JPH0790343B2 - Breakout prediction method in continuous casting - Google Patents

Breakout prediction method in continuous casting

Info

Publication number
JPH0790343B2
JPH0790343B2 JP61261666A JP26166686A JPH0790343B2 JP H0790343 B2 JPH0790343 B2 JP H0790343B2 JP 61261666 A JP61261666 A JP 61261666A JP 26166686 A JP26166686 A JP 26166686A JP H0790343 B2 JPH0790343 B2 JP H0790343B2
Authority
JP
Japan
Prior art keywords
mold
temperature
breakout
continuous casting
difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61261666A
Other languages
Japanese (ja)
Other versions
JPS63115660A (en
Inventor
将敏 徳田
雅巳 中村
豊継 津田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP61261666A priority Critical patent/JPH0790343B2/en
Publication of JPS63115660A publication Critical patent/JPS63115660A/en
Publication of JPH0790343B2 publication Critical patent/JPH0790343B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、連続鋳造鋳型の温度変化を利用して鋳造中に
発生するブレークアウトを予知する方法に関する。
Description: TECHNICAL FIELD The present invention relates to a method for predicting a breakout occurring during casting by utilizing temperature change of a continuous casting mold.

〔従来技術〕[Prior art]

連続鋳造設備においてブレークアウトが発生し、鋳片内
部の未凝固溶鋼が漏出した場合は、鋳造を停止してブレ
ークアウトを起こした鋳片の排出及び溶鋼が付着したロ
ール等の設備の交換をする必要があり、相当の期間に亘
って操業の停止を余儀なくされる。このため、ブレーク
アウトは連続鋳造の操業トラブルの中で最大のものであ
り、その防止対策の確立が望まれていた。
If breakout occurs in continuous casting equipment and unsolidified molten steel leaks inside the slab, stop casting and discharge the slab that has broken out and replace equipment such as rolls with molten steel It is necessary, and the operation must be stopped for a considerable period of time. For this reason, breakout is the largest of the operational problems in continuous casting, and it has been desired to establish preventive measures against it.

ところで、引抜かれている鋳片の凝固殻が鋳型に固着し
て破断し、そこから溶鋼が漏出してこれが充分に冷却さ
れる前に鋳型下端より出ることにより、所謂拘束性ブレ
ークアウトが発生する場合は、凝固殻の破断部が通過す
る鋳型部分では破断部の通過前に徐々に鋳型温度が上昇
し、破断部の通過後に徐々に降下することが知られてい
る。
By the way, the solidified shell of the cast slab being pulled out adheres to the mold and ruptures, and the molten steel leaks from the slab and exits from the lower end of the mold before it is sufficiently cooled, causing a so-called restrained breakout. In this case, it is known that in the mold portion where the fractured portion of the solidified shell passes, the mold temperature gradually rises before passing through the fractured portion and gradually drops after passing through the fractured portion.

このため、鋳型の銅板に熱電対等の測温素子を埋設して
これにて鋳型銅板の温度(以下これを鋳型温度という)
を測定し、測定した鋳型温度の単位時間当たりの変化率
を求めてその値と基準値との大小を監視することにより
(特開昭57−115962号)、ブレークアウトの予知は一応
可能である。
For this reason, a temperature measuring element such as a thermocouple is embedded in the copper plate of the mold and the temperature of the copper plate of the mold (hereinafter referred to as the mold temperature)
It is possible to predict the breakout by measuring the change rate of the measured mold temperature per unit time and monitoring the difference between the measured value and the reference value (JP-A-57-115962). .

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

しかしながら、鋳型温度は連続鋳造時、常に安定してい
るとは限らず、鋳型内の湯面変動,引抜素度の大小,鋳
型内に投入した潤滑用パウダの不均一流入及び鋳型と鋳
片との接触面積の大小等の原因により変化する。
However, the mold temperature is not always stable during continuous casting, and fluctuations in the molten metal level in the mold, the magnitude of the drawing elementary degree, the non-uniform inflow of the lubricating powder introduced into the mold, and the mold and the slab. It changes depending on the size of the contact area.

