JPH02200362A - Method for predicting and restraining nozzle clogging in continuous casting apparatus - Google Patents

Method for predicting and restraining nozzle clogging in continuous casting apparatus

Info

Publication number
JPH02200362A
JPH02200362A JP1753289A JP1753289A JPH02200362A JP H02200362 A JPH02200362 A JP H02200362A JP 1753289 A JP1753289 A JP 1753289A JP 1753289 A JP1753289 A JP 1753289A JP H02200362 A JPH02200362 A JP H02200362A
Authority
JP
Japan
Prior art keywords
nozzle
molten steel
flow rate
clogging
nozzle clogging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1753289A
Other languages
Japanese (ja)
Inventor
Susumu Yuhara
油原 晋
Toshitane Matsukawa
松川 敏胤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP1753289A priority Critical patent/JPH02200362A/en
Priority to CA002026008A priority patent/CA2026008A1/en
Publication of JPH02200362A publication Critical patent/JPH02200362A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce nozzle clogging and to obtain a cast slab having good inner quality by measuring nozzle opening degree for controlling discharging flow rate of molten steel, gas flow rate for blowing into a submerged nozzle part amt. of casting and molten steel level in a tundish, respectively and processing the nozzle clogging rate. CONSTITUTION:In an operating processor 20, a molten steel level signal (h) in the tundish 1 from a molten steel level meter 8, an inert gas flow rate signal Q for blowing into the submerged nozzle 4 from a flow meter 9, an opening degree signal S of the nozzle 3 for controlling discharging flow rate from a displacement gage 12 and a drawing velocity of a pinch roll 17, that is, casting velocity VR from a casting velocity meter 19, are inputted, respectively. The nozzle clogging rate is processing according to the prescribed equation and the opening degree of the nozzle 3 for controlling the discharging flow rate fitting the submerged nozzle through a servo valve 13 is controlled to control the molten steel discharging flow rate. By this method, the nozzle clogging rate in the discharging hole part of the submerged nozzle is shown as the opening hole area ratio in the discharging hole part, and the gas blowing rate into the submerged nozzle and molten metal surface surface control system in the mold are controlled according to this value.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、連続鋳造装置のタンディツシュと鋳型との間
に設けられる浸漬ノズルにおけるノズル詰まり予測方法
およびノズル詰まり抑制方法に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for predicting nozzle clogging and a method for suppressing nozzle clogging in a submerged nozzle provided between a tundish and a mold of a continuous casting apparatus.

〈従来の技術〉 連続鋳造装置で製造された鋳片の内部品質は、一般的に
、鋼の清浄度と鋳型への溶鋼注入条件に依存するところ
が大きい、ところで、溶鋼の注入に際し、鋳造初期は浸
漬ノズルの吐出孔より理想的な注入が行われるが、鋳造
末期には吐出孔に非金属介在物が付着して詰まり現象を
生じ、吐出流の速度やその方向が変わることにより、■
凝固界面に介在物やガス気泡がトラップされて、いわゆ
るフクレなどの内部欠陥が発生しやすくなること、■ガ
スにより場面が湧いたり場面が変動してパウダを巻き込
むことにより、スリバーやノロかみなどの表面欠陥が発
生し易くなることなどから、製品品質にも悪影響を及ぼ
す、そのため、溶鋼中への非金属介在物の流出を最小限
にするための方策が要求されている。
<Prior art> The internal quality of slabs produced with continuous casting equipment generally depends largely on the cleanliness of the steel and the conditions for pouring molten steel into the mold. Ideal injection is performed through the discharge hole of the immersion nozzle, but at the end of casting, nonmetallic inclusions adhere to the discharge hole and cause clogging, which changes the speed and direction of the discharge flow, causing
Inclusions and gas bubbles are trapped at the solidification interface, making internal defects such as so-called blisters more likely to occur.■ Gas causes the appearance or fluctuation of the scene and engulfs the powder, causing slivers, slag, etc. Since surface defects are more likely to occur, product quality is adversely affected, and therefore, measures are required to minimize the flow of nonmetallic inclusions into molten steel.

ところで、上記したノズル詰まりを軽減させる従来技術
としては、例えば実開昭53−125724号公報に開
示されているように、タンディツシュのノズル部および
スライディングプレートから不活性ガスを吹き込む手段
や、実開昭58−134244号公報に開示されている
ように、浸漬ノズル自体にもガス吹き込みを併用する手
段などが提案されている。
By the way, as conventional techniques for reducing the above-mentioned nozzle clogging, there is a means for blowing inert gas from the nozzle part of a tundish and a sliding plate, as disclosed in, for example, Japanese Utility Model Application Publication No. 53-125724; As disclosed in Japanese Patent Application No. 58-134244, a method has been proposed in which the submerged nozzle itself is also used in combination with gas blowing.

