JPS63203260A - Method for predicting breakout in continuous casting - Google Patents

Method for predicting breakout in continuous casting

Info

Publication number
JPS63203260A
JPS63203260A JP3409587A JP3409587A JPS63203260A JP S63203260 A JPS63203260 A JP S63203260A JP 3409587 A JP3409587 A JP 3409587A JP 3409587 A JP3409587 A JP 3409587A JP S63203260 A JPS63203260 A JP S63203260A
Authority
JP
Japan
Prior art keywords
mold
temperature
temp
mold temperature
breakout
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3409587A
Other languages
Japanese (ja)
Other versions
JPH0556223B2 (en
Inventor
Toyotsugu Tsuda
津田 豊継
Masami Nakamura
雅巳 中村
Masatoshi Tokuda
徳田 将敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP3409587A priority Critical patent/JPS63203260A/en
Publication of JPS63203260A publication Critical patent/JPS63203260A/en
Publication of JPH0556223B2 publication Critical patent/JPH0556223B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

PURPOSE:To improve the predicting accuracy by calculating variation rate of mold temp. per unit time at plural points of a mold and a standard deviation and an average of the former mold temp. and judging based on compared with each setting threshold value. CONSTITUTION:Molten metal 1 is charged into the mold 3 through a submerged nozzle 2 and also tip parts of temp. measuring elements 11-13 of thermocouples, etc., are buried along drawing direction of cast slab 4 below the molten surface level in the mold 3 at these positions. The measured mold temp. T are inputted to each differentiation circuit 20, 30, 40, subtracter 15, 25, 35, average temp. calculating circuit 16, 26, 36 and standard deviation calculating circuit 17, 27, 37 by digitalizing through A/D converter 14, and the difference between the mold temp. T and the former average temp. is found, and the mold temp. variation rate, the difference of the mold temp. and each threshold value are compared by a comparators 19, 29, 39. As the variation of the molten temp. based on the variation of the molten surface, drawing velocity, etc., is considered, the predicting accuracy is improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、連続鋳造用鋳型の温度変化を利用して鋳造中
に発生するブレークアウトを予知する方法に関し、更に
詳述すれば鋳造中の前記温度変動が大きい場合であって
もブレークアウトを高精度に予知できる方法を提供する
ものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method for predicting breakout occurring during casting by utilizing temperature changes in a continuous casting mold. The present invention provides a method that can predict breakout with high accuracy even when the temperature fluctuation is large.

〔従来技術〕[Prior art]

連続鋳造設備においてブレークアウト(BO)が発生し
、鋳片内部の未凝固溶鋼が漏出した場合は、鋳造を停止
してブレークアウトを起した鋳片の排出及び溶鋼が付着
したロール等の設備の交換をする必要があり、相当の期
間に亘って操業の停止を余儀なくされる。このため、ブ
レークアウトは連続鋳造の操業トラブルの中で最大のも
のであり、その防止対策の確立が望まれていた。
If a breakout (BO) occurs in continuous casting equipment and unsolidified molten steel inside the slab leaks, stop casting, drain the slab that has caused the breakout, and remove equipment such as rolls to which the molten steel has adhered. It would be necessary to replace it, forcing the suspension of operations for a considerable period of time. For this reason, breakout is the biggest operational trouble in continuous casting, and it has been desired to establish measures to prevent it.

ところで、引抜かれている鋳片の凝固殻が鋳型に固着し
て破断し、そこから溶鋼が漏出してこれが十分に冷却さ
れる前に鋳型下端より出ることによりブレークアウトが
発生する場合は、第7図に示すように凝固殻の破断部が
通過する鋳型部分では破断部の通過前に徐々に鋳型温度
が上昇し、破断部の通過後に徐々に降下することが知ら
れている。
By the way, if the solidified shell of the slab that is being drawn sticks to the mold and breaks, and molten steel leaks out from there and comes out from the lower end of the mold before it is sufficiently cooled, a breakout occurs. As shown in FIG. 7, it is known that in the part of the mold through which the broken part of the solidified shell passes, the temperature of the mold gradually increases before passing the broken part, and gradually decreases after passing the broken part.

このため、鋳型の銅板に熱電対等の測温素子を埋設して
これにて鋳型銅板の温度(以下これを鋳型温度という)
を測定し、測定した鋳型温度の単位時間当たりの変化率
を求めてその値と基準値との大小を監視するか(特開昭
57−115962) 、或いは測定した鋳型温度とそ
れ以前の鋳型温度の移動平均値との差を求めて、その値
と基準値との大小を監視することにより(特開昭57−
115959) 、ブレークアウトを予知することは一
応可能である。
For this reason, temperature measuring elements such as thermocouples are embedded in the copper plate of the mold to measure the temperature of the copper plate of the mold (hereinafter referred to as mold temperature).
(JP-A-57-115962), or determine the rate of change of the measured mold temperature per unit time and monitor the magnitude of that value and the reference value (JP 57-115962), or compare the measured mold temperature with the previous mold temperature. By determining the difference between the moving average value of
115959), it is possible to predict a breakout.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、鋳型温度は連続鋳造時、常に安定してい
るとは限らず、鋳型内の場面変動、引抜速度の大小、鋳
型内に投入した潤滑用パウダの不均一流入及び鋳型と鋳
片との接触面積の大小等の原因により変動が生じる。
However, the mold temperature is not always stable during continuous casting, and there are fluctuations in the scene inside the mold, large and small drawing speeds, uneven inflow of lubricating powder into the mold, and contact between the mold and slab. Variations occur due to factors such as the size of the area.

