の値と比較することで異
常を検知するとともに、その異常の経時的な伝播パター
ンを、予め把握してある異常時の特有の伝播パターンと
比較して判定するようにしたので、予知精度の格段の向
上を図ることができ、また汎用性も高い。
Therefore, in the above example, an abnormality in the value obtained at each temperature measurement point adjacent to the point i is detected with reference to ▲ r i ▼ at the point i, and the pattern of transmission of the abnormality (propagation pattern)
Is compared with the transmission method (propagation pattern) when the breakout occurs, and it is determined whether or not they are the same, so that highly accurate prediction is possible. In particular, the breakout in the conventional continuous casting was predicted by comparing the temperature measurement point or its temporal / spatial change rate with a specific value depending on the casting conditions. Anomalies are detected by comparing the measured values or their temporal and spatial change rates with specific values that do not depend on the casting conditions, and the time-dependent propagation pattern of the anomalies is known beforehand. Since the judgment is made by comparing with the propagation pattern peculiar to the above, the prediction accuracy can be significantly improved and the versatility is high.

なお、互いに隣接する測温点において、測定された値の
異常がどのくらいの時間間隔で発生するかの最大時間、
つまり伝播時間(T)の決定は、測温点間隔(w)、鋳
造速度(Vc)、凝固殻の破断線角度(β)、及び移動速
度(α・Vc)によって下記式(5)より求めることがで
きる。
It should be noted that, at the temperature measuring points adjacent to each other, the maximum time at which the time interval at which the abnormality of the measured value occurs occurs,
That is, the propagation time (T) is determined by the following equation (5) according to the temperature measuring point interval (w), the casting speed (V c ), the solidification shell break line angle (β), and the moving speed (α · V c ). You can ask more.

ただし、α:定数(0.5〜1.0) また、この発明に従い鋳型内で凝固殻が破断していると
判断し、鋳造速度をVcからVc′へ減速した場合におい
て、その速度Vc′が適切なものであるかどうかの判断、
すなわち、ブレークアウトした部分が、鋳型下端から出
たときに凝固シェルの鋳型直下でのバルジングによって
ブレークアウトするかどうかの判断は、ブレークアウト
を予知したときの凝固殻破断線の最先端から鋳型下端ま
での距離LPと、予知後における減速した鋳造速度Vc
と、減速するまでの時間tdから下記式(6)を満足する
ように決定すればよい。
However, alpha: constant (0.5 to 1.0) also determines that the solidified shell in the mold is broken in accordance with the present invention, 'in case of decelerated to its velocity V c' the casting speed from V c V c is Judge whether it is appropriate,
That is, the judgment of whether the breakout portion breaks out due to bulging just below the mold of the solidification shell when it comes out from the lower end of the mold is determined from the tip of the breaking line of the solidification shell when the breakout is predicted. To the distance L P and the reduced casting speed V c ′ after prediction
Then, the time t d until deceleration may be determined so as to satisfy the following expression (6).

ここでks:鋳型内における溶鋼の凝固速度定数(mm−min
−0.5) Vc:鋳造速度(m/min) L:鋳型長さ(mm) dB.0:鋳型直下での、バルジングによりブレークアウ
トしない最小の凝固シェル厚さ(経験的に求まる値)
(mm) lm:鋳型上端から測温点に至るまでの距離(m) n:ブレークアウト予知判定に用いる測温点の数 この発明においては、測温点の数nを3個以上とするこ
ととしたが、その理由は、測温数を多くした方が誤報を
少なくでき、かつ正確な予知が可能だからであり、上記
式(6)を満足する最大値を利用するのが好ましい。
Where k s : solidification rate constant of molten steel in the mold (mm−min
-0.5 ) V c : Casting speed (m / min) L: Mold length (mm) d B.0 : Minimum solidified shell thickness immediately below the mold that does not break out due to bulging (empirically determined value)
(Mm) lm: Distance from top of mold to temperature measuring point (m) n: Number of temperature measuring points used for breakout prediction judgment In the present invention, the number of temperature measuring points n should be 3 or more. However, the reason for this is that increasing the number of measured temperatures can reduce false alarms and enable accurate prediction, and it is preferable to use the maximum value that satisfies the above equation (6).