これらの技術は、原理的にはタンディツシュの上ノズル
からの不活性ガス吹き込みは、非金属介在物の浮上促進
を図ろうとするものであり、またタンディツシュの下ノ
ズルまたは浸漬ノズルからのガス吹き込みはガス気泡を
流下する溶鋼に随伴させて下方のノズル内壁を洗浄し、
アルミナなどの非金属介在物の付着を軽減させようとす
るものである。
In principle, these techniques aim to promote the floating of nonmetallic inclusions by blowing inert gas from the upper nozzle of the tundish, and by blowing gas from the lower nozzle or immersion nozzle of the tundish, Clean the inner wall of the lower nozzle by letting air bubbles accompany the flowing molten steel,
This is intended to reduce the adhesion of nonmetallic inclusions such as alumina.

ノズル詰まりを防止する観点からは、後者のタンディツ
シュの下ノズルまたは浸漬ノズルからのガス吹き込み量
を増加させることが望ましいが、しかし、前述したよう
に、内部欠陥や表面欠陥の発生の恐れがあるから、経験
的に低いガス吹き込み流量でやらざるを得ないという問
題がある。
From the viewpoint of preventing nozzle clogging, it is desirable to increase the amount of gas blown from the lower nozzle or submerged nozzle of the latter, but as mentioned above, there is a risk of internal defects and surface defects. However, there is a problem in that empirically, it is necessary to use a low gas blowing flow rate.

また、鋳型内の場面を安定させる手段としては、例えば
第6図に示すような鋳型内湯面制御を採用しているのが
一般的である。すなわち、タンディツシュ1内の溶鋼2
のレベルは溶鋼レベル計8で測定され、浸漬ノズル4に
流!tUFJ節弁10を介して吹き込まれる不活性ガス
は流量計9によって測定されてそれぞれ個別に監視され
るとともに、鋳型6の側部に鋳型自溶鋼レベル計16を
取付けて、タンディツシュlから浸漬ノズル4を介して
注入される溶鋼のレベルを測定しコントローラ15を介
してサーボアンプ14に入力し、サーボ弁13によって
浸漬ノズル4に取付けられた吐出流量調整ノズル3を介
して溶鋼流量を調整するものである。ここで、サーボア
ンプ14には、開度計11によって測定される流t1調
整ノズル3の開度信号を変位計12を介してフィードバ
ックされる。なお、鋳型6内で凝固した鋳片7はピンチ
ロール17で鋳型6から引き抜かれ、このピンチロール
17の引き抜き速度は、ピンチロールモータ18に取付
けられる鋳造速度計19によって検出されて監視される
Further, as a means for stabilizing the scene inside the mold, for example, mold internal molten metal level control as shown in FIG. 6 is generally adopted. In other words, the molten steel 2 in the tandish 1
The level of molten steel is measured by the molten steel level meter 8, and the molten steel flows into the immersion nozzle 4! The inert gas blown through the tUFJ control valve 10 is measured by a flow meter 9 and monitored individually, and a mold self-melting steel level gauge 16 is attached to the side of the mold 6, and the inert gas is blown into the immersion nozzle 4 from the tundish l. The level of the molten steel injected through the servo valve 13 is measured and inputted to the servo amplifier 14 via the controller 15, and the molten steel flow rate is adjusted via the discharge flow rate adjustment nozzle 3 attached to the immersion nozzle 4 using the servo valve 13. be. Here, the opening signal of the flow t1 adjusting nozzle 3 measured by the opening meter 11 is fed back to the servo amplifier 14 via the displacement meter 12. The slab 7 solidified in the mold 6 is pulled out from the mold 6 by a pinch roll 17, and the pulling speed of the pinch roll 17 is detected and monitored by a casting speed meter 19 attached to a pinch roll motor 18.

しかし、この制御系は定値制御であるから、定常時は鋳
型内湯面のレベルを数鵡以内に制御することができるが
、鋳造末期時には非金属介在物が時系列的に浸漬ノズル
4の詰まりが増加するので、鋳造初期に比べてレベル変
動が大きくなる傾向があるという問題があった。
However, since this control system is a constant value control, the level of the molten metal in the mold can be controlled within a few meters during steady state, but at the end of casting, non-metallic inclusions clog the immersion nozzle 4 in chronological order. As a result, there was a problem in that level fluctuations tended to become larger compared to the initial stage of casting.