特に、中炭素鋼又は底炭素鋼を連続鋳造する場合に、第
8図に示すように単位時間(1)当たりの鋳型温度(T
)変化率(以下これを単に鋳型温度変化率という) d
T/dtを監視したときには、前記原因により生じた鋳
型温度変化率が例えば4.5℃/秒のブレークアウト予
知用のしきい値(第7図参照)と同等か又はそれよりも
大きくなることがある。また、鋳型温度(T)と移動平
均値(〒)との差(T−T)を監視した場合にもしきい
値27℃(第7図参照)と同等かまたはそれよりも大き
くなることがある。
In particular, when continuously casting medium carbon steel or bottom carbon steel, the mold temperature per unit time (1) (T
) Rate of change (hereinafter simply referred to as mold temperature change rate) d
When T/dt is monitored, the mold temperature change rate caused by the above causes should be equal to or greater than the breakout prediction threshold of, for example, 4.5°C/sec (see Figure 7). There is. Also, when monitoring the difference (T-T) between the mold temperature (T) and the moving average value (〒), it may be equal to or greater than the threshold value of 27°C (see Figure 7). .

このため、従来方法による場合には凝固殻の破断が実際
には発生していないときにもブレークアウトと予知する
頻度が高く、信頼性に欠ける。またブレークアウトを予
知すると、一般に引抜を停止するか或いは引抜速度を相
当遅くするため操業安定性が悪く、鋳片品質が低下する
For this reason, when using the conventional method, breakout is often predicted even when no breakage of the solidified shell has actually occurred, resulting in a lack of reliability. Furthermore, if a breakout is predicted, the drawing process is generally stopped or the drawing speed is considerably slowed down, resulting in poor operational stability and deterioration in slab quality.

本発明は斯かる事情に鑑みてなされたものであり、鋳型
温度を測定した時点付近でのその変化量に応じてブレー
クアウト予知のしきい値を補正し、測定した鋳型温度と
それ以前の平均鋳型温度との鋳型温度差及び補正した第
1のしきい値の大小、測定した鋳型温度の単位時間当た
りの変化率と所定の第2のしきい値との大小、前記鋳型
温度差と所定の第3のしきい値との大小及び2測定間に
おける鋳型温度差の時間変化率と所定の第4のしきい値
との大小を監視することにより、鋳造中の鋳型温度が安
定しない場合でありても高精度にブレークアウトを予知
できる方法を提供することを目的とする。
The present invention has been made in view of the above circumstances, and it corrects the breakout prediction threshold according to the amount of change in mold temperature around the time when it is measured, and uses the measured mold temperature and the previous average. The size of the mold temperature difference with the mold temperature and the corrected first threshold value, the size of the rate of change per unit time of the measured mold temperature with the predetermined second threshold value, the mold temperature difference and the predetermined value. By monitoring the magnitude of the third threshold and the time rate of change of the mold temperature difference between the two measurements and the predetermined fourth threshold, it is possible to detect cases where the mold temperature during casting is not stable. The purpose of this study is to provide a method that can predict breakouts with high accuracy.

C問題点を解決するための手段〕 本発明に係る連続鋳造におけるブレークアウト予知方法
は、連続鋳造用鋳型の複数の位置夫々で鋳型温度を測定
し、その測定時点近傍での単位時間当たりの鋳型温度変
化率と、測定時点より前の所定期間での鋳型温度の標準
偏差及び平均温度とを各位置毎に算出し、前記測定時点
での鋳型温度と算出した平均温度との差を求め、この鋳
型温度差と標準偏差に比例する第1のしきい値との大小
比較、前記鋳型温度変化率と所定の第2のしきい値との
大小比較、前記鋳型温度差と所定の第3のしきい値との
大小比較及び前記複数の位置の内の任意の2点間におけ
る鋳型温度差の単位時間当たりの変化率と所定の第4の
しきい値との大小比較を行うことによりブレークアウト
を予知することを特徴とする。
Means for Solving Problem C] The breakout prediction method in continuous casting according to the present invention measures the mold temperature at each of a plurality of positions of the continuous casting mold, and measures the temperature of the mold per unit time in the vicinity of the measurement point. Calculate the rate of temperature change, the standard deviation and average temperature of the mold temperature for a predetermined period before the measurement time for each position, find the difference between the mold temperature at the measurement time and the calculated average temperature, and calculate the difference between the mold temperature at the measurement time and the calculated average temperature. A magnitude comparison between the mold temperature difference and a first threshold proportional to the standard deviation, a magnitude comparison between the mold temperature change rate and a predetermined second threshold, and a magnitude comparison between the mold temperature difference and a predetermined third threshold. A breakout is detected by comparing the magnitude with a threshold value and the rate of change per unit time of the mold temperature difference between any two points among the plurality of positions with a predetermined fourth threshold value. Characterized by prediction.

〔作用〕[Effect]

本発明方法にあっては、連続鋳造用鋳型の複数位置夫々
で鋳型温度をより定し、その測定点付近での単位時間当
たりの鋳型温度変化率と、測定時点より前の所定期間で
の鋳型温度の標準偏差及び平均温度とを各位置毎に算出
しこの測定時点での鋳型温度と算出した平均温度との温
度差を求める。
In the method of the present invention, the mold temperature is determined at each of a plurality of positions in a continuous casting mold, and the mold temperature change rate per unit time near the measurement point and the temperature of the mold during a predetermined period before the measurement point are determined. The standard deviation and average temperature of the temperature are calculated for each position, and the temperature difference between the mold temperature at this measurement point and the calculated average temperature is determined.

そして、この鋳型温度差と標準偏差に比例する第1のし
きい値との大小、鋳型温度変化率と第2の所定のしきい
値との大小、鋳型温度差と第3の所定のしきい値との大
小及び複数の測定点間における鋳型温度の差の単位時間
当たりの変化率と第4の所定のしきい値との大小を比較
し、各値が夫々対応するしきい値を超えた場合には、ブ
レークアウトを予知する。
Then, the magnitude of the mold temperature difference and a first threshold proportional to the standard deviation, the magnitude of the mold temperature change rate and a second predetermined threshold, and the magnitude of the mold temperature difference and a third predetermined threshold. The rate of change per unit time of the difference in mold temperature between multiple measurement points is compared with the fourth predetermined threshold value, and each value exceeds the corresponding threshold value. If so, predict a breakout.

