JPS63115660A - Predicting method for breakout in continuous casting - Google Patents

Predicting method for breakout in continuous casting

Info

Publication number
JPS63115660A
JPS63115660A JP26166686A JP26166686A JPS63115660A JP S63115660 A JPS63115660 A JP S63115660A JP 26166686 A JP26166686 A JP 26166686A JP 26166686 A JP26166686 A JP 26166686A JP S63115660 A JPS63115660 A JP S63115660A
Authority
JP
Japan
Prior art keywords
mold
breakout
temperature
difference
continuous casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26166686A
Other languages
Japanese (ja)
Other versions
JPH0790343B2 (en
Inventor
Masatoshi Tokuda
徳田 将敏
Masami Nakamura
雅巳 中村
Toyotsugu Tsuda
津田 豊継
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP61261666A priority Critical patent/JPH0790343B2/en
Publication of JPS63115660A publication Critical patent/JPS63115660A/en
Publication of JPH0790343B2 publication Critical patent/JPH0790343B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE:To restrain the generation of cast slab having low quality and to improve the yield and the productivity by measuring mold temps. at two positions in the mold for continuous casting, calculating the changing ratio per unit time by finding the temp. difference and predicting the breakout by comparing a calculated value with a standard value. CONSTITUTION:The ends of temp. sensing elements 11, 12 are buried at two points along drawing direction at lower position than the molten surface in the mold 3. And, the mold temps. TU, TL measured by each element 11, 12 are converted to A/D by a converter 13 and inputted into a subtracter 14. The subtracter 14 finds the difference T(=TL-TU) of the mold temps. TU, TL and also stores, and the newest stored signal and the stored signals of four pitches before it are inputted into a differentiation circuit 15. The differentiation circuit 15 finds the changing ratio d( T)/dt per unit time for the temp. difference T of mold at the intermediate time in the stored signals, and inputs to a comparator 16. In the comparator 16, the standard value d( T)/dt>K (providing K=positive constant) is set, and in case of satisfying this, the breakout is predicted at high accuracy.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、連続鋳造鋳型の温度変化を利用して鋳造中に
発生するブレークアウトを予知する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for predicting breakouts occurring during casting by utilizing temperature changes in a continuous casting mold.

〔従来技術〕[Prior art]

連続鋳造設備においてブレークアウトが発生し、鋳片内
部の未凝固溶鋼が漏出した場合は、鋳造を停止してブレ
ークアウトを起こした鋳片の排出及び溶鋼が付着したロ
ール等の設備の交換をする必要があり、相当の期間に亘
って操業の停止を余儀なくされる。このため、ブレーク
アウトは連続鋳造の操業トラブルの中で最大のものであ
り、その防止対策の確立が望まれていた。
If a breakout occurs in continuous casting equipment and unsolidified molten steel inside the slab leaks, stop casting, drain the slab that has caused the breakout, and replace equipment such as rolls to which the molten steel has adhered. necessary, and will be forced to suspend operations for a considerable period of time. For this reason, breakout is the biggest operational trouble in continuous casting, and it has been desired to establish measures to prevent it.

ところで、引抜かれている鋳片の凝固殻が鋳型に固着し
て破断し、そこから溶鋼が漏出してこれが充分に冷却さ
れる前に鋳型下端より出ることにより、所謂拘束性ブレ
ークアウトが発生する場合は、凝固殻の破断部が通過す
る鋳型部分では破断部の通過前に徐々に鋳型温度が上昇
し、破断部の通過後に徐々に降下することが知られてい
る。
By the way, the solidified shell of the slab that is being drawn sticks to the mold and breaks, and molten steel leaks out from the bottom of the mold before it is sufficiently cooled, resulting in what is called a restraining breakout. In this case, it is known that the temperature of the mold gradually increases in the part of the mold through which the broken part of the solidified shell passes before passing the broken part, and gradually decreases after passing the broken part.