以上の説明から、連続鋳造においてブレークアウトを予
知する上で設定すべき値は、温度変化速度の上限値▲
r cr▼とノイズ検出を防止するための▲r i▼≧▲r cr
▼の持続時間tcr、そしてβ、α、nの6つである。こ
こで、tcrは、通常鋳込時の温度変動あるいは測温の不
安定さにより短時間の間、▲r i▼が設定値▲r cr
を上廻る場合の誤報を無くすために設けたパラメータ
で、▲r i▼≧▲r cr▼が満足されている時間の下限
値を与える。またβ、αはブレークアウト時の凝固殻あ
るいは測温データから得ることができ、β=20〜45゜、
α=0.5〜1.0であり、鋳造条件の影響が少ないパラメー
タである。またnは、測温位置が決れば上記(6),
(7)式で与えられる性質のものである。従って、設定
パラメーターは温度変化速度の上限値▲r cr▼と
crを満足する時間tcrであり、実質的に2個のパラ
メーターを経験的にもとめればよいことになる。この2
個のパラメーターは、連鋳機のタイプ、対象鋼種、鋳込
速度あるいは鋳片サイズ等の鋳造条件の違いによる影響
が非常に小さく、実質的に上記操業条件に依存しないパ
ラメータであり、過去に得られたブレークアウト時の鋳
型銅板の温度挙動に基づいて設定される。
From the above explanation, the value that should be set in predicting breakout in continuous casting is the upper limit value of the temperature change rate ▲
r cr ▼ and ▲ r i ▼ ≧ ▲ r cr to prevent noise detection
The duration t is t cr , and β, α, and n are six. Here, t cr is a short period of time due to temperature fluctuations or temperature measuring instability during normal casting, ▲ r i ▼ set value ▲ r cr
It is a parameter provided to eliminate false alarms when the value exceeds, and gives the lower limit of the time when ▲ r i ▼ ≧ ▲ r cr ▼ is satisfied. In addition, β and α can be obtained from the coagulation shell at the time of breakout or temperature measurement data, β = 20 to 45 °,
α = 0.5 to 1.0, which is a parameter that is less affected by casting conditions. Further, n is the above (6) if the temperature measurement position is determined,
It has the property given by the equation (7). Therefore, the setting parameters are the upper limit value of temperature change rate ▲ r cr ▼ and i
cr the time t cr satisfying the will substantially be may be determined two parameters empirically. This 2
The individual parameters are parameters that do not substantially depend on the above operating conditions, and are not significantly affected by differences in casting conditions such as the type of continuous casting machine, target steel type, casting speed, or slab size, and are obtained in the past. It is set based on the temperature behavior of the mold copper plate during the specified breakout.

(実施例) 図2のようなシステムに従い、表−1に示す鋳造条件及
び測温条件にてブレークアウトを予知しつつ連続鋳造を
行った。
(Example) According to the system as shown in FIG. 2, continuous casting was performed under the casting conditions and temperature measurement conditions shown in Table 1 while predicting breakout.

表−2に、この発明を適用した場合におけるブレークア
ウトの予知精度を調査した結果を、比較例(特開昭61−
226154号公報)を適用した場合におけるブレークアウト
の予知精度の調査結果とともに示す。
Table 2 shows the results of investigating the breakout prediction accuracy when the present invention is applied, as a comparative example (Japanese Patent Laid-Open No. 61-
(226154 gazette) is shown together with the results of investigation of the prediction accuracy of breakout.

第3図は予知した際の温度変化速度の経時変化を鋳型銅
板温度、鋳造速度(Vc)および湯面変動量(ML)と対応
させて示したグラフである。
FIG. 3 is a graph showing the change over time in the temperature change rate at the time of prediction in correspondence with the mold copper plate temperature, the casting speed (V c ), and the melt level fluctuation amount (M L ).

第3付から、Vc、MLが変化しても温度変化速度▲r i
はほとんど変動しないことがわかる。なお、この操業
は、図中矢印部においてブレークアウト予知警報が鳴っ
たためその位置で鋳込み速度を減速した場合について示
したものである。その後、警報が鳴った鋳型内に位置し
ていた部分の鋳片表面を調査したところ、その表面に
は、拘束性ブレークアウトが進展していたことを示す▽
型のマークが観察され、この発明に基づくブレークアウ
トの予知が極めて有効であることが確認できた。
From the 3rd appendix, the rate of temperature change ▲ r i ▼ even if V c and M L change
It can be seen that is almost unchanged. This operation is shown when the casting speed is reduced at that position because the breakout prediction alarm sounds at the arrowed portion in the figure. After that, when the surface of the slab that was located in the mold where the alarm sounded was investigated, it was shown that the restraint breakout had progressed on the surface.
The marking of the mold was observed, and it was confirmed that the prediction of breakout according to the present invention was extremely effective.