〔実施例〕〔Example〕

以下本発明を図面に基づき具体的に説明する。 The present invention will be specifically explained below based on the drawings.

第1図は本発明の実施状態を示す模式図であり、図示し
ないタンディツシュに収容された溶鋼等の溶融金属1は
その下に取付けられた浸漬ノズル2を経て一定周期で上
下振動している鋳型3へ装入される。鋳型3内の溶融金
属1は、潤滑用の投入パウダ6が鋳型3の内壁に沿って
流れ込んで形成されたパウダ膜を介して一次冷却されて
凝固殻5を形成し、これを周壁とする鋳片4は図示しな
いピンチロールにより下方に引抜かれていく。
FIG. 1 is a schematic diagram showing the state of implementation of the present invention, in which molten metal 1 such as molten steel stored in a tundish (not shown) passes through a submerged nozzle 2 installed below it, and passes through a mold which is vibrating up and down at a constant period. 3. The molten metal 1 in the mold 3 is primarily cooled through the powder film formed by the lubricating powder 6 flowing along the inner wall of the mold 3 to form a solidified shell 5, which is used as the surrounding wall of the mold. The piece 4 is pulled out downward by a pinch roll (not shown).

鋳型3の湯面レベルよりも下には鋳片4の引抜方向(矢
符方向)に沿って3箇所に熱電対等の測温素子11.1
2.13の先端が埋設されている。この測温素子11.
12.13の埋設位置については、パウダの不均一流入
、@面変動による影響を軽減すべく場面レベルの下方5
0寵より下の位置が好ましい。
Temperature measuring elements 11.1 such as thermocouples are installed at three locations below the hot water level of the mold 3 along the drawing direction (arrow direction) of the slab 4.
The tip of 2.13 is buried. This temperature measuring element 11.
12. Regarding the burial position of 13, in order to reduce the influence of uneven inflow of powder and @ surface fluctuation,
A position below 0 is preferable.

各測温素子11.12.13にて測定された鋳型温度T
はA/D変換器14にてアナログ/ディジタル変換され
て夫々微分回路20.30.40、減算器15.25゜
35、平均温度算出回路16.26.36及び標準偏差
算出回路17.27.37へ与えられる。平均温度算出
回路16.26.36及び標準偏差算出回路17.27
.37は夫々A /D変換器14がらの入力信号を例え
ば0.5秒乃至1秒の所定ピンチ(Δt)で取込み、最
新の入力信号を含むそれ以前のm個分の人力信号を記憶
、更新し、平均温度算出回路16.26.36は記憶し
ている信号のうちで記憶順位の若い方からn個分の信号
の平均温度〒を求め、これを標準偏差算出回路17.2
7.37及び減算器15.25.35に与える。
Mold temperature T measured by each temperature measuring element 11, 12, 13
are analog/digital converted by the A/D converter 14, and are then outputted to a differentiating circuit 20, 30, 40, a subtracter 15, 25° 35, an average temperature calculating circuit 16, 26, 36, and a standard deviation calculating circuit 17, 27, respectively. Given to 37. Average temperature calculation circuit 16.26.36 and standard deviation calculation circuit 17.27
.. 37 each takes in the input signal from the A/D converter 14 at a predetermined pinch (Δt) of, for example, 0.5 seconds to 1 second, and stores and updates the previous m human input signals including the latest input signal. The average temperature calculation circuit 16.26.36 calculates the average temperature 〒 of n signals from the lowest storage order among the stored signals, and calculates the average temperature 〒 of the stored signals, and calculates the average temperature 〒 of the stored signals, and calculates the average temperature 〒 of the stored signals, and calculates the average temperature 〒 of the n signals starting from the lowest storage order among the stored signals.
7.37 and subtractor 15.25.35.

減算器15.25.35は入力した鋳型温度Tと平均温
度〒との差(T−〒)を求め、これを比較器19゜29
、39に与える。
The subtractor 15, 25, 35 calculates the difference (T - 〒) between the input mold temperature T and the average temperature 〒, and this is sent to the comparator 19゜29.
, 39.

微分回路20.30.40には夫々単位時間当たりの鋳
型温度変化率dT/dtを数値微分により求めるべく公
知の下記(11式が設定されている。
The following well-known equations (11) are set in the differentiating circuits 20, 30, and 40 to obtain the mold temperature change rate dT/dt per unit time by numerical differentiation.

dT/dt=      (−To +87+ −8T
3 + 74 ) −(1)12・ Δt このT1)式は、ピッチΔtで取込んだ鋳型温度のうち
、現測定時点での鋳型温度(’ro )とそれよりも1
,3.4回前に取込んだ鋳型温度(’rI+73 * 
74 )の4つを用いて、鋳型温度変化率を算出するも
のである。
dT/dt= (-To +87+ -8T
3 + 74) - (1) 12・Δt This T1) formula is the mold temperature at the current measurement point ('ro) and 1
, 3. Mold temperature taken four times previously ('rI+73 *
74) is used to calculate the mold temperature change rate.

なお、上記+11式のTo、・・・、T4は取込みピン
チ毎の測定値そのものを使用せずに複数の測定値が得ら
れる期間を複数設定してその各期間での平均値を用いて
もよい。また、鋳型温度変化率dT/dtは上記(11
式に限らず他の微分係数を求める式を用いてもよい。
In addition, for To,..., T4 in the above +11 formula, instead of using the measured value itself for each capture pinch, it is also possible to set multiple periods in which multiple measured values can be obtained and use the average value for each period. good. In addition, the mold temperature change rate dT/dt is the above (11
In addition to the formula, other formulas for calculating differential coefficients may be used.