このため、鋳型の銅板に熱電対等の測温素子を埋設して
これにて鋳型銅板の温度(以下これを鋳型温度という)
を測定し、測定した鋳型温度の単位時間当たりの変化、
率を求めてその値と基準値との大小を監視することによ
り(特開昭57−115962号)、ブレークアウトの
予知は一応可能である。
For this reason, temperature measuring elements such as thermocouples are embedded in the copper plate of the mold to measure the temperature of the copper plate of the mold (hereinafter referred to as mold temperature).
and the change in the measured mold temperature per unit time,
It is possible to predict a breakout by determining the ratio and monitoring the magnitude of that value and a reference value (Japanese Patent Laid-Open No. 115962/1983).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、鋳型温度は連続鋳造時、常に安定してい
るとは限らず、鋳型内の場面変動、引抜速度の大小、鋳
型内に投入した潤滑用パウダの不均一流入及び鋳型と鋳
片との接触面積の大小等の原因により変化する。
However, the mold temperature is not always stable during continuous casting, and there are fluctuations in the scene inside the mold, large and small drawing speeds, uneven inflow of lubricating powder into the mold, and contact between the mold and slab. It varies depending on factors such as the size of the area.

このため、従来方法による場合には凝固殻の破断が実際
には発生していないときにもブレークアウトと予知する
頻度が高く、信頼性に欠ける。またブレークアウトを予
知すると、一般に引抜きを停止するか或いは引抜速度を
相・当遅くするため操業安定性が悪く、鋳片品質が低下
する。
For this reason, when using the conventional method, breakout is often predicted even when no breakage of the solidified shell has actually occurred, resulting in a lack of reliability. Furthermore, if a breakout is predicted, the drawing process is generally stopped or the drawing speed is slowed considerably, resulting in poor operational stability and deterioration in slab quality.

本発明は懸かる事情に鑑みてなされたものであり、高精
度でブレークアウトを予知できる方法を提供することを
目的とする。
The present invention has been made in view of these circumstances, and it is an object of the present invention to provide a method that can predict breakout with high accuracy.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、2位置で鋳型温度を測定してその温度差を求
め、その温度差の単位時間当たりの変化率を算出してそ
の算出値と基準値との大小比較により、ブレークアウト
を予知する。
The present invention measures the mold temperature at two positions to determine the temperature difference, calculates the rate of change of the temperature difference per unit time, and predicts a breakout by comparing the calculated value with a reference value. .

即ち、本発明に係る連続鋳造におけるブレークアウト予
知方法は、連続鋳造用鋳型の2位置での鋳型温度を測定
し、その2測定鋳型温度差を求めてその単位時間当たり
の変化率を算出し、その算出値と基準値との大小比較に
よりブレークアウトを予知することを特徴とする。
That is, the breakout prediction method in continuous casting according to the present invention measures the mold temperature at two positions of the continuous casting mold, calculates the difference in the two measured mold temperatures, and calculates the rate of change per unit time, It is characterized by predicting a breakout by comparing the calculated value with a reference value.

〔作用〕[Effect]

本発明にあっては、凝固殻破断部の通過の際、一方の鋳
型温度が一旦上昇した後、降下するときに他方の鋳型温
度が上昇するので、両鋳型温度の差の単位時間当たりの
変化率が夫々の鋳型温度のそれよりも大きくなる。また
、パウダの不均一流入等の原因による温度変化が生じた
場合には、凝固殻破断の場合における破断部の鋳型への
固着による移動速度低下が起こらず、同一鋳片部分を測
温する時間差が小さいので両鋳型温度差は緩やかに変化
する。このため、ブレークアウトを精度よく予知できる
In the present invention, when passing through the solidified shell fracture part, the temperature of one mold rises once, and then when it falls, the temperature of the other mold rises, so the change in the difference in the temperature of both molds per unit time The ratio is greater than that of the respective mold temperature. In addition, when temperature changes occur due to uneven inflow of powder, etc., the movement speed does not decrease due to the broken part sticking to the mold in the case of solidified shell breakage, and the time difference in temperature measurement of the same slab part does not occur. is small, so the temperature difference between the two molds changes gradually. Therefore, breakouts can be predicted with high accuracy.