このため、従来方法による場合には凝固殻の破断が実際
には発生していないときにもブレークアウトと予知する
頻度が高く、信頼制に欠ける。またブレークアウトを予
知すると、一般に引抜きを停止するか或いは引抜速度を
相当遅くするため操業安定性が悪く、鋳片品質が低下す
る。
Therefore, in the case of the conventional method, the breakout of the solidified shell is frequently predicted even when the breakage of the solidified shell does not actually occur, and the reliability is lacking. If a breakout is predicted, the drawing is generally stopped or the drawing speed is considerably slowed, so that the operation stability is poor and the quality of the slab is deteriorated.

本発明は懸かる事情に鑑みてなされたものであり、高精
度でブレークアウトを予知できる方法を提供することを
目的とする。
The present invention has been made in view of the circumstances, and an object of the present invention is to provide a method capable of predicting a breakout with high accuracy.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、2位置で鋳型温度を測定してその温度差を求
め、その温度差の単位時間当たりの変化率を算出してそ
の算出値と基準値との大小比較により、ブレークアウト
を予知する。
The present invention predicts a breakout by measuring the mold temperature at two positions, calculating the temperature difference, calculating the rate of change of the temperature difference per unit time, and comparing the calculated value with a reference value. .

即ち、本発明に係る連続鋳造におけるブレークアウト予
知方法は、連続鋳造用鋳型の2位置での鋳型温度を測定
し、その2測定鋳型温度差を求めてその単位時間当たり
の変化率を算出し、その算出値と基準値との大小比較に
よりブレークアウトを予知することを特徴とする。
That is, the breakout predicting method in continuous casting according to the present invention measures the mold temperature at two positions of the continuous casting mold, calculates the difference between the two measured mold temperatures, and calculates the rate of change per unit time, The feature is that the breakout is predicted by comparing the calculated value with the reference value.

〔作用〕[Action]

本発明にあっては、凝固殻破断部の通過の際、一方の鋳
型温度が一旦上昇した後、降下するときに他方の鋳型温
度が上昇するので、両鋳型温度の差の単位時間当たりの
変化率が夫々の鋳型温度のよれよりも大きくなる。ま
た、パウダの不均一流入等の原因による温度変化が生じ
た場合には、凝固殻破断の場合における破断部の鋳型へ
の固着による移動速度低下が起こらず、同一鋳片部分を
測温する時間差が小さいので両鋳型温度差は緩やかに変
化する。このため、ブレークアウトを精度よく予知でき
る。
In the present invention, when one mold temperature rises once when passing through the solidified shell rupture portion, and when the other mold temperature rises, the other mold temperature rises, so a change in the difference between both mold temperatures per unit time. The rate will be greater than each mold temperature drift. Also, when a temperature change occurs due to non-uniform inflow of powder, the moving speed does not decrease due to sticking of the fractured part to the mold in the case of solidified shell fracture, and the time difference for measuring the temperature of the same ingot part Is small, the temperature difference between the two molds changes gently. Therefore, the breakout can be accurately predicted.

〔実施例〕〔Example〕

以下本発明を図面に基づき具体的に説明する。第1図は
本発明の実施状態を示す模式図であり、図示しないタン
ディッシュに収納された溶鋼等の溶融金属1はその下に
取付けられた浸漬ノズル2を経て一定周期で上下振動し
ている鋳型3へ装入される。鋳型3内の溶融金属1は、
潤滑用の投入パウダ6が鋳型3の内壁に沿って流れ込ん
で形成されたパウダ膜を介して一次冷却されて凝固殻5
を形成し、これを周壁とする鋳片4は図示しないピンチ
ロールにより下方へ引抜かれていく。
The present invention will be specifically described below with reference to the drawings. FIG. 1 is a schematic diagram showing an embodiment of the present invention, in which a molten metal 1 such as molten steel stored in a tundish (not shown) vibrates up and down at a constant cycle through a submerged nozzle 2 attached below the molten metal 1. It is loaded into the mold 3. The molten metal 1 in the mold 3 is
The input powder 6 for lubrication flows along the inner wall of the mold 3 and is primarily cooled through the powder film formed to solidify the solidified shell 5.
The cast slab 4 which forms the wall and is used as a peripheral wall is pulled downward by a pinch roll (not shown).