微分回路20.30.40は入力信号と上記(11式と
により鋳型温度変化率dT/dtを求めてこれを比較器
19、29.39へ与える。
The differentiating circuits 20, 30, 40 determine the mold temperature change rate dT/dt from the input signal and the above equation (11) and provide this to the comparators 19, 29, 39.

標準偏差算出回路17.27.37は前同様のn個分の
信号の標準偏差σを求め、これを積算器18.28゜3
8へ与える。積算器18.28.38には定数に1が図
示しない入力設定器から入力されるようになっており、
積算器18.28.38は定数Klと標準偏差σとの積
に1 ・σを求めて比較器19.29.39へ出力する
The standard deviation calculation circuit 17.27.37 calculates the standard deviation σ of the n signals as before, and calculates the standard deviation σ of the n signals and sends it to the integrator 18.28゜3.
Give to 8. A constant of 1 is input to the integrator 18, 28, and 38 from an input setting device (not shown).
The integrator 18.28.38 calculates 1·σ as the product of the constant Kl and the standard deviation σ, and outputs it to the comparator 19.29.39.

また、A/Dfi換器14にてアナログ/ディジタル変
換された各測温素子11.12.13の測定鋳型温度T
 a + T b + T cの内、T a + T 
bは減算器45に、Tb。
In addition, the mold temperature T measured by each temperature measuring element 11, 12, 13 converted from analog to digital by the A/Dfi converter 14.
Among a + T b + T c, Ta + T
b is sent to the subtractor 45, and Tb is sent to the subtracter 45.

Tcは減算器55に、Ta、Tcは減算器65に与えら
れる。減算器45.55.65はA/D変換器14から
の2つの入力信号を、例えば0.5秒乃至1秒の所定ピ
ッチ(Δt)で取込む。この取込み信号については、鋳
型3の周りに設ける電磁攪拌装置等による雑音の影響を
除去すべく、例えばA/D変換器14から例えば数10
ミリ秒ピッチで出力される信号の複数個分の平均値を用
いる。
Tc is supplied to a subtractor 55, and Ta and Tc are supplied to a subtracter 65. The subtracters 45, 55, 65 take in the two input signals from the A/D converter 14 at a predetermined pitch (Δt) of, for example, 0.5 seconds to 1 second. In order to eliminate the influence of noise caused by an electromagnetic stirring device etc. provided around the mold 3, this input signal is sent from the A/D converter 14, for example, by several tens of seconds.
The average value of multiple signals output at millisecond pitch is used.

そして減算器45.55.65は取込んだ2つの鋳型温
度の差ΔT (=Tb −Ta 、 =Tc −Tb 
、 =Tc −Ta )を求め、これを記憶すると共に
最新の記憶信号とそれより前の連続4ピッチ分の記憶信
号、つまり合計5ピンチ分の記憶信号を微分回路50.
60.70へ与える。
Then, the subtractor 45, 55, 65 calculates the difference ΔT between the two mold temperatures (=Tb −Ta, =Tc −Tb
, =Tc - Ta), and stores this, and also divides the latest stored signal and the stored signals for 4 consecutive pitches before it, that is, the stored signals for a total of 5 pinches, into the differentiating circuit 50.
Give to 60.70.

微分回路50.60.70には、5ピッチ分の信号の中
間時点、つまり取込みピッチが0.5秒の場合には現測
定時点よりも1秒前の時点における鋳型温度差ΔTの単
位時間当たりの変化率dΔT/dtを求めるべく、公知
の下記(2)式が設定されている。
The differentiating circuits 50, 60, and 70 calculate the mold temperature difference ΔT per unit time at the intermediate point of the signal for 5 pitches, that is, when the acquisition pitch is 0.5 seconds, 1 second before the current measurement point. In order to find the rate of change dΔT/dt, the following well-known formula (2) is set.

dΔT/dt−d (TL (2)−TO+2)) /
dt=1 / (12・Δt )  ・((TL (4
1−TIJ (4))−8(TL (31−T(1(3
)) +9(TL(1)−TU(1)) −(TL (0)−TO(01) ) )・・・(2) 但し、TLは2測定地点の白下側の温度TUは2測定地
点の白土側の温度 TL (0)−TO(01、TL (ll−TU (1
)、 ・。
dΔT/dt-d (TL (2)-TO+2)) /
dt=1/(12・Δt) ・((TL (4
1-TIJ (4))-8(TL (31-T(1(3)
)) +9 (TL (1) - TU (1)) - (TL (0) - TO (01) ) )... (2) However, TL is the temperature on the lower white side of the 2 measurement points TU is 2 measurements Temperature on the white clay side of the point TL (0)-TO(01, TL (ll-TU (1
), ・.

TL (4) −TIJ (4) :現測定時点よリコ
レヲ含めて連続5ビフチ分夫々のTLとTUとの差 微分回路50.60.70は(2)式に基づいて算出し
たdΔT/dtを比較器49.59.69へ与える。
TL (4) -TIJ (4): The difference differential circuit 50, 60, and 70 between TL and TU for each of the 5 consecutive years including the recall from the current measurement time calculates dΔT/dt calculated based on equation (2). Provided to comparator 49.59.69.

なお、dΔT/dtは、上記(2)式に替えて微分係数
の算出式一般を用いて算出してもよいことは勿論である
It goes without saying that dΔT/dt may be calculated using a general differential coefficient calculation formula instead of the above equation (2).