〔実施例〕〔Example〕

以下本発明を図面に基づき具体的に説明する。 The present invention will be specifically explained below based on the drawings.

第1図は本発明の実施状態を示を模式図であり、図示し
ないタンディツシュに収納された溶鋼等の溶融金属1は
その下に取付けられた浸漬ノズル2を経て一定周期で上
下振動している鋳型3へ装入される。鋳型3内の溶融金
属1は、潤滑用の投入パウダ6が鋳型3の内壁に沿って
流れ込んで形成されたパウダ膜を介して一次冷却されて
凝固殻5を形成し、これを周壁とする鋳片4は図示しな
いピンチロールにより下方へ引抜がれていく。
FIG. 1 is a schematic diagram showing the state of implementation of the present invention, in which molten metal 1 such as molten steel stored in a tundish (not shown) is vibrated up and down at a constant period through an immersion nozzle 2 installed below. The mold 3 is charged. The molten metal 1 in the mold 3 is primarily cooled through the powder film formed by the lubricating powder 6 flowing along the inner wall of the mold 3 to form a solidified shell 5, which is used as the surrounding wall of the mold. The piece 4 is pulled downward by a pinch roll (not shown).

鋳型3の場面レベルよりも下には引抜方向(矢符方向)
に沿って2箇所に熱電対等の測温素子比I2の先端が埋
設されており、各測温素子11.12にて測定された鋳
型温度Tu 、Ttの夫々A/D変換器13にてアナロ
グ/ディジタル変換されて減算器14へ与えられる。上
記測温素子IL 12の埋設位置については、パウダの
不均一流入、場面変動による影響を軽減すべく場面レベ
ルの下方5o龍より下の位置が好ましい。
Below the scene level of mold 3, there is a pull-out direction (arrow direction).
The tips of temperature measuring elements I2 such as thermocouples are buried in two places along /digital conversion and applied to the subtracter 14. Regarding the buried position of the temperature measuring element IL 12, it is preferable to embed the temperature sensor IL 12 at a position below the lower 5° level of the scene level in order to reduce the effects of uneven inflow of powder and scene fluctuations.

減算器14はA/D変換器13がらの2つの入力信号ヲ
、例えば0.5秒乃至1秒の所定ピッチ(Δt)で取込
む。この取込み信号については、鋳型3の周りに設ける
電磁攪拌装置等による雑音の影響を除去すべく、A/D
変換器13がら例えば故10ミリ秒ピッチで出力される
信号の複数個分の平均値を用いる。
The subtracter 14 receives two input signals from the A/D converter 13 at a predetermined pitch (Δt) of, for example, 0.5 seconds to 1 second. Regarding this input signal, in order to eliminate the influence of noise caused by an electromagnetic stirring device etc. installed around the mold 3, an A/D
For example, the average value of a plurality of signals output from the converter 13 at a pitch of 10 milliseconds is used.

そして減算器14は取込んだ2つの鋳型温度TUとTL
との差ΔT(””Tt   Tu)を求め、これを記憶
すると共に最新の記憶信号とそれより前の連続4ピッチ
分の記憶信号、つまり合計5ピッチ分の記憶信号を微分
回路15へ与える。
Then, the subtractor 14 calculates the two mold temperatures TU and TL that have been taken in.
The difference ΔT (""Tt Tu) is determined and stored, and the latest stored signal and the stored signals for 4 consecutive pitches before it, that is, the stored signals for a total of 5 pitches, are provided to the differentiating circuit 15.