鋳型3の湯面レベルよりも下には引抜方向(矢符方向)
に沿って2箇所に熱電対等の測温素子11,12の先端が埋
設されており、各測温素子11,12にて測定された鋳型温
度TU,TLの夫々A/D変換器13にてアナログ/ディジタル変
換されて減算器14へ与えられる。上記測温素子11,12の
埋設位置については、パウダの不均一流入,湯面変動に
よる影響を軽減すべく湯面レベルの下方50mmより下の位
置が好ましい。
Below the surface level of mold 3, there is a drawing direction (arrow direction).
The tips of the temperature measuring elements 11 and 12 such as thermocouples are embedded in two locations along the A / D converter 13 for the mold temperatures T U and T L measured by the temperature measuring elements 11 and 12, respectively. Is analog-to-digital converted at and is given to the subtractor 14. The buried positions of the temperature measuring elements 11 and 12 are preferably below 50 mm below the molten metal level in order to reduce the effects of uneven flow of powder and fluctuations in the molten metal level.

減算器14はA/D変換器13からの2つの入力信号を、例え
ば0.5秒乃至1秒の所定ピッチ(Δt)で取込む。この
取込み信号については、鋳型3の周りに設ける電磁撹拌
装置等による雑音の影響を除去すべく、A/D変換器13か
ら例えば数10ミリ秒ピッチで出力される信号の複数個分
の平均値を用いる。
The subtractor 14 takes in the two input signals from the A / D converter 13 at a predetermined pitch (Δt) of 0.5 second to 1 second, for example. About this acquisition signal, in order to remove the influence of noise due to the electromagnetic stirring device provided around the mold 3, the average value of a plurality of signals output from the A / D converter 13 at a pitch of, for example, several tens of milliseconds. To use.

そして減算器14は取込んだ2つの鋳型温度TUとTLとの差
ΔT(=TL−TU)を求め、これを記憶すると共に最新の
記憶信号とそれより前の連続4ピッチ分の記憶信号、つ
まり合計5ピッチ分の記憶信号を微分回路15へ与える。
Then, the subtractor 14 obtains a difference ΔT (= T L −T U ) between the two taken-in mold temperatures T U and T L, and stores the difference ΔT (= T L −T U ), and stores the latest memory signal and four consecutive pitches before that. The memory signal of, that is, the memory signals for a total of 5 pitches are given to the differentiating circuit 15.

微分回路15には、5ピッチ分の信号の中間時点、つまり
取込みピッチが0.5秒の場合には現測定時点よりも1秒
前の時点における鋳型温度差(ΔT)の単位時間当たり
の変化率d(ΔT)/dtを求めるべく、公知の下記
(1)式が設定されている。
In the differentiating circuit 15, the rate of change d of the mold temperature difference (ΔT) per unit time at the intermediate point of the signals for 5 pitches, that is, at the point of 1 second before the current measurement point when the capture pitch is 0.5 seconds. In order to obtain (ΔT) / dt, the following known formula (1) is set.

d(ΔT)/dt=2{TL(2)−TU(2)}/dt =1/(12・Δt)・〔{TL(4)−TU(4)} −8{TL(3)−TU(3)} +8{TL(1)−TU(1)} −{TL(0)−TU(0)}〕 …(1) 但し、TL(0)−TU(0)},TL(1)−TU(1),…,
TL(4)−TU(4):現測定時点よりこれを含めて連続
5ピッチ分夫々のTLとTUとの差 微分回路15は(1)式に基づいて算出したd(ΔT)/d
tを比較器16へ与える。
d (ΔT) / dt = 2 {T L (2) −T U (2)} / dt = 1 / (12 · Δt) · [{T L (4) −T U (4)} − 8 {T L (3) -T U (3)} +8 {T L (1) -T U (1)}-{T L (0) -T U (0)}] (1) where T L (0 ) -T U (0)}, T L (1) -T U (1), ...,
T L (4) -T U (4): Difference between T L and T U for five consecutive pitches including this from the current measurement time. Differentiating circuit 15 calculates d (ΔT) based on equation (1). ) / D
The t is supplied to the comparator 16.

なお、d(ΔT)/dtは、上記(1)式に替えて微分係
数の算出式一般を用いて算出してもよいことは勿論であ
る。
It is needless to say that d (ΔT) / dt may be calculated using a general differential coefficient calculation formula instead of the above formula (1).