比較器19.29.39には所定の異なる2しきい値に
2.にコ及び下記T31. (4)、 (5)式が設定
されており、比較器19.29.39は、入力した3種
の信号が、取込みピッチ毎に(31,(4)、 (51
式を各別に満足するか否かを判定する。一方、比較器4
9.59.69には所定のしきい値に、及び下記(6)
式が設定されており、比較器49.59.69は入力し
た信号が取込みピッチ毎に(6)式を満足するか否かを
判定する。
The comparators 19, 29, and 39 have two different predetermined threshold values. Niko and T31 below. Equations (4) and (5) are set, and the comparators 19, 29, and 39 input three types of signals (31, (4), (51) for each acquisition pitch.
Determine whether each expression is satisfied. On the other hand, comparator 4
9.59.69 at the predetermined threshold, and (6) below.
A formula is set, and the comparators 49, 59, and 69 determine whether the input signal satisfies the formula (6) for each acquisition pitch.

(T−T)≧に1 ・σ       ・・・(3)d
T/dt≧に2            ・・・(4)
(T−T)≧に3          ・・・(5)d
ΔT/dt>K4          ・・・(6)ソ
シて例えば5秒を180判定期間としてその間に、(3
)、 +41. (5)、 (6)各式を満足する時点
がタイミング的に異なりてもすべて存在する場合には警
報器41にて警報を発せしめると共に、図示しない制御
装置へ異常発生信号を出力する。前記BO判定期間は取
込みピンチ毎にそのピッチで移動するように設ける。
(T-T)≧1 ・σ ... (3) d
T/dt≧2...(4)
(T-T)≧3...(5)d
ΔT/dt>K4... (6) For example, if 5 seconds is the 180 judgment period, (3
), +41. (5) and (6) Even if the points at which each equation is satisfied are different in terms of timing, if all of them exist, the alarm 41 issues an alarm and an abnormality occurrence signal is output to a control device (not shown). The BO determination period is set to move at a pitch for each capture pinch.

但し、定数K 1* K2 * K 3夫々は測温する
鋳型位置に応じて、また定数に、は2つの2!111定
点の組合せに応じて異なる値を用いてもよい。
However, the constants K1*K2*K3 may each have different values depending on the mold position where the temperature is measured, and the constants may have different values depending on the combination of the two 2!111 fixed points.

前記制御装置(図示せず)は異常発生信号を入力すると
、浸漬ノズル2の中途に設けたスライディングノズル部
7を油圧シリンダ8にて駆動して、浸漬ノズル2を一端
閉じると共に図示しないピンチロールの回転を停止する
。これについては浸漬ノズル2を僅かに開けた状態にす
ると共に引抜速度を相当低下させるようにしてもよい。
When the control device (not shown) receives an abnormality occurrence signal, it drives the sliding nozzle section 7 provided midway through the immersion nozzle 2 with a hydraulic cylinder 8, closes one end of the immersion nozzle 2, and operates a pinch roll (not shown). Stop rotation. In this regard, the immersion nozzle 2 may be left slightly open and the drawing speed may be considerably reduced.

このように構成された予知装置による本発明方法を以下
に説明する。
The method of the present invention using the prediction device configured as described above will be explained below.

まず、前記m、n及びKl * K2 + K3 、に
4を次のように定める。連続鋳造する鋼種が中炭素鋼又
は低炭素鋼である場合には、鋳型温度は第2図(横軸に
時間をとり縦軸に鋳型温度をとっている)に示す如く温
度変化に周期があり、その周期は約20〜30秒である
。なお、第2図は鋳型の上下方向に異なる3位置での鋳
型温度Ta+ Tb+ Tcについて示している。この
ためnは30秒間に測定された信号のうち高精度で予知
できる数、例えば0.5秒毎に記憶するとして約60個
に定める。
First, 4 is determined for m, n and Kl*K2+K3 as follows. When the steel type to be continuously cast is medium carbon steel or low carbon steel, the mold temperature has a periodic temperature change as shown in Figure 2 (time is plotted on the horizontal axis and mold temperature is plotted on the vertical axis). , the period is about 20-30 seconds. Note that FIG. 2 shows mold temperatures Ta+Tb+Tc at three different positions in the vertical direction of the mold. For this reason, n is set to a number that can be predicted with high accuracy among the signals measured in 30 seconds, for example, about 60, assuming that the signals are stored every 0.5 seconds.

また、凝固殻が破断した部分を測定する場合は、第3図
に示す如く鋳型温度がピーク値に達してから上昇直前の
元の温度に戻るまでの時間が5〜15秒である。このた
め、mはこの5〜15秒に相当する温度変化期間が予知
に必要な期間に含まれないようにするのが良く、5〜1
5秒に上記30秒を加えた35〜45秒間に連続的に測
定された信号のうち高精度で予知できるピンチの数、例
えば0.5秒毎に記憶するとして70〜90個に定める
In addition, when measuring the part where the solidified shell is broken, the time from when the mold temperature reaches the peak value until it returns to the original temperature just before rising is 5 to 15 seconds, as shown in FIG. Therefore, m should be set so that the temperature change period equivalent to 5 to 15 seconds is not included in the period necessary for prediction, and m is 5 to 15 seconds.
The number of pinches that can be predicted with high accuracy among the signals continuously measured for 35 to 45 seconds (5 seconds plus the above 30 seconds) is determined to be 70 to 90, for example, to be stored every 0.5 seconds.

また、K、、に2.に3.に、の値については夫々鋳型
寸法、引抜速度等により異なるが、以下に説明する本発
明を行った結果に基づき、凝固殻破断が起こる臨界の温
度変化量、変化率に定める。
Also, K, 2. 3. The values of and differ depending on mold dimensions, drawing speed, etc., but are determined to be the critical temperature change amount and change rate at which solidification shell rupture occurs, based on the results of the present invention described below.

例えばに1は5〜10、K2は2〜b は5〜lO℃、K、は1.5〜b 斯かる準備が終了すると、連続鋳造を開始し、その後引
抜を開始すると予知装置を作動させる。
For example, 1 is 5 to 10, K2 is 2 to b, 5 to lO ℃, K is 1.5 to b. When such preparation is completed, continuous casting is started, and then when drawing starts, the prediction device is activated. .