〈発明が解決しようとする課題〉 本発明は、上記のような課題を解決すべくしてなされた
ものであって、鋳造中には観察することのできない浸漬
ノズルの吐出孔の詰まり状況を予測し、詰まりによって
生じる鋳型内の場面変動を最小限に抑えるとともに、鋳
片内部品質を悪化させないようにしてノズル詰まりの主
原因である非金属介在物の成長を抑制する方法を提供す
ることを目的とする。
<Problems to be Solved by the Invention> The present invention was made in order to solve the above-mentioned problems, and it is an object of the present invention to predict the clogging situation of the discharge hole of the immersion nozzle, which cannot be observed during casting. The purpose of the present invention is to provide a method for minimizing the scene fluctuations in the mold caused by clogging, and suppressing the growth of non-metallic inclusions, which are the main cause of nozzle clogging, by preventing deterioration of the internal quality of the slab. do.

〈課題を解決するための手段〉 本発明の第1の、LSI様は、連続鋳造装置のタンディ
ツシュと鋳型との間に設けられる浸漬ノズルの溶鋼吐出
孔部に発生する詰まりの状況を予測する方法であって、
鋳造中の溶鋼の吐出流量調整ノズルの開度と、浸漬ノズ
ル部への吹き込みガス流量と、鋳造量と、タンディツシ
ュ内のtallレベルとをそれぞれ測定し、これらの測
定値を用いてノズル詰まり量を演算することを特徴とす
る連続鋳造装置におけるノズル詰まり予測方法である。
<Means for Solving the Problems> The first LSI aspect of the present invention is a method for predicting clogging conditions that occur in a molten steel discharge hole of a submerged nozzle provided between a tundish and a mold of a continuous casting device. And,
Measure the opening degree of the nozzle for adjusting the discharge flow rate of molten steel during casting, the flow rate of gas blown into the immersion nozzle section, the casting amount, and the tall level in the tundish, and use these measured values to calculate the amount of nozzle clogging. This is a method for predicting nozzle clogging in a continuous casting apparatus, which is characterized by calculating.

また、本発明の第2のJltI様は、上記第1の態様の
ノズル詰まり予測方法で求められたノズル詰まり量に応
じて、浸漬ノズルへの吹き込みガス流量を制御すること
を特徴とするノズル詰まり抑制方法である。
Further, a second JltI aspect of the present invention is characterized in that the flow rate of gas blown into the submerged nozzle is controlled according to the amount of nozzle clogging determined by the nozzle clogging prediction method of the first aspect. This is a method of suppression.

く作 用〉 以下に、本発明のノズル詰まり予測の原理について説明
する。
Function> The principle of nozzle clogging prediction according to the present invention will be explained below.

第2図は、本発明の原理を模式的に示す説明図である。FIG. 2 is an explanatory diagram schematically showing the principle of the present invention.

タンディツシュl内の溶鋼2の湯面゛から吐出流量調整
ノズル3の頂部までの距離をh (m)とし、流1tl
i整ノズル3の頂部と浸漬ノズル4内の溶鋼場面までの
距離をf+(m)、その場面から鋳型6内の場面までの
距離を1x(m)とする、また、浸漬ノズル4の吐出孔
5から吐出する溶鋼の流速をv(s+/5in)とし、
タンディツシュlから鋳型6までの溶鋼の流れにおける
圧力損失の総和をΣΔP (kgf/cd)とすると、
ベルヌーイの法則により下記(])式が成立する。
The distance from the surface of the molten steel 2 in the tundish l to the top of the discharge flow rate adjustment nozzle 3 is h (m), and the flow rate is 1 tl.
The distance between the top of the i-shaped nozzle 3 and the molten steel scene in the immersion nozzle 4 is f + (m), the distance from that scene to the scene in the mold 6 is 1x (m), and the discharge hole of the immersion nozzle 4 is Let the flow velocity of the molten steel discharged from 5 be v (s+/5 in),
Letting the total pressure loss in the flow of molten steel from the tanditsu l to the mold 6 be ΣΔP (kgf/cd),
According to Bernoulli's law, the following formula (]) holds true.

■! −(h+j!、  +ffiよ )−ΣΔP ・・・・
・(1)g ここで、(1)式の左辺は運動エネルギーを表すもので
あり、右辺の括弧内は位置エネルギーを表すものである
■! -(h+j!, +ffiyo)-ΣΔP...
-(1)g Here, the left side of equation (1) represents kinetic energy, and the value in parentheses on the right side represents potential energy.

さらに、吐出孔5の数をn個とし、その断面積をa (
m”)、鋳片の断面積をA(m”)、鋳造速度をVm 
 (m/5in)としたとき、連続の法則により下記(
2)式が成立する。
Furthermore, the number of discharge holes 5 is n, and the cross-sectional area is a (
m”), the cross-sectional area of the slab is A (m”), and the casting speed is Vm.
(m/5in), according to the law of continuity, the following (
2) The formula holds true.

nv−a−V、−A ここで(2)式の右辺を鋳造量(rrf/w1n )と
して、以下の説明に用いる。
nv-a-V, -A Here, the right side of equation (2) is used as the casting amount (rrf/w1n) in the following explanation.