比較器16には下記(2)式が設定されており、比較器16
は入力したd(ΔT)/dtに関する信号が(2)式を満
足する場合には警報器17にて警報を発せしめると共に、
図示しない制御装置へ異常発生信号を出力する。
The following equation (2) is set in the comparator 16, and the comparator 16
When the input signal relating to d (ΔT) / dt satisfies the equation (2), the alarm device 17 issues an alarm and
An abnormality occurrence signal is output to a control device (not shown).

d(ΔT)/dt>K …(2) 但し、K:正の定数 上記制御装置(図示せず)は異常発生信号を入力する
と、浸漬ノズル2の中途に設けたスライディングノズル
部7を油圧シリンダ8にて駆動して、浸漬ノズル2を一
旦閉じると共に図示しないピンチロールの回転を停止す
る。これについては浸漬ノズル2を僅かに開けた状態に
すると共に引抜速度を相当低下させるようにしてもよ
い。
d (ΔT) / dt> K (2) However, K: Positive constant When the above-mentioned control device (not shown) inputs an abnormality occurrence signal, the sliding nozzle portion 7 provided in the middle of the immersion nozzle 2 is moved to the hydraulic cylinder. By driving at 8, the immersion nozzle 2 is once closed and the rotation of a pinch roll (not shown) is stopped. For this, the immersion nozzle 2 may be slightly opened and the drawing speed may be reduced considerably.

このような装置を用いる本発明は、上下鋳型温度差が次
のようになるのでブレークアウトを高精度で予知でき
る。以下これを説明する。
In the present invention using such a device, the temperature difference between the upper and lower molds is as follows, so that breakout can be predicted with high accuracy. This will be described below.

第2図は横軸に時間をとり、縦軸に鋳型温度をとって、
凝固殻破断部が下方へ移動する場合における上,下2位
置夫々での鋳型温度の推移を示した図であり、実線は上
側の鋳型温度を、破線は下側の鋳型温度を夫々示す。こ
の図より理解される如く、凝固殻破断部が通過すること
により温度変化が生じる時点が上,下2位置でずれる。
In Fig. 2, the horizontal axis represents time and the vertical axis represents mold temperature.
It is the figure which showed the transition of the mold temperature in each of upper and lower two positions when a solidified shell fracture | rupture part moves below, and a solid line shows an upper mold temperature, and a broken line shows a lower mold temperature, respectively. As can be seen from this figure, the time point at which the temperature change occurs due to the passage of the solidified shell rupture portion shifts between the upper and lower positions.

従って、第3図に示す如く遅れて上昇するTLを、その上
昇時に下降するTUにて減算した温度差(一点鎖線)は、
TU,TLの温度上昇時の変化率dT/dt(第2図参照)よりも
その温度上昇時の変化量d(ΔT)/dtが著しく大きく
なる。このとき、d(ΔT)/dtは正の値である。
Therefore, the temperature difference of T L, by subtracting at T U descending at the time of rise increases with a delay as shown in FIG. 3 (dashed line), the
The change amount d (ΔT) / dt when the temperature rises is significantly larger than the rate of change dT / dt (see FIG. 2) when T U and T L rises. At this time, d (ΔT) / dt is a positive value.

このため、本発明にあっては(1)式によりd(ΔT)
/dtを算出し、ブレークアウトを高精度で予知できるよ
うに経験的に定めたしきい値たる前記定数Kと算出値と
が前記(2)式を満足するか否かを判定することによ
り、より高精度にブレークアウトを予知できる。前記K
の値は測温素子の鋳型位置,埋設深さ,連続鋳造の操業
条件等により異なるが、1.5乃至15(℃/秒)程度が適
当である。
Therefore, in the present invention, d (ΔT) is calculated by the equation (1).
By calculating / dt and determining whether or not the constant K and the calculated value, which are empirically determined threshold values so as to predict breakout with high accuracy, satisfy the above equation (2), Breakout can be predicted with higher accuracy. K
The value of is different depending on the mold position of the temperature measuring element, the burial depth, the operating conditions of continuous casting, etc., but a value of 1.5 to 15 (° C / sec) is suitable.