測温素子11.12.13にて各位置の鋳型温度Tが測
定されると、平均温度算出回路16.26.36及び標
準偏差算出回路17.27.37は鋳型温度T信号を記
憶し、記憶信号の数がm個となるまで演算を行わず、ま
た出力しない、そして、m個目の信号が記憶されると、
そのうち記憶順位が若い方からn11分の信号の平均温
度Tと標準偏差σを夫々算出し、出力する。
When the mold temperature T at each position is measured by the temperature measuring element 11.12.13, the average temperature calculation circuit 16.26.36 and the standard deviation calculation circuit 17.27.37 store the mold temperature T signal, No calculation is performed or output until the number of stored signals reaches m, and when the m-th signal is stored,
The average temperature T and standard deviation σ of the signals of n11 minutes from the youngest memory order are calculated and output.

減算器15.25.35はm個目に入力した鋳型温度T
と平均温度Tとの差(T−T)を求める。
Subtractor 15, 25, 35 is the m-th input mold temperature T
and the average temperature T (T-T).

また積、算器1B、 28.38は定数に1と標準偏差
σとの積(Kl  ・σ)を求める。
Also, the product calculator 1B, 28.38 calculates the product (Kl·σ) of the constant 1 and the standard deviation σ.

微分回路20.30.40はA/D変換器14からの鋳
型温度に関する信号を入力すると、(1)式に基づいて
時間変化率dT/dtを算出し、これを比較器19゜2
9、39へ与える。
When the differential circuits 20, 30, and 40 receive a signal related to the mold temperature from the A/D converter 14, they calculate the time rate of change dT/dt based on equation (1), and calculate the time rate of change dT/dt using the comparator 19.
Give to 9, 39.

比較器19.29.39は311の入力信号、つまりT
−〒+に1  ・σ、 dT/dtが上記(31,(4
)、 (51式を満足するか否かを各式毎に判定する。
Comparator 19.29.39 receives the input signal of 311, namely T
−〒+1 ・σ, dT/dt is above (31, (4
), (Determine whether each formula satisfies formula 51 or not.

次いで、m+1個目以降の信号が平均温度算出回路16
等及び標準偏差算出回路17等に記憶されると、前同様
にして繰り返す。
Next, the m+1th and subsequent signals are sent to the average temperature calculation circuit 16.
etc. and stored in the standard deviation calculation circuit 17, etc., the same procedure as before is repeated.

減算器45.55.65は入力した2測定点の鋳型温度
差ΔTを求める。また微分回路50.60.70は減算
器45.55.65から温度差に関する信号を入力する
と前記(2)式に基づいてdΔT/dtを算出し、これ
を比較器49.59.69に与える。
Subtractors 45, 55, and 65 obtain the mold temperature difference ΔT between the two input measurement points. Further, when the differential circuit 50.60.70 receives a signal related to the temperature difference from the subtractor 45.55.65, it calculates dΔT/dt based on the above equation (2), and provides this to the comparator 49.59.69. .

このようにして信号処理を行っている間に、6個の比較
器において成るBO判定期間に、(31,(4t。
While performing signal processing in this manner, (31, (4t).

+51. +6)各式を満足する時点がタイミング的に
異なってもすべて存在すると判定されると、該当する比
較器はブレークアウトと予知し、警報器41にて警報を
発せしめると共に図示しない制御装置に異常発生信号を
出力する。
+51. +6) If it is determined that all the points that satisfy each equation are present even if the timing is different, the corresponding comparator predicts a breakout, causes the alarm 41 to issue an alarm, and also alerts the control device (not shown) to an abnormality. Outputs the generated signal.

制御装置は前述の如くスライディングノズル部7及び図
示しないピッチロールを制御して一旦装入及び引抜を停
止する。
As described above, the control device controls the sliding nozzle section 7 and the pitch roll (not shown) to temporarily stop charging and withdrawing.

これにより、凝固殻が破断してその破断部から未凝固溶
鋼が漏出してもブレークアウトを未然に防止できる。
Thereby, even if the solidified shell is broken and unsolidified molten steel leaks from the broken part, breakout can be prevented.

なお、本実施例ではブレークアウト予知の判定を前記(
3)式にて行っているが、本発明はこれに限らず下記(
7)式を用いてもよいことは勿論である。
In addition, in this example, the breakout prediction is determined according to the above (
3), but the present invention is not limited to this, but the following (
Of course, formula 7) may also be used.

(T−T)/σ≧に、           ・・・(
7)また、本実施例では測温素子の設定個数を3個とし
たので、2測定地点の温度差の組合せは3通りであるが
、これに限らす測温素子の設定個数は21H以上であれ
ば何個でもよい0例えばn個の測温素子を引抜方向に離
隔させて設けた場合には、nC2−%・n(n−1)通
りの組合せがある。
(T-T)/σ≧, ...(
7) In addition, in this example, the set number of temperature measuring elements is three, so there are three combinations of temperature differences between two measurement points, but the set number of temperature measuring elements is limited to 21H or more. For example, if n temperature measuring elements are provided spaced apart in the drawing direction, there are nC2-%·n (n-1) combinations.

更に測温素子の設定位置は引抜方向に限らず、鋳型3の
幅方向または厚み方向に離隔させて測温素子を設けても
よい。但し、鋳型温度の引抜方向測定位置としては、凝
固殻破断を検出して操業条件を変更し、これによりブレ
ークアウトを未然に防止できる時間的に余裕のある位置
にするのが好ましい。
Furthermore, the setting position of the temperature measuring element is not limited to the drawing direction, but the temperature measuring element may be provided at a distance in the width direction or thickness direction of the mold 3. However, it is preferable to measure the temperature of the mold in the drawing direction at a position where there is enough time to detect breakage of the solidified shell and change the operating conditions, thereby preventing breakout.