(発明の効果) この発明によれば、連続鋳造における鋳込速度の変化、
湯面変動、モールドパウダー成分の変化、あるいは測温
深さ、対象鋼種の違いや鋳造サイズ等の条件に影響を受
けることなく精度の高いブレークアウト予知が可能であ
り、このため、ブレークアウト防止のための減速頻度も
極端に少なくなるので生産性の低下は全くない。また、
予知判定に必要な設定パラメータの数が少ないのでタイ
プの異なる連鋳機に適用でき、汎用性に富む。
(Effect of the Invention) According to the present invention, the change of the casting speed in continuous casting,
Accurate breakout prediction is possible without being affected by conditions such as changes in the molten metal surface, changes in mold powder components, temperature measurement depth, differences in target steel grades, casting size, etc. Therefore, the frequency of deceleration is extremely reduced, so there is no decrease in productivity. Also,
Since the number of setting parameters required for predictive judgment is small, it can be applied to continuous casters of different types and is highly versatile.

【図面の簡単な説明】 第1図は、連鋳鋳型の要部断面図、 第2図は、この発明を実施するのに用いて好適な予知シ
ステムの模式図、 第3図は、温度変化速度と、鋳型銅板温度、鋳造速度、
湯面変動量の関係を示したグラフである。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a sectional view of a main part of a continuous casting mold, FIG. 2 is a schematic view of a prediction system suitable for carrying out the present invention, and FIG. 3 is a temperature change. Speed, mold copper plate temperature, casting speed,
It is a graph showing the relationship of the level fluctuation level.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山中 啓充 千葉県千葉市川崎町1番地 川崎製鉄株式 会社千葉製鉄所内 (72)発明者 井口 弘明 千葉県千葉市川崎町1番地 川崎製鉄株式 会社千葉製鉄所内 (72)発明者 別所 永康 千葉県千葉市川崎町1番地 川崎製鉄株式 会社技術研究本部内 (56)参考文献 特開 昭63−115660(JP,A) 特開 昭61−46362(JP,A) 特開 昭57−115962(JP,A) ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Keisuke Yamanaka 1 Kawasaki-cho, Chiba-shi, Chiba Inside Kawasaki Steel Co., Ltd. (72) Inventor Hiroaki Iguchi 1-Kawasaki-cho, Chiba Chiba Kawasaki Inside the Steel Works (72) Inventor Bessho Nagayasu No. 1 Kawasaki Town, Chiba City, Chiba Prefecture Inside the Technical Research Division, Kawasaki Steel Co., Ltd. (56) References JP 63-115660 (JP, A) JP 61-46362 (JP, A) JP-A-57-115962 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】連鋳モールドを形成する鋳型銅板の内壁温
度を、メニスカス相当部より下方において鋳片引抜き方
向と交差する向きに所定間隔で一列に配置した3個以上
の測温素子群にて測定し、得られた測定値から各測温点
における温度変化速度と全測温点の平均温度変化速度と
の差を求め、この値が、予め設定した、鋳造速度・湯面
変動に依存しない温度変化速度設定値を超え、かつ各測
温点における温度変化速度の経時的な変動に伴う伝播パ
ターンが、予め把握してあるブレークアウト時の伝播パ
ターンと一致する場合に、ブレークアウトの危険性を回
避すべく操業条件の変更を行うことを特徴とする連続鋳
造方法。
1. The temperature of the inner wall of a copper plate for forming a continuous casting mold is determined by a group of three or more temperature-measuring elements arranged in a row at a predetermined interval in a direction below the portion corresponding to the meniscus and intersecting with the slab drawing direction. The difference between the temperature change rate at each temperature measurement point and the average temperature change rate at all temperature measurement points is calculated from the obtained measurement values, and this value does not depend on the preset casting speed and melt level fluctuations. Risk of breakout if the temperature change rate exceeds the set value and the propagation pattern due to the temporal change of the temperature change rate at each temperature measurement point matches the previously known propagation pattern at breakout. A continuous casting method, characterized in that the operating conditions are changed to avoid the above.
JP62299885A 1987-10-02 1987-11-30 Continuous casting method Expired - Lifetime JPH0771726B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP62299885A JPH0771726B2 (en) 1987-11-30 1987-11-30 Continuous casting method
US07/251,410 US4949777A (en) 1987-10-02 1988-09-29 Process of and apparatus for continuous casting with detection of possibility of break out
AU23317/88A AU625284B2 (en) 1987-10-02 1988-09-30 Process of continuous casting with detection of possibility of break out
BR8805056A BR8805056A (en) 1987-10-02 1988-09-30 PROCESS AND SYSTEM FOR DETECTING BREAK IN CONTINUOUS FOUNDATION; PROCEDURE AND APPLIANCE OF CONTINUOUS CASTING; AND DEVICE FOR MONITORING A TEMPERATURE OF A CASTING MOLD WALL
DE8888309107T DE3868578D1 (en) 1987-10-02 1988-09-30 CONTINUOUS METHOD WITH DETERMINATION OF POSSIBLE METAL BREAKTHROUGH.
EP88309107A EP0310420B1 (en) 1987-10-02 1988-09-30 Process of continuous casting with detection of possibility of break out
KR1019880012843A KR960003717B1 (en) 1987-10-02 1988-09-30 Process of and apparatus for continuous casting with detection of possibility of break-out
CA000584465A CA1328925C (en) 1987-11-30 1988-11-29 Process of continuous casting with detection of possibility of break out