また、拘束性ブレークアウトが発生した場合、凝固殻破
断部の鋳型内での降下速度がピンチロールによる引抜速
度よりも著しく低下することが知られており、上述のよ
うな温度差を得ることが可能である。しかしながら、前
述のパウダの不均一流入等の原因による温度変化が生じ
ても温度変化部分の降下速度は引抜速度と同一であり、
上,下の測温素子にて検出される鋳型温度TU,TLの推移
は第4図(a)に示すように時間差が小さくなって第4
図(b)に示す如く鋳型温度差ΔTも小さくなり、この
ためその鋳型温度差の微分値は著しく小さい値となる。
Further, it is known that when a constrained breakout occurs, the descending speed of the solidified shell rupture portion in the mold is significantly lower than the drawing speed by the pinch roll, and it is possible to obtain the temperature difference as described above. It is possible. However, even if the temperature changes due to the above-mentioned uneven flow of powder, the descending speed of the temperature changing portion is the same as the drawing speed,
As shown in Fig. 4 (a), the mold temperatures T U and T L detected by the upper and lower temperature-measuring elements have a small time difference
As shown in FIG. 6B, the mold temperature difference ΔT is also small, and therefore the differential value of the mold temperature difference is extremely small.

このように、本発明による場合には、ブレークアウトの
原因である凝固殻破断が発生した場合の鋳型温度変化の
挙動を考慮しており、パウダの不均一流入等の原因によ
る温度変化が生じても、それを誤って予知することな
く、凝固殻破断のみを正確に検出でき、検出精度に優れ
る。
As described above, in the case of the present invention, the behavior of the mold temperature change when the solidified shell rupture, which is the cause of the breakout, is taken into consideration, and the temperature change caused by the uneven flow of the powder occurs. Also, it is possible to accurately detect only the solidified shell rupture without falsely predicting it, and it is excellent in detection accuracy.

なお、上記実施例では(TL−TU)の微分値がK(>0)
よりも大きい場合にブレークアウトと予知するようにし
ているが、本発明はこれに限らず、(TU−TL)の微分値
を算出してその算出値が−Kよりも小さい場合にブレー
クアウトと予知するようにしても実施できる。
In the above embodiment, the differential value of (T L −T U ) is K (> 0).
The break-out is predicted when the value is larger than the above, but the present invention is not limited to this, and when the differential value of (T U −T L ) is calculated and the calculated value is smaller than −K, the break-out occurs. It can be implemented even if it is predicted to be out.

また、上記実施例では2個の測温素子の位置を引抜方向
に離隔して鋳型に設けているが、本発明はこれに限らず
測温素子を鋳型の幅方向又は厚み方向に離隔して設置し
ても実施できる。即ち、拘束性ブレークアウトの場合に
は凝固殻破断が生じるとそこから溶鋼が漏出して鋳型に
固着する。その状態でもピンチロールにより鋳片が引抜
かれるため、固着した凝固殻部分の鋳片の幅方向又は厚
み方向側に新な破断部が生じる。このため、測温素子を
鋳片幅方向又は厚み方向に離隔して或いはそれらの方向
と引抜方向とを夫々有する斜め方向に離隔して設置して
も本発明によりブレークアウトを高精度で予知できる。
Further, in the above-mentioned embodiment, the two temperature measuring elements are provided in the mold with the positions separated in the drawing direction, but the present invention is not limited to this, and the temperature measuring elements are separated in the width direction or the thickness direction of the mold. It can be implemented even if installed. That is, in the case of restraint breakout, when solidified shell rupture occurs, molten steel leaks from the rupture and sticks to the mold. Even in this state, the slab is pulled out by the pinch rolls, so that a new fractured part is formed in the width direction or the thickness direction side of the slab of the solidified shell portion that is fixed. Therefore, the breakout can be predicted with high accuracy according to the present invention even if the temperature measuring elements are installed in the slab width direction or the thickness direction in a separated manner or in an oblique direction in which the direction and the drawing direction are respectively provided. .