よって、上記(1)、 (2)式より、浸漬ノズル4の
吐出面積aは下記(3)式で示され、鋳造量、タンディ
ツシュ内の溶鋼レベルおよび圧力損失の総和がわかれば
求めることができる。
Therefore, from the above equations (1) and (2), the discharge area a of the immersion nozzle 4 is expressed by the following equation (3), and can be determined if the casting amount, the molten steel level in the tundish, and the total pressure loss are known. .

・・・・−・・・・−・・・−・−・−・(3)ここで
、圧力損失の総和ΣΔPは、流量調整ノズル3によるも
の、浸漬ノズル4の内部や吐出孔5の部分によるものな
どのほか、浸漬ノズル4の内部の溶鋼面に侵入する際の
圧力損失や浸漬ノズル4に吹き込まれる不活性ガスの気
泡の上昇による圧力損失などが含まれる。これらの圧力
損失の和は、既存の計算式によっても求めることができ
るが、多くの実測値に基づく回帰式を用いた方がより精
度よく求めることができる。
(3) Here, the total pressure loss ΣΔP is due to the flow rate adjustment nozzle 3, the inside of the immersion nozzle 4, and the part of the discharge hole 5. In addition to the pressure loss due to the inert gas entering the molten steel surface inside the immersion nozzle 4, the pressure loss due to the rise of bubbles of inert gas blown into the immersion nozzle 4, etc. Although the sum of these pressure losses can be determined using an existing calculation formula, it can be determined more accurately by using a regression formula based on a large number of actually measured values.

そこで、本発明の第1の態様は、圧力損失の和の中で寄
与度の高い因子である溶鋼の吐出流量調整ノズル3の開
度S、浸漬ノズル4への吹き込みガス流量Q (j! 
/s+in)、鋳造tVl−Aおよびタンディツシュ1
の溶鋼へラドhと圧力損失の総和ΣΔPとを、例えば(
4)式のように予め関係づけておき、 ΣΔP−f  (S、Q、Vl−A、h)−(4)鋳造
時のある時刻における浸漬ノズル4の開孔面積aを、そ
の時刻における操業条件から予測する。
Therefore, the first aspect of the present invention is to adjust the opening degree S of the molten steel discharge flow rate adjusting nozzle 3 and the blowing gas flow rate Q (j!
/s+in), casting tVl-A and tandish 1
For example, the molten steel radius h and the total pressure loss ΣΔP are expressed as (
4) The relationship is established in advance as in the equation, ΣΔP-f (S, Q, Vl-A, h) - (4) The opening area a of the immersion nozzle 4 at a certain time during casting is determined by the operation at that time. Predict from conditions.

さらに、浸漬ノズル4の鋳造時の開孔面積aと鋳造前の
開孔面積a0との比であるノズル開花面積率yを下記(
5)式で求めるようにする。
Furthermore, the nozzle flowering area ratio y, which is the ratio of the aperture area a during casting of the immersion nozzle 4 to the aperture area a0 before casting, is calculated as follows (
5) Calculate using the formula.

y = a / a m           ・・・
−−−−−・・(5)これによって、その時刻における
吐出孔5を閉塞させている非金属介在物の付着度合いを
判別することができる。
y=a/am...
------- (5) This makes it possible to determine the degree of adhesion of the non-metallic inclusions blocking the discharge hole 5 at that time.

また、溶鋼の流ii調整ノズル3の頂部から吹き込むガ
スは、吐出流量調整ノズル3や浸漬ノズル4の内部ある
いは吐出孔5の部分に発生するノズル詰まりを妨げる効
果があることが知られている。
Further, it is known that the gas blown from the top of the molten steel flow adjustment nozzle 3 has the effect of preventing nozzle clogging that occurs inside the discharge flow rate adjustment nozzle 3 or immersion nozzle 4 or in the discharge hole 5 portion.

しかし、一方、このガス吹き込みの量が多いと鋳片内部
に発生するブローホールやピンホールを助長することか
ら、吹き込みガスIQを最適化することが重要である。
However, on the other hand, if the amount of gas blown is large, blowholes and pinholes are generated inside the slab, so it is important to optimize the blown gas IQ.