微分回路15には、5ピッチ分の信号の中間時点、つま
り取込みピンチが0.5秒の場合には現測定時点よりも
1秒前の時点における鋳型温度差(Δ1゛)の単位時間
当たりの変化率d(ΔT)/dtを求めるべく、公知の
下記(1)式が設定されている。
The differentiating circuit 15 stores the mold temperature difference (Δ1゛) per unit time at the intermediate point of the signal for 5 pitches, that is, if the capture pinch is 0.5 seconds, 1 second before the current measurement point. In order to obtain the rate of change d(ΔT)/dt, the following well-known formula (1) is set.

d(ΔT)/dt= d (TLf2)−Tu (21
) /dt=1/(12・Δt)・ ((TL (41
Tu (4))−8(TL (3)−TU (31) + 8  (TL (1)−TO(111−(TL(0
) −TU(0) ) )・・・(1) 但し、TL (0)   TO(0)、TL (1) 
 Tu (11,・・・。
d(ΔT)/dt= d(TLf2)−Tu (21
) /dt=1/(12・Δt)・((TL (41
Tu (4)) - 8 (TL (3) - TU (31) + 8 (TL (1) - TO (111 - (TL (0
) -TU(0) ) )...(1) However, TL (0) TO(0), TL (1)
Tu (11,...

TL (4)  Tu (4) :現測定時点よりこれ
を含めて連続5ピッチ分夫々のTLとTLlとの差 微分回路15は(11式に基づいて算出したd(ΔT)
/dtを比較器16へ与える。
TL (4) Tu (4): The difference differential circuit 15 between TL and TLl for each of five consecutive pitches including this from the current measurement time is (d(ΔT) calculated based on equation 11)
/dt to the comparator 16.

なお、d(ΔT)/diは、上記(1)式に替えて微分
係数の算出式一般を用いて算出してもよいことは勿論で
ある。
It goes without saying that d(ΔT)/di may be calculated using a general formula for calculating a differential coefficient instead of the above formula (1).

比較器16には下記(2)式が設定されており、比較器
16は入力したd(ΔT)/dtに関する信号が(2)
式を満足する場合には警報器17にて警報を発せしめる
と共に、図示しない制御装置へ異常発生信号を出力する
The following equation (2) is set in the comparator 16, and the comparator 16 receives a signal related to the input d(ΔT)/dt as shown in (2).
If the formula is satisfied, the alarm 17 issues an alarm and an abnormality occurrence signal is output to a control device (not shown).

d(ΔT) /dt>K          ・・・(
2)但し、K:正の定数 上記制御装置(図示せず)は異常発生信号を入力すると
、浸漬ノズル2の中途に設けたスライディングノズル部
7を油圧シリンダ8にて駆動して、浸漬ノズル2全−旦
閉じると共に図示しないピンチロールの回転を停止する
。これについては浸漬ノズル2を僅かに開けた状態にす
ると共に引抜速度を相当低下させるようにしてもよい。
d(ΔT) /dt>K...(
2) However, K: positive constant When the above control device (not shown) receives an abnormality occurrence signal, it drives the sliding nozzle part 7 provided in the middle of the immersion nozzle 2 with a hydraulic cylinder 8, and controls the immersion nozzle 2. When it is completely closed, the rotation of the pinch roll (not shown) is stopped. In this regard, the immersion nozzle 2 may be left slightly open and the drawing speed may be considerably reduced.

このような装置を用いる本発明は、上下鋳型温度差が次
のようになるのでブレークアウトを高精度で予知できる
。以下これ説明する。
In the present invention using such a device, breakout can be predicted with high accuracy because the temperature difference between the upper and lower molds is as follows. This will be explained below.

第2図は横軸に時間をとり、縦軸に鋳型温度をとって、
凝固殻破断部が下方へ移動する場合における上、下2位
置夫々での鋳型温度の推移を示した図であり、実線は上
側の鋳型温度を、破線は下側の鋳型温度を夫々示す。こ
の図より理解される如く、凝固殻破断部が通過すること
により温度変化が生じる時点が上、下2位置でずれる。
Figure 2 shows time on the horizontal axis and mold temperature on the vertical axis.
It is a diagram showing the transition of the mold temperature at the upper and lower two positions when the solidified shell fracture part moves downward, where the solid line indicates the upper mold temperature and the broken line indicates the lower mold temperature. As can be understood from this figure, the points at which temperature changes occur due to passage of the solidified shell fractured portion are shifted between the upper and lower two positions.