〔効果〕〔effect〕

第4図は、丸鋳片連続鋳造機の内径:  187ta。 Figure 4 shows the inner diameter of a continuous caster for round slabs: 187ta.

長さ:  900mmの鋳型銅板に、円周方向120°
ピツチの3方向で鋳型上端より200.300.400
mの各位置に測温素子11.12.13を内壁面から5
fiの深さに埋設して、引抜速度2.0m/分で本発明
を実施し、その間凝固殻が破断しなかった場合の約6分
間の結果をまとめた図であり、本発明の予知精度につい
て示したものである。図中(a)は引抜速度、(1))
は鋳型温度、(C1はTaについての(T−T) 及び
(T−〒)/σ、+d+は同じ(TaについてのdT/
dtの各推移を夫々示している。
Length: 120° in the circumferential direction on a 900mm molded copper plate
200.300.400 from the top of the mold in 3 directions of the pitch
Temperature measuring elements 11, 12, 13 are placed at each position of 5 m from the inner wall surface.
Fig. 2 is a diagram summarizing the results for about 6 minutes when the solidified shell did not break during the present invention when the solidified shell was buried at a depth of fi and the present invention was carried out at a pulling speed of 2.0 m/min, and the prediction accuracy of the present invention is shown. This is what is shown. In the figure, (a) is the drawing speed, (1))
is the mold temperature, (C1 is (T-T) and (T-〒)/σ for Ta, +d+ is the same (dT/ for Ta)
Each transition of dt is shown.

ここでdT/dtにより判定する場合1.つまり従来方
法による場合にはしきい値の5℃/秒を6分間の間に8
回も超え、誤警報を発し、また、(T−T)により判定
する場合、つまり従来方法による場合にはしきい値の1
0℃を2回超えて誤警報を発した。これに対して本発明
による場合にはに1が5(℃)のときに誤警報を1回も
発することがなく、前述のパウダの不均一流入等が発生
してもこれに影響を受けずに凝固殻破断の検出、即ちブ
レークアウト予知が可能である。
Here, when determining by dT/dt 1. In other words, when using the conventional method, the threshold value of 5°C/sec is
If the judgment is made by (T-T), that is, if the conventional method is used, the threshold value of 1
False alarms were issued when the temperature exceeded 0°C twice. On the other hand, in the case of the present invention, a false alarm is not issued even once when 1 is 5 (℃), and even if the aforementioned uneven inflow of powder occurs, it is not affected by this. It is possible to detect rupture of the solidified shell, that is, predict breakout.

前記(3)式の大小関係においてブレークアウトを予知
する場合であっても、例えば第5図に示すように場面変
動或いは引抜速度の変化によって鋳型温度が変化すると
きには、Ta、 ’rbにおける(T−丁)/σの値が
夫々10.3.7.7となり、何れもKl  (−5)
より大きくなって誤警報が出る。ところがこのような場
合でも前記(6)式における大小関係にて比較すれば、
警報を出力しない。
Even when predicting a breakout based on the magnitude relationship in equation (3) above, if the mold temperature changes due to a change in the scene or a change in the drawing speed, as shown in FIG. - ding)/σ are respectively 10.3 and 7.7, and both are Kl (-5)
It gets louder and causes a false alarm. However, even in such a case, if we compare the magnitude relationship in equation (6) above, we get
Does not output alarm.

従って、鋳型内の場面変動、引抜速度の大きさ、パウダ
の不均一流入、鋳型と鋳片との接触面積変化等により鋳
型温度が変化してもそれに影響を受けずにブレークアウ
トを確実に予知できる。
Therefore, breakout can be reliably predicted without being affected by changes in the mold temperature due to changes in the scene inside the mold, the magnitude of the drawing speed, uneven inflow of powder, changes in the contact area between the mold and the slab, etc. can.

第6図は本発明によりブレークアウトを予知した場合の
鋳型温度Ta、 Tb、 Tcを他の操業条件と共にま
とめた図であり、(a)は引抜速度と鋳型内湯面レベル
の推移、また(b)は鋳型温度Ta、 tb、 Tcの
推移を示している。この場合には第4図の場合と予知精
度を変更して、具体的にはに1を7としてしきい値を高
くして実施しており、この場合もパウダの不均一流入等
があって鋳型温度が変化しても誤警報を発することがな
く、実際に凝固殻が破断して鋳型温度が変化したときに
のみ警報を発した。
FIG. 6 is a diagram summarizing the mold temperatures Ta, Tb, and Tc together with other operating conditions when breakout is predicted according to the present invention. ) shows the changes in mold temperature Ta, tb, and Tc. In this case, the prediction accuracy was changed from the case in Figure 4, and the threshold value was increased from 1 to 7. In this case as well, there was uneven inflow of powder, etc. No false alarm was issued even when the mold temperature changed, and an alarm was issued only when the solidified shell actually ruptured and the mold temperature changed.

この警報により一旦引抜速度を停止し、凝固殻が破断し
た部分を鋳型内で長時間冷却して凝固殻をより厚くして
、つまりブレークアウトが発生しない状態にして再び引
抜を開始した。
In response to this alarm, the drawing speed was temporarily stopped, and the part where the solidified shell was broken was cooled for a long time in the mold to make the solidified shell thicker, that is, in a state where no breakout occurred, and drawing was started again.

鋳造終了後、その部分を検査すると溶鋼の漏出部がみら
れ、ブレークアウトを精度よく予知できることを確認し
た。
After casting was completed, inspection of the area revealed leakage of molten steel, confirming that breakouts could be predicted with high accuracy.