そこで、本発明の第2の態様は、ノズル詰まり速度(d
y/dt)が大きいときには吹き込みガスfIQを多く
し、またノズル詰まり速度が小さいときには吹き込みガ
ス量を少なくするようにアクシダンを取るごとにより、
ノズル詰まり量に応じて浸漬ノズルへの吹き込みガス流
量を制御してノズル詰まりの抑制を図るようにしたもの
である。すなわち、 Q −f  (dy/dt、  7 )       
−・−・−・・−・・−・−(6)で示すように、ノズ
ル詰まり速度とノズル開花面積率に従ってガス吹き込み
量を制御することにより、必要最小限のガス吹き込みを
行う。
Therefore, the second aspect of the present invention is the nozzle clogging speed (d
By increasing the amount of blown gas fIQ when y/dt) is large and decreasing the amount of blown gas when the nozzle clogging speed is small,
The flow rate of gas blown into the submerged nozzle is controlled according to the amount of nozzle clogging to suppress nozzle clogging. That is, Q −f (dy/dt, 7)
−・−・−・・−・・−・− As shown in (6), the necessary minimum amount of gas is blown by controlling the amount of gas blown according to the nozzle clogging speed and the nozzle flowering area ratio.

さらに、前述した従来の鋳型内湯面制御系は、定価制御
を採用しているため、鋳造末期時には鋳造初期に比べて
レベルの変動が大きく傾向があることから、この制御系
の時系列的な最適化を図る必要がある。
Furthermore, since the conventional mold level control system mentioned above adopts fixed price control, the level tends to fluctuate more at the end of casting than at the beginning of casting. It is necessary to aim for

それ故、吹き込みガスIQ、タンディツシュ1内溶鋼レ
ベルh、吐出流量調整ノズル3の開度S。
Therefore, the blowing gas IQ, the molten steel level h in the tundish 1, and the opening degree S of the discharge flow rate adjusting nozzle 3.

鋳造量■3 ・Aからノズル詰まり量を演算するノズル
詰まり予測方法を用いることにより、そのノズル詰まり
量に応して鋳型内湯面制御の演算式のパラメータ(制御
感度)・kを調整することで、安定化を図ることができ
、パラメータにはノズル開孔面積率yの関数f (y)
に従って変化させるようにすればよい。
Casting amount ■3 - By using the nozzle clogging prediction method that calculates the amount of nozzle clogging from A, the parameter (control sensitivity) k of the calculation formula for controlling the mold level can be adjusted according to the amount of nozzle clogging. , stabilization can be achieved, and the parameter is a function f (y) of the nozzle opening area ratio y.
You can change it accordingly.

〈実施例〉 以下に、本発明の実施例について、図面を参照して説明
する。
<Examples> Examples of the present invention will be described below with reference to the drawings.

第1図は、本発明方法に係る鋳型内湯面制御系の実施例
を模式的に示す概念図である0図中、従来例と同一部材
は同一符号を付して説明を省略する。
FIG. 1 is a conceptual diagram schematically showing an embodiment of a mold level control system according to the method of the present invention. In FIG.

図に示すように、演算処理装置20には、溶鋼レベル計
8からタンデイツシエ1内の溶鋼レベル信号りが、流量
計9から浸漬ノズル4に吹き込まれる不活性ガス流量信
号Qが、変位計12から吐出流量調整ノズル3の開度信
号Sが、鋳造速度計19からピンチロール17の引き抜
き速度すなわち鋳造速度■ヮがそれぞれ入力され、前出
(3)、 (4)式に従ってノズル詰まり量を演算して
、その演算結果をサーボアンプ14に出力して、サーボ
弁13を介して浸漬ノズル4に取付けられた吐出流量調
整ノズル3の開度を制御して、溶鋼吐出流量を調整する
機能を有する。
As shown in the figure, the arithmetic processing unit 20 receives the molten steel level signal in the tundishier 1 from the molten steel level meter 8, the inert gas flow rate signal Q blown into the submerged nozzle 4 from the flow meter 9, and the inert gas flow rate signal Q from the displacement meter 12. The opening signal S of the discharge flow rate adjusting nozzle 3 and the withdrawal speed of the pinch roll 17, that is, the casting speed ■wa, are input from the casting speed meter 19, and the amount of nozzle clogging is calculated according to equations (3) and (4) above. It has a function of outputting the calculation result to the servo amplifier 14 and controlling the opening degree of the discharge flow rate adjusting nozzle 3 attached to the immersion nozzle 4 via the servo valve 13 to adjust the discharge flow rate of molten steel.

このように、構成された鋳型内湯面制iTJ装置を2ス
トランドの連続鋳造装置に適用して、ノズル開花面積率
yを前出(5)式に基づいて求めた。なお、このとき、
吐出流it調整ノズル3の頂部と浸漬ノズル4内の溶鋼
場面までの距離llと、その場面から鋳型6内の場面ま
での距離itとは、設備的に決定され、上記連続鋳造装
置においてはその相が1.Omである。また、演算処理
装置20に組み込んだ前出(4)式の圧力を置火の総和
ΣΔPの具体的な式としては、下記(7)式を用いた。
The thus configured iTJ device for controlling the mold surface was applied to a two-strand continuous casting device, and the nozzle flowering area ratio y was determined based on the above equation (5). Furthermore, at this time,
The distance ll between the top of the discharge flow adjustment nozzle 3 and the molten steel scene in the immersion nozzle 4, and the distance it from that scene to the scene in the mold 6 are determined by equipment, and in the continuous casting apparatus described above, The phase is 1. It is Om. Further, as a specific expression for the sum ΣΔP of the pressure and setting pressure in the above-mentioned expression (4) incorporated in the arithmetic processing device 20, the following expression (7) was used.