更に、上記説明では上下方向,幅方向,厚み方向に離隔
して2個の測温素子を設置しているが、本発明はこれに
限らず鋳型に予め多数の測温素子を設置しておき、使用
する2個の測温素子を任意に選択してそれらにて測定し
た鋳型温度を用いるようにしてもよい。
Furthermore, in the above description, two temperature measuring elements are installed separately in the vertical direction, the width direction, and the thickness direction, but the present invention is not limited to this, and a large number of temperature measuring elements are installed in advance in the mold. Alternatively, the two temperature measuring elements to be used may be arbitrarily selected and the mold temperature measured by them may be used.

但し、下側の測温素子(同高さ位置の場合もある)を設
置する位置については、前述の如く湯面レベルの下方50
mmより下の位置とすることは勿論、ブレークアウトを予
知したのち引抜速度等の操業条件を変更しても、実際に
ブレークアウトの発生を防止できる時間的に余裕がある
位置、つまり下側の測温素子から鋳型下端まで強固殻破
断部が降下する時間が操業条件の変更に要する時間より
も長くなるような位置に定める。
However, regarding the position where the lower temperature measuring element (which may be at the same height position) is installed, as described above
Not only the position below mm, but even if you predict the breakout and then change the operating conditions such as the withdrawal speed, you can actually prevent the breakout from occurring. The position where the broken portion of the strong shell falls from the temperature measuring element to the bottom of the mold is longer than the time required to change the operating conditions.

〔効果〕〔effect〕

従来方法による場合には、誤警報を発する頻度が高く、
全警報回数のうちの凝固殻破断に基づく警報の回数の比
率にて表わす警報的中率が約40%と低かった。これに対
して本発明による場合には警報的中率が約80%と倍に向
上した。
When using the conventional method, the frequency of false alarms is high,
The warning predictive value, which is a ratio of the number of warnings based on solidified shell rupture to the total number of warnings, was low at about 40%. On the other hand, in the case of the present invention, the warning hit rate is doubled to about 80%.

以上詳述した如く、本発明による場合は、連続鋳造用鋳
型の2位置での鋳型温度を測定し、その2測定鋳型温度
差を求めてその単位時間当たりの変化率を算出し、その
算出値と基準値との大小比較によりブレークアウトを予
知するので、高精度な予知が可能であり、これにより引
抜停止又は引抜速度の低下を行う回数を減少でき、低品
質鋳片の発生を抑制でき、歩留,生産性の向上を図れる
等、本発明は優れた効果を奏する。
As described above in detail, in the case of the present invention, the mold temperature at two positions of the continuous casting mold is measured, the difference between the two measured mold temperatures is calculated, and the rate of change per unit time is calculated. Since the breakout is predicted by comparing the magnitude with the reference value, it is possible to predict with high accuracy, which can reduce the number of times of stopping drawing or lowering the drawing speed, and suppressing the occurrence of low quality cast pieces, The present invention has excellent effects such as improvement in yield and productivity.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の実施状態を示す模式図、第2図は上下
鋳型温度夫々の推移を示す図、第3図は本発明によるブ
レークアウトの予知原理の説明図、第4図はパウダ不均
一流入等により鋳型温度が変化する場合の上,下鋳型温
度の推移とその鋳型温度差を示す図である。 3……鋳型、5……凝固殻、11,12……測温素子 14……減算器、15……微分回路、16……比較器
FIG. 1 is a schematic diagram showing an embodiment of the present invention, FIG. 2 is a diagram showing changes in upper and lower mold temperatures, FIG. 3 is an explanatory diagram of a breakout prediction principle according to the present invention, and FIG. It is a figure which shows the transition of the upper and lower mold temperature and the mold temperature difference when a mold temperature changes by uniform inflow etc. 3 ... Mold, 5 ... Solidification shell, 11, 12 ... Temperature measuring element 14 ... Subtractor, 15 ... Differentiation circuit, 16 ... Comparator