従って、第3図に示す如く遅れて上昇するT。Therefore, T rises with a delay as shown in FIG.

を、その上昇時に下降するTUにて減算した温度差(−
点鎖線)は、T、 、TLの温度上昇時の変化率dT/
dt (第2図参照)よりもその温度上昇時の変化ff
1d(ΔT)/dtが著しく大きくなる。このとき、d
(ΔT)/dtは正の値である。
The temperature difference (-
Dot-dashed line) is the rate of change dT/ of T, , TL when the temperature rises.
dt (see Figure 2), the change when the temperature rises ff
1d(ΔT)/dt becomes significantly large. At this time, d
(ΔT)/dt is a positive value.

このため、本発明にあっては(11式によりd(ΔT)
/dtを算出し、ブレークアウトを高精度で予知できる
ように経験的に定めたしきい値たる前記定数にと算出値
とが前記(2)式を満足するか否かを判定することによ
り、より高精度にブレークアウトを予知できる。前記に
の値は測温素子の鋳型位置。
Therefore, in the present invention, (d(ΔT) by equation 11)
/dt, and determine whether the constant, which is an empirically determined threshold so that breakout can be predicted with high accuracy, and the calculated value satisfy the formula (2). Breakouts can be predicted with higher accuracy. The above value is the mold position of the temperature measuring element.

埋設深さ、連続鋳造の操業条件等により異なるが、1.
5乃至15(”c/秒)程度が適当である。
It varies depending on the burial depth, continuous casting operating conditions, etc., but 1.
Approximately 5 to 15 (c/sec) is appropriate.

また、拘束性ブレークアウトが発生した場合、凝固殻破
断部の鋳型内での降下速度がピンチロールによる引抜速
度よりも著しく低下することが知られており、上述のよ
うな温度差を得ることが可能である。しかしながら、前
述のパウダの不均一流入等の原因による温度変化が生じ
ても温度変化部分の降下速度は引抜速度と同一であり、
上、下の測温素子にて検出される鋳型温度Tu 、TL
の推移は第4図(a)に示すように時間差が小さくなっ
て第4図(b)に示す如く鋳型温度変化Tも小さくなり
、このためその鋳型温度差の微分値は著しく小さい値と
なる。
Furthermore, it is known that when a restraining breakout occurs, the rate at which the solidified shell ruptures descend within the mold is significantly lower than the rate at which it is pulled out by the pinch rolls, making it difficult to obtain the temperature difference described above. It is possible. However, even if a temperature change occurs due to causes such as the uneven inflow of powder mentioned above, the descending speed of the temperature changing part is the same as the drawing speed.
Mold temperature Tu, TL detected by upper and lower temperature measuring elements
As shown in Figure 4(a), the time difference becomes smaller, and the mold temperature change T also becomes smaller as shown in Figure 4(b), so the differential value of the mold temperature difference becomes a significantly smaller value. .

このように、本発明による場合には、ブレークアウトの
原因である凝固殻破断が発生した場合の鋳型温度変化の
挙動を考慮しており、パウダの不均一流入等の原因によ
る温度変化が生じても、それを誤って予知することなく
、凝固殻破断のみを正確に検出でき、検出精度に優れる
As described above, in the case of the present invention, the behavior of mold temperature changes when solidified shell rupture occurs, which is the cause of breakout, is taken into consideration, and temperature changes due to causes such as uneven inflow of powder are taken into account. However, it is possible to accurately detect only solidified shell rupture without predicting it incorrectly, and has excellent detection accuracy.

なお、上記実施例では(TL −TO)の微分値がK 
(>0)よりも大きい場合にブレークアウトと予知する
ようにしているが、本発明はこれに限らず、(TLl 
−TL )の微分値を算出してその算出値が−によりも
小さい場合にブレークアウトと予知するようにしても実
施できる。
In addition, in the above example, the differential value of (TL - TO) is K
(>0), a breakout is predicted, but the present invention is not limited to this.
It can also be implemented by calculating the differential value of -TL) and predicting a breakout if the calculated value is smaller than -.