ΣΔP−0,024(100−3) +2.OXl0−
’Q−1,12X10−”V、  ・A  −・−・・
−(7)ここで、求められたノズル開孔面積率yをvI
a中において、操作室のモニタに常時出力してノズル詰
まりを監視した。そして、そのノズル詰まり速度として
の単位時間当たりのノズル開孔面積率の変化率に応じて
吹き込みガス量Qを、第3図に示すような直線的な関係
で制御を行った。その結果を、従来例とともに第4図に
示した。
ΣΔP-0,024 (100-3) +2. OXl0-
'Q-1, 12X10-''V, ・A -・-・・
-(7) Here, the determined nozzle opening area ratio y is vI
During A, nozzle clogging was monitored by constantly outputting to the monitor in the operation room. Then, the amount of blown gas Q was controlled according to the rate of change in the nozzle opening area ratio per unit time as the nozzle clogging speed, in a linear relationship as shown in FIG. The results are shown in FIG. 4 together with a conventional example.

この図から明らかなように、本発明例は、従来例に比べ
て鋳片内部品質を考慮したノズル詰まり指数が大幅に改
善されることがわかる。
As is clear from this figure, it can be seen that the nozzle clogging index in consideration of the internal quality of the slab is significantly improved in the example of the present invention compared to the conventional example.

さらに、前出(5)式を用いて求めたノズル開孔面積率
yに応じて吐出流1ttll整ノズルのパラメータ(制
御感度)kを調整したところ、従来例の湯面変動の振幅
が鋳造末期において、第5図(a)に示すように31程
度であったものが、本発明例では第5図(ロ)に示すよ
うに1.5腫以内に抑制することができた。
Furthermore, when the parameter (control sensitivity) k of the 1ttll discharge flow regulating nozzle was adjusted according to the nozzle opening area ratio y determined using the above-mentioned equation (5), the amplitude of the level fluctuation in the conventional example was In this case, the number of tumors was approximately 31 as shown in FIG. 5(a), but in the example of the present invention, the number could be suppressed to within 1.5 as shown in FIG. 5(b).

〈発明の効果〉 以上説明したように、本発明によれば、タンディツシュ
と鋳型間の溶鋼注入の際に浸漬ノズルを使用している連
続鋳造装置において、鋳造中には観察することのできな
かった浸漬ノズルの吐出孔部のノズル詰まり量を吐出孔
部の開花面積率として表すとともに、その値に応じて浸
漬ノズルへの吹き込みガス量と鋳型内湯面制御系を制御
するようにしたので、良好な鋳片内部品質の鋳片を得る
ことができるとともに、ノズル詰まりを少なくすること
ができるという優れた効果を奏する。
<Effects of the Invention> As explained above, according to the present invention, in a continuous casting machine that uses a submerged nozzle for injecting molten steel between the tundish and the mold, it is possible to eliminate the problem that could not be observed during casting. The amount of nozzle clogging at the discharge hole of the immersion nozzle is expressed as the flowering area ratio of the discharge hole, and the amount of gas blown into the immersion nozzle and the mold level control system are controlled according to this value, so that a good result can be achieved. This has the excellent effect of being able to obtain a slab with internal quality and reducing nozzle clogging.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明方法に係る鋳型内湯面制御系を模式的
に示す概要図、第2図は、本発明のノズル詰まり予測の
原理を示す説明図、第3図は、ノズル開孔面積変化率と
吹き込みガス量との関係を例示する特性図、第4図は、
ノズル詰まり指数を比較して示す特性図、第5図は、鋳
型内湯面の変動状況を示す(6)従来例、ル)本発明例
の特性図、第6図は、従来例を模式的に示す概要図であ
る。 l・・・タンディツシュ、  2・・・溶鋼、  3・
・・吐出流量調整ノズル、  4・・・浸漬ノズル、 
 5・・・ノズル吐出孔、  6・・・鋳型、  7・
・・鋳片、  8・・・溶鋼レベル計、  9・・・流
量計、  10・・・流量調節弁、  11・・・開度
針、12・・・変位計、  13・・・サーボ弁、14
・・・サーボアンプ、15・・・コントローラ、  1
6・・・鋳型内溶鋼レベル計、17・・・ピンチロール
、18・・・ピンチロールモータ、   19・・・鋳
造速度計、20・・・演算処理装置。
Fig. 1 is a schematic diagram showing a mold level control system according to the method of the present invention, Fig. 2 is an explanatory diagram showing the principle of nozzle clogging prediction of the present invention, and Fig. 3 is a nozzle opening area. A characteristic diagram illustrating the relationship between the rate of change and the amount of blown gas, FIG.
Figure 5 is a characteristic diagram showing a comparison of the nozzle clogging index, and Figure 5 is a characteristic diagram showing the variation of the melt level in the mold. FIG. l... tanditshu, 2... molten steel, 3.
...Discharge flow rate adjustment nozzle, 4...Immersion nozzle,
5... Nozzle discharge hole, 6... Mold, 7.
... Slab, 8... Molten steel level meter, 9... Flow meter, 10... Flow rate control valve, 11... Opening needle, 12... Displacement meter, 13... Servo valve, 14
... Servo amplifier, 15 ... Controller, 1
6... In-mold molten steel level meter, 17... Pinch roll, 18... Pinch roll motor, 19... Casting speed meter, 20... Arithmetic processing unit.