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭60−61151(JP,A) 特開 昭61−46362(JP,A) 特公 昭63−47545(JP,B2) ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP-A-60-61151 (JP, A) JP-A-61-46362 (JP, A) JP-B-63-47545 (JP, B2)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】連続鋳造用鋳型の2位置での鋳型温度を測
定し、その2測定鋳型温度差を求めてその単位時間当た
りの変化率を算出し、その算出値と基準値との大小比較
によりブレークアウトを予知することを特徴とする連続
鋳造におけるブレークアウト予知方法。
1. A mold temperature at two positions of a continuous casting mold is measured, a difference between the two measured mold temperatures is calculated to calculate a rate of change per unit time, and the calculated value is compared with a reference value. A breakout prediction method in continuous casting, which is characterized by predicting a breakout.
JP61261666A 1986-10-31 1986-10-31 Breakout prediction method in continuous casting Expired - Lifetime JPH0790343B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61261666A JPH0790343B2 (en) 1986-10-31 1986-10-31 Breakout prediction method in continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61261666A JPH0790343B2 (en) 1986-10-31 1986-10-31 Breakout prediction method in continuous casting

Publications (2)

Publication Number Publication Date
JPS63115660A JPS63115660A (en) 1988-05-20
JPH0790343B2 true JPH0790343B2 (en) 1995-10-04

Family

ID=17365063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61261666A Expired - Lifetime JPH0790343B2 (en) 1986-10-31 1986-10-31 Breakout prediction method in continuous casting

Country Status (1)

Country Link
JP (1) JPH0790343B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0771726B2 (en) * 1987-11-30 1995-08-02 川崎製鉄株式会社 Continuous casting method
JP2591913Y2 (en) * 1991-12-13 1999-03-10 日本精工株式会社 Ball screw device
JP5154997B2 (en) * 2008-03-31 2013-02-27 Jfeスチール株式会社 Breakout prediction method in continuous casting.
JP5593801B2 (en) * 2010-04-15 2014-09-24 新日鐵住金株式会社 Breakout prediction method for continuous casting
JP6079670B2 (en) * 2014-03-05 2017-02-15 Jfeスチール株式会社 Breakout prediction method in continuous casting equipment.
JP6284051B2 (en) * 2016-02-25 2018-02-28 横河電機株式会社 Optical fiber temperature distribution measuring system and optical fiber temperature distribution measuring method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2459799A1 (en) * 1979-06-22 1981-01-16 Synthelabo SYNTHESIS OF () -VINCAMINE
JPS57115962A (en) * 1981-01-08 1982-07-19 Nippon Steel Corp Detection for abnormality of cast steel in continuous casting mold

Also Published As

Publication number Publication date
JPS63115660A (en) 1988-05-20

Similar Documents

Publication Publication Date Title
JP3386051B2 (en) Method for estimating flow pattern of molten steel in continuous casting, temperature measuring device for mold copper plate, method for determining surface defects of continuous cast slab, method for detecting molten steel flow, method for evaluating non-uniformity of heat removal in mold, method for controlling molten steel flow, Quality control method in continuous casting, continuous casting method of steel, estimation method of molten steel flow velocity
JPH02280951A (en) Method for detecting blowoff in continuous casting and apparatus therefor
US9709515B2 (en) Device and method for diagnosing cracks in a solidified shell in a mold
KR101477117B1 (en) Method for preventing breakout in continuous casting
JPS6353903B2 (en)
JPH0790343B2 (en) Breakout prediction method in continuous casting
JPH01210160A (en) Method for predicting longitudinal crack in continuous casting
KR101267347B1 (en) Device for monitoring crack using frictional force in mold and method therefor
KR101204955B1 (en) Apparatus for monitoring frictional force in mold and method therefor
JP6079670B2 (en) Breakout prediction method in continuous casting equipment.
JP3188148B2 (en) Continuous casting machine
JP2668872B2 (en) Breakout prediction method in continuous casting.
JPH0556224B2 (en)
JPS5929353B2 (en) Breakout prediction method
KR101204943B1 (en) Defect diagnosis device of coating layer on mold and method thereof
JPH0556222B2 (en)
KR100928775B1 (en) A predicting device of the main polarization stage in the performance process by measurement of mold vibration and frictional force
JPH03180261A (en) Method for predicting breakout
JPS63203260A (en) Method for predicting breakout in continuous casting
JPH0126791B2 (en)
JP2914817B2 (en) Missing casting method in continuous casting
JPS63104766A (en) Predicting method for breakout in continuous casting
JP2017024047A (en) Method and apparatus for prediction of restrictive breakout
JP2004276050A (en) Method for starting continuous casting
JPS6138763A (en) Method for predicting breakout in continuous casting