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62299885A JPH0771726B2 (en) 1987-11-30 1987-11-30 Continuous casting method

Publications (2)

Publication Number Publication Date
JPH01143748A JPH01143748A (en) 1989-06-06
JPH0771726B2 true JPH0771726B2 (en) 1995-08-02

Family

ID=17878123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62299885A Expired - Lifetime JPH0771726B2 (en) 1987-10-02 1987-11-30 Continuous casting method

Country Status (2)

Country Link
JP (1) JPH0771726B2 (en)
CA (1) CA1328925C (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03138059A (en) * 1989-10-24 1991-06-12 Nippon Steel Corp Method for predicting constrained breakout in continuous casting
JPH0724927B2 (en) * 1990-11-13 1995-03-22 新日本製鐵株式会社 Constrained breakout prediction method for continuous casting
CA2663740C (en) 2006-10-02 2015-11-03 Alstom Technology Ltd. Method for passive determination of the operating temperature in a thermally highly loaded device, and apparatus for carrying out the method
JP2013052431A (en) * 2011-09-06 2013-03-21 Jfe Steel Corp Method for measuring temperature in mold for continuous casting
JP5906814B2 (en) * 2012-03-01 2016-04-20 Jfeスチール株式会社 Method and apparatus for predicting constraining breakout in continuous casting equipment
JP7469623B2 (en) * 2020-04-06 2024-04-17 日本製鉄株式会社 Detection method for defects in slab during continuous casting

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57115962A (en) * 1981-01-08 1982-07-19 Nippon Steel Corp Detection for abnormality of cast steel in continuous casting mold
JPH0229419B2 (en) * 1985-05-02 1990-06-29 Nippon Steel Corp RENZOKUCHUZOIGATANIOKERUCHUZOKONOHADANKENSHUTSUHOHO
JPH0790343B2 (en) * 1986-10-31 1995-10-04 住友金属工業株式会社 Breakout prediction method in continuous casting

Also Published As

Publication number Publication date
CA1328925C (en) 1994-04-26
JPH01143748A (en) 1989-06-06

Similar Documents

Publication Publication Date Title
JP2609476B2 (en) Method and apparatus for detecting blowing in continuous casting
JPH0771726B2 (en) Continuous casting method
KR101477117B1 (en) Method for preventing breakout in continuous casting
JP4105839B2 (en) In-mold casting abnormality detection method in continuous casting
JP7115240B2 (en) Breakout prediction method in continuous casting
JPH01210160A (en) Method for predicting longitudinal crack in continuous casting
JPH0790343B2 (en) Breakout prediction method in continuous casting
JP3000305B2 (en) Method for estimating surface defects of slab slab
JP4828366B2 (en) Longitudinal detection method and continuous casting method based on mold heat flux
JPH02151356A (en) Detection of surface fault on cast slab on-line
JPH0957413A (en) Method for preventing cracking and breakout of cast slab in continuous casting
JPH0929407A (en) Continuous caster
JPH0556224B2 (en)
JPH0575503B2 (en)
JPS61176456A (en) Predict method of breakout caused by entrainment of inclusion
JPS6044163A (en) Method for predicting breakout in continuous casting
JP2013180317A (en) Method and apparatus for predicting restrictive breakout in continuous casting equipment
WO2024070088A1 (en) Casting mold, control equipment, and continuous casting method for steel
JP2895603B2 (en) Surface defect judgment method for continuous cast slab
JP3093586B2 (en) Vertical crack detection method for continuous cast slab
JPH0575502B2 (en)
JPS62192243A (en) Detection of casting slab longitudinal cracking in continuous casting
JP3062723B2 (en) Measurement method of slab surface dent shape due to solidification shrinkage in mold
JPH0437458A (en) Method for predicting breakout of continuous casting mold
JP2022124069A (en) Method for estimating thickness of solidification shell and method for continuous casting of molten metal

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080802

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080802

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080802

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080802

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080802

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080802

Year of fee payment: 13