また、上記実施例では2個の測温素子の位置を引抜方向
に離隔して鋳型に設けているが、本発明はこれに限らす
測温素子を鋳型の幅方向又は厚み方向に離隔して設置し
ても実施できる。即ち、拘束性ブレークアウトの場合に
は凝固殻破断が生じるとそこから溶鋼が漏出して鋳型に
固着する。その状態でもピンチロールにより鋳片が引抜
かれるため、固着した凝固殻部分の鋳片の幅方向又は厚
み方向側に新な破断部が生じる。このため、測温素子を
鋳片幅方向又は厚み方向に離隔して或いはそれらの方向
と引抜方向とを夫々有する斜め方向に離隔して設置して
も本発明によりブレークアウトを高精度で予知できる。
Further, in the above embodiment, the two temperature measuring elements are provided in the mold so as to be spaced apart in the drawing direction, but the present invention is not limited to this, but the temperature measuring elements are spaced apart in the width direction or thickness direction of the mold. It can be implemented even if it is installed. That is, in the case of restraint breakout, when a solidification shell rupture occurs, molten steel leaks out and becomes stuck to the mold. Even in this state, since the slab is pulled out by the pinch rolls, a new fracture portion is generated in the width direction or thickness direction of the slab in the fixed solidified shell portion. Therefore, breakout can be predicted with high accuracy according to the present invention even if the temperature measuring elements are installed apart in the width direction or thickness direction of the slab, or in a diagonal direction that has both these directions and the drawing direction. .

更に、上記説明では上下方向2幅方向、厚み方向に離隔
して2個の測温素子を設置しているが、本発明はこれに
限らず鋳型に予め多数の測温素子を設置しておき、使用
する2個の測温素子を任意に選択してそれらにて測定し
た鋳型温度を用いるようにしてもよい。
Further, in the above description, two temperature measuring elements are installed spaced apart in the vertical direction, two width directions, and the thickness direction, but the present invention is not limited to this, and a large number of temperature measuring elements are installed in advance in the mold. Alternatively, two temperature measuring elements may be arbitrarily selected and the mold temperature measured using the two temperature measuring elements may be used.

但し、下側の測温素子(同高さ位置の場合もある)を設
置する位置については、前述の如く場面レベルの下方5
011より下の位置とすることは勿論、ブレークアウト
を予知したのち引抜速度等の操業条件を変更しても、実
際にブレークアウトの発生を防止できる時間的に余裕が
ある位置、つまり下側の測温素子から鋳型下端まで強固
殻破断部が降下する時間が操業条件の変更に要する時間
よりも長くなるような位置に定める。
However, as for the position where the temperature measuring element on the lower side (sometimes at the same height) is installed, it should be placed at the lower 5th level of the scene level.
In addition to setting the position below 011, it is also a position where there is enough time to actually prevent the breakout even if the operating conditions such as the pulling speed are changed after predicting the breakout, that is, the lower position. The position is set so that the time required for the hard shell fracture to descend from the temperature measuring element to the lower end of the mold is longer than the time required to change the operating conditions.

〔効果〕〔effect〕

従来方法による場合には、誤警報を発する頻度が高く、
全警報回数のうちの凝固殻破断に基づく警報の回数の比
率にて表わす警報的中率が約40%と低かった。これに
対して本発明による場合には警報的中率が約80%と倍
に向上した。
With conventional methods, false alarms are often issued;
The alarm accuracy rate, expressed as the ratio of the number of alarms based on solidified shell rupture to the total number of alarms, was as low as about 40%. In contrast, in the case of the present invention, the alarm accuracy rate was doubled to about 80%.