Claims (1)

【特許請求の範囲】 1、連続鋳造装置のタンディッシュと鋳型との間に設け
られる浸漬ノズルの溶鋼吐出孔部に発生する詰まりの状
況を予測する方法であって、鋳造中の溶鋼の吐出流量調
整ノズルの開度と、浸漬ノズル部への吹き込みガス流量
と、鋳造量と、タンディッシュ内の溶鋼レベルとをそれ
ぞれ測定し、これらの測定値を用いてノズル詰まり量を
演算することを特徴とする連続鋳造装置におけるノズル
詰まり予測方法。 2、請求項1記載のノズル詰まり予測方法によって求め
られたノズル詰まり量に応じて、浸漬ノズルへの吹き込
みガス流量を制御することを特徴とする連続鋳造装置に
おけるノズル詰まり抑制方法。
[Claims] 1. A method for predicting clogging conditions occurring in a molten steel discharge hole of a submerged nozzle provided between a tundish and a mold of a continuous casting device, the method comprising: predicting the discharge flow rate of molten steel during casting; The opening degree of the adjustment nozzle, the flow rate of gas blown into the submerged nozzle section, the casting amount, and the molten steel level in the tundish are each measured, and the amount of nozzle clogging is calculated using these measured values. A method for predicting nozzle clogging in continuous casting equipment. 2. A method for suppressing nozzle clogging in a continuous casting apparatus, comprising controlling the flow rate of gas blown into the submerged nozzle according to the amount of nozzle clogging determined by the nozzle clogging prediction method according to claim 1.
JP1753289A 1989-01-30 1989-01-30 Method for predicting and restraining nozzle clogging in continuous casting apparatus Pending JPH02200362A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP1753289A JPH02200362A (en) 1989-01-30 1989-01-30 Method for predicting and restraining nozzle clogging in continuous casting apparatus
CA002026008A CA2026008A1 (en) 1989-01-30 1990-01-29 Multi-articulated industrial robot with an offset robot arm

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1753289A JPH02200362A (en) 1989-01-30 1989-01-30 Method for predicting and restraining nozzle clogging in continuous casting apparatus

Publications (1)

Publication Number Publication Date
JPH02200362A true JPH02200362A (en) 1990-08-08

Family

ID=11946536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1753289A Pending JPH02200362A (en) 1989-01-30 1989-01-30 Method for predicting and restraining nozzle clogging in continuous casting apparatus

Country Status (2)

Country Link
JP (1) JPH02200362A (en)
CA (1) CA2026008A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006150453A (en) * 2004-11-26 2006-06-15 Heraeus Electro-Nite Internatl Nv Method for adjusting flow rate through metallurgical vessel and bottom part nozzle of metallurgical vessel
KR101228695B1 (en) * 2009-12-09 2013-02-01 주식회사 포스코 Device and method for predicting nozzle clogging thickness of continuous casting process
WO2013048083A2 (en) * 2011-09-28 2013-04-04 현대제철 주식회사 Method for predicting number of continuous casting processes when continuous casting
KR101320356B1 (en) * 2011-10-28 2013-10-22 현대제철 주식회사 Device for forecasting number of continuous-continuous casting on continuous casting process and method therefor
KR101400045B1 (en) * 2012-04-26 2014-05-30 현대제철 주식회사 Method for forecasting possibility of additional continuous-continuous casting on continuous casting process
KR101412536B1 (en) * 2012-01-31 2014-06-26 현대제철 주식회사 Device for forecasting number of continuous-continuous casting on continuous casting process and method therefor
CN111308574A (en) * 2020-02-12 2020-06-19 首钢集团有限公司 Device and method for detecting blockage of refractory material in steelmaking continuous casting process