以上詳述した如く、本発明による場合は、連続鋳造用鋳
型の2位置での鋳型温度を測定し、その2測定鋳型温度
差を求めてその単位時間当たりの変化率を算出し、その
算出値と基準値との大小比較によりブレークアウトを予
知するので、高精度な予知が可能であり、これにより引
抜停止又は引抜速度の低下を行う回数を減少でき、低品
質鋳片の発生を抑制でき、歩留、生産性の向上を図れる
等、本発明は優れた効果を奏する。
As detailed above, in the case of the present invention, the mold temperature at two positions of the continuous casting mold is measured, the difference in the two measured mold temperatures is calculated, the rate of change per unit time is calculated, and the calculated value is Since breakout is predicted by comparing the size of the steel plate with the standard value, highly accurate prediction is possible.This reduces the number of times the drawing must be stopped or the drawing speed is reduced, and the generation of low-quality slabs can be suppressed. The present invention has excellent effects such as improving yield and productivity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施状態を示す模式図、第2図は上下
鋳型温度夫々の推移を示す図、第3図は本発明によるブ
レークアウトの予知原理の説明図、第4図はパウダ不均
一流入等により鋳型温度が変化する場合の上、下鋳型温
度の推移とその鋳型温度差を示す図である。 3・・・鋳型 5・・・凝固殻 11.12・・・測温
素子14・・・減算器 15・・・微分回路 16・・
・比較器時 許 出願人  住友金属工業株式会社代理
人 弁理士  河  野  登  夫U奇聞 ¥  Z   区 日秀 開 葛  3  区 v、4IB
Fig. 1 is a schematic diagram showing the implementation state of the present invention, Fig. 2 is a diagram showing the transition of the upper and lower mold temperatures, Fig. 3 is an explanatory diagram of the breakout prediction principle according to the present invention, and Fig. 4 is a diagram showing the powder failure. FIG. 3 is a diagram showing the transition of upper and lower mold temperatures and the mold temperature difference when the mold temperature changes due to uniform inflow, etc. 3... Mold 5... Solidified shell 11.12... Temperature measuring element 14... Subtractor 15... Differential circuit 16...
・Comparator Time Xu Applicant Sumitomo Metal Industries Co., Ltd. Agent Patent Attorney Noboru Kono Ukimon \ Z Ku Nisshu Kaige 3 Ku V, 4IB

Claims (1)

【特許請求の範囲】[Claims] 1、連続鋳造用鋳型の2位置での鋳型温度を測定し、そ
の2測定鋳型温度差を求めてその単位時間当たりの変化
率を算出し、その算出値と基準値との大小比較によりブ
レークアウトを予知することを特徴とする連続鋳造にお
けるブレークアウト予知方法。
1. Measure the mold temperature at two positions of the continuous casting mold, find the difference between the two measured mold temperatures, calculate the rate of change per unit time, and compare the calculated value with the reference value to determine breakout. A breakout prediction method in continuous casting, characterized by predicting breakout.
JP61261666A 1986-10-31 1986-10-31 Breakout prediction method in continuous casting Expired - Lifetime JPH0790343B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61261666A JPH0790343B2 (en) 1986-10-31 1986-10-31 Breakout prediction method in continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61261666A JPH0790343B2 (en) 1986-10-31 1986-10-31 Breakout prediction method in continuous casting

Publications (2)

Publication Number Publication Date
JPS63115660A true JPS63115660A (en) 1988-05-20
JPH0790343B2 JPH0790343B2 (en) 1995-10-04

Family

ID=17365063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61261666A Expired - Lifetime JPH0790343B2 (en) 1986-10-31 1986-10-31 Breakout prediction method in continuous casting

Country Status (1)