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6224848A (en) * 1985-07-23 1987-02-02 Kawasaki Steel Corp Automatic stopping method for continuous casting machine
JPS6293051A (en) * 1985-10-18 1987-04-28 Nippon Steel Corp Pouring method for molten steel in continuous casting

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6224848A (en) * 1985-07-23 1987-02-02 Kawasaki Steel Corp Automatic stopping method for continuous casting machine
JPS6293051A (en) * 1985-10-18 1987-04-28 Nippon Steel Corp Pouring method for molten steel in continuous casting

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006150453A (en) * 2004-11-26 2006-06-15 Heraeus Electro-Nite Internatl Nv Method for adjusting flow rate through metallurgical vessel and bottom part nozzle of metallurgical vessel
JP4658785B2 (en) * 2004-11-26 2011-03-23 ヘレーウス エレクトロ−ナイト インターナシヨナル エヌ ヴイ Method for adjusting flow rate through metallurgical vessel and bottom nozzle of metallurgical vessel
KR101228695B1 (en) * 2009-12-09 2013-02-01 주식회사 포스코 Device and method for predicting nozzle clogging thickness of continuous casting process
WO2013048083A2 (en) * 2011-09-28 2013-04-04 현대제철 주식회사 Method for predicting number of continuous casting processes when continuous casting
WO2013048083A3 (en) * 2011-09-28 2013-05-23 현대제철 주식회사 Method for predicting number of continuous casting processes when continuous casting
CN103596713A (en) * 2011-09-28 2014-02-19 现代制铁株式会社 Method for predicting number of continuous casting processes during continuous casting
DE112012002064B4 (en) * 2011-09-28 2017-05-11 Hyundai Steel Company Method for predicting the number of possible continuous casting batches during continuous casting
KR101320356B1 (en) * 2011-10-28 2013-10-22 현대제철 주식회사 Device for forecasting number of continuous-continuous casting on continuous casting process and method therefor
KR101412536B1 (en) * 2012-01-31 2014-06-26 현대제철 주식회사 Device for forecasting number of continuous-continuous casting on continuous casting process and method therefor
KR101400045B1 (en) * 2012-04-26 2014-05-30 현대제철 주식회사 Method for forecasting possibility of additional continuous-continuous casting on continuous casting process
CN111308574A (en) * 2020-02-12 2020-06-19 首钢集团有限公司 Device and method for detecting blockage of refractory material in steelmaking continuous casting process
CN111308574B (en) * 2020-02-12 2022-08-12 首钢集团有限公司 Device and method for detecting blockage of refractory material in steelmaking continuous casting process

Also Published As

Publication number Publication date
CA2026008A1 (en) 1990-07-31

Similar Documents

Publication Publication Date Title
KR100312807B1 (en) METHOD AND APPARATUS FOR ADJUSTING LIQUEFIED METAL LEVELS IN A CONTINUOUS CASTING MOLD
JPH02200362A (en) Method for predicting and restraining nozzle clogging in continuous casting apparatus
JPH0985407A (en) Method for controlling molten steel level in mold in continuous caster
KR101412536B1 (en) Device for forecasting number of continuous-continuous casting on continuous casting process and method therefor
KR20130120847A (en) Method for forecasting possibility of additional continuous-continuous casting on continuous casting process
JPS5978763A (en) Controlling method of molten steel level in casting mold in continuous casting
JP3506195B2 (en) Continuous casting method
KR101177813B1 (en) Control Method for a Short Period Mold Level Hunting in Continuous Cast
JP4209989B2 (en) Quality judgment method for continuous cast slabs
JPS6045026B2 (en) Mold content steel level control method
JPH09168847A (en) Method for continuously casting steel
JPH02220751A (en) Apparatus and method for controlling casting in continuous casting machine
KR102122656B1 (en) Apparatus for predicting gas on the pipeline leakage in continuous casting process and method therefor
KR20130120882A (en) Device for predicting gas in the pipeline leakage on continuous casting process and method therefor
JP2914817B2 (en) Missing casting method in continuous casting
JPS62270264A (en) Control method at casting initial stage for continuous casting
JPH02137655A (en) Method for measuring fluctuation in molten steel surface and method for controlling such fluctuation
JP2003164951A (en) Weight control method for molten steel in tundish during continuous casting
JP3350397B2 (en) Method of controlling molten steel level in continuous casting mold
KR100529062B1 (en) Apparatus for controlling mold level in liquid core reduction
RU77810U1 (en) METAL LEVEL CONTROL SYSTEM IN THE CRYSTALIZER
JPH04294850A (en) Detection of break-out in multi-strand continuous caster
JPS58125350A (en) Detection of clogging of nozzle for charging molten metal into continuous casting mold
JPH0663712A (en) Method for continuously casting slab using electromagnetic agitation in mold
JPH09136149A (en) Method for controlling molten metal surface level in mold for continuous caster and device therefor