Country Link
JP (1) JPH0790343B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01143748A (en) * 1987-11-30 1989-06-06 Kawasaki Steel Corp Continuous casting method
DE4241915B4 (en) * 1991-12-13 2006-05-11 Nsk Ltd. Recirculating ball screw device
JP2009241099A (en) * 2008-03-31 2009-10-22 Jfe Steel Corp Method for predicting breakout in continuous casting
JP2011224582A (en) * 2010-04-15 2011-11-10 Nippon Steel Corp Method for predicting breakout of continuous casting
JP2015167956A (en) * 2014-03-05 2015-09-28 Jfeスチール株式会社 Breakout prediction method in continuous casting facility
JP2017150987A (en) * 2016-02-25 2017-08-31 横河電機株式会社 Distributed temperature sensing system and distributed temperature sensing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS567783A (en) * 1979-06-22 1981-01-27 Synthelabo Manufacture of vincamine acid derivative
JPS57115962A (en) * 1981-01-08 1982-07-19 Nippon Steel Corp Detection for abnormality of cast steel in continuous casting mold

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS567783A (en) * 1979-06-22 1981-01-27 Synthelabo Manufacture of vincamine acid derivative
JPS57115962A (en) * 1981-01-08 1982-07-19 Nippon Steel Corp Detection for abnormality of cast steel in continuous casting mold

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01143748A (en) * 1987-11-30 1989-06-06 Kawasaki Steel Corp Continuous casting method
DE4241915B4 (en) * 1991-12-13 2006-05-11 Nsk Ltd. Recirculating ball screw device
JP2009241099A (en) * 2008-03-31 2009-10-22 Jfe Steel Corp Method for predicting breakout in continuous casting
JP2011224582A (en) * 2010-04-15 2011-11-10 Nippon Steel Corp Method for predicting breakout of continuous casting
JP2015167956A (en) * 2014-03-05 2015-09-28 Jfeスチール株式会社 Breakout prediction method in continuous casting facility
JP2017150987A (en) * 2016-02-25 2017-08-31 横河電機株式会社 Distributed temperature sensing system and distributed temperature sensing method

Also Published As

Publication number Publication date
JPH0790343B2 (en) 1995-10-04

Similar Documents

Publication Publication Date Title
JP3386051B2 (en) Method for estimating flow pattern of molten steel in continuous casting, temperature measuring device for mold copper plate, method for determining surface defects of continuous cast slab, method for detecting molten steel flow, method for evaluating non-uniformity of heat removal in mold, method for controlling molten steel flow, Quality control method in continuous casting, continuous casting method of steel, estimation method of molten steel flow velocity
JPS63115660A (en) Predicting method for breakout in continuous casting
JPS6353903B2 (en)
KR20140003314A (en) Method for preventing breakout in continuous casting
JP7115240B2 (en) Breakout prediction method in continuous casting
JPH01210160A (en) Method for predicting longitudinal crack in continuous casting
JPH06304727A (en) Device for controlling casting velocity
JP6079670B2 (en) Breakout prediction method in continuous casting equipment.
JPS63119963A (en) Method for predicting breakout in continuous casting
JP2668872B2 (en) Breakout prediction method in continuous casting.
JPH0556224B2 (en)
KR101267347B1 (en) Device for monitoring crack using frictional force in mold and method therefor
JPH02200362A (en) Method for predicting and restraining nozzle clogging in continuous casting apparatus
JP3188148B2 (en) Continuous casting machine
JPS5929353B2 (en) Breakout prediction method
JPH03180261A (en) Method for predicting breakout
KR100928775B1 (en) A predicting device of the main polarization stage in the performance process by measurement of mold vibration and frictional force
JP6337848B2 (en) Method and apparatus for predicting constrained breakout
JPS63203260A (en) Method for predicting breakout in continuous casting
JP2016215236A (en) Method for predicting breakout in continuous casting, breakout prevention method, method for measuring thickness of solidifying shell, breakout prediction device, and breakout prevention device
US5482106A (en) Process for the casting of metals in a continuous casting installation with continuous strand withdrawal
JPS63104766A (en) Predicting method for breakout in continuous casting
JPH0446658A (en) Device for predicting breakout in continuous casting apparatus
JPH01228658A (en) Method for predicting longitudinal crack in continuous casting
JP2006255730A (en) Method for predicting break-out in continuous casting