また、ブレークアウトの警報を発した時間付近での鋳型
温度のピークの熱電対検出時間差と熱電対間の離隔距離
とから凝固殻破断部の降下速度を求めてみると引抜速度
2m/分よりも遅く、1mZ分である。この速度で破断
部が移動していくと仮定すると、ブレークアウトが発生
する約42秒前にブレークアウトの予知がなされたこと
になり、より速い引抜速度3.5m/分で連続鋳造する
場合にも約24秒前にブレークアウトを予知でき、時間
的余裕をもって凝固殻破断に対処でき、ブレークアウト
を確実に防止できる。
In addition, when calculating the descending speed of the solidified shell fracture from the thermocouple detection time difference of the peak mold temperature around the time when the breakout alarm was issued and the separation distance between the thermocouples, it was found that the drawing speed was less than 2 m/min. It is slow, 1 mZ minute. Assuming that the fracture moves at this speed, the breakout would have been predicted approximately 42 seconds before it occurred, which means that when continuous casting is performed at a faster drawing speed of 3.5 m/min, Breakout can be predicted about 24 seconds in advance, allowing time to deal with rupture of the solidified shell and reliably preventing breakout.

また、本発明は測温素子を鋳型の上下方向に2個以上設
ける場合には、次のようにすると更に確実にブレークア
ウトを予知できる。
Further, in the present invention, when two or more temperature measuring elements are provided in the vertical direction of the mold, breakout can be predicted more reliably by the following procedure.

鋳型の上下方向に複数設けた温度素子夫々にて凝固殻破
断部が時間差をもって検出されるとき、その移行時間t
B (秒)は下記(8)式にて表わされることが一般に
知られている。
When a solidified shell fracture is detected with a time difference by each of the temperature elements provided in the vertical direction of the mold, the transition time t
It is generally known that B (seconds) is expressed by the following equation (8).

但し、L:上下方向に離隔した測温素子間距離a;定数
(0,5〜0.9) vc:引抜速度(m/分) したがって、各測温素子からの信号を処理する各比較器
19.29.39.49.59.69の出側にタイマ機
能を有する演算器を設け、上側の測温素子に関する比較
器から凝固殻破断の検出信号(前記異常発生信号の出力
条件にて出力され、異常発生信号とは異なる信号)を入
力し、それからtB秒程度経たのちにその直下の測温素
子に関する比較器から同様の凝固殻破断の検出信号を入
力するとブレークアウトと予知し、これにより警報を発
し、また制御装置へ異常発生信号を出力する。これによ
り、より確実にブレークアウトを予知できる。
However, L: distance a between temperature measuring elements separated in the vertical direction; constant (0.5 to 0.9) vc: drawing speed (m/min) Therefore, each comparator that processes the signal from each temperature measuring element 19.29.39.49.59.69 A computing unit with a timer function is provided on the output side, and a detection signal of solidified shell rupture (outputted under the output condition of the abnormality signal) is output from the comparator related to the upper temperature measuring element. If a signal different from the abnormality occurrence signal) is input, and then after about tB seconds, a similar detection signal of solidified shell rupture is input from the comparator for the temperature measuring element directly below, a breakout is predicted, and this causes a breakout. It issues an alarm and also outputs an abnormality signal to the control device. This allows breakouts to be predicted more reliably.

以上詳述した如く本発明は、連続鋳造用鋳型の複数位置
の鋳型温度を測定し、その測定時点での鋳型温度及びそ
れ以前の所定期間での平均鋳型温度の鋳型温度差と前記
所定期間での鋳型温度の標準偏差にて補正したしきい値
との大小比較、鋳型温度変化率と所定の第2のしきい値
との大小比較、前記鋳型温度差と所定の第3のしきい値
との大小比較及び2点間の鋳型温度差の時間変化率と所
定の第4のしきい値との大小比較を行うので、鋳型内の
場面変動、引抜速度の大きさ、パウダの不均一流入、鋳
型と鋳片との接触面積変化等により鋳型温度が変化して
もそれに影響を受けずにブレークアウトを確実に予知で
き、信頼性の向上を図れ、また従来では誤警報により操
業条件を変更してこのために鋳片品質が低下していたの
を防止できる等優れた効果を奏する。
As described in detail above, the present invention measures the mold temperature at multiple positions of a continuous casting mold, and compares the mold temperature difference between the mold temperature at the time of measurement and the average mold temperature in the previous predetermined period, and A comparison between the mold temperature difference and a predetermined second threshold value, a comparison between the mold temperature change rate and a predetermined second threshold value, and a comparison between the mold temperature difference and a predetermined third threshold value. and the temporal change rate of the mold temperature difference between two points with a predetermined fourth threshold. Breakouts can be reliably predicted without being affected by changes in mold temperature due to changes in the contact area between the mold and the slab, improving reliability. This has excellent effects such as preventing deterioration in slab quality due to leverage.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施状態を示す模式図、第2図は鋳型
温度変化の周期の説明図、第3図は本発明の標準偏差、
平均温度を算出する期間の説明図、第4. 5. 6図
は本発明の詳細な説明図、第7゜8図は従来技術の問題
点の説明図である。 3・・・鋳型 4・・・鋳片 11.12.13・・・
測温素子15、25.35.45.55.65・・・減
算器 16.26.36・・・平均温度算出回路 17
.27.37・・・標準偏差算出回路 18.28.3
8・・・積算器 19.29.39.49.59゜69
・・・比較器 20.30.40.50.60.70・
・・微分回路41・・・警報器 特 許 出願人  住友金属工業株式会社代理人 弁理
士  河  野  登  人界 5 配 時 間        本 蒸 212+ 89間 第 3 図 吟 FI!(分) 纂 6 目 第71)        算80 .1 0      +      2     3    
 4     5吟 藺(分) Q+      2     34     5吟 t
ill(分) 0       +       2      3 
     4      5的 till(’d> 第 4 図
Fig. 1 is a schematic diagram showing the implementation state of the present invention, Fig. 2 is an explanatory diagram of the cycle of mold temperature change, Fig. 3 is the standard deviation of the present invention,
Explanatory diagram of the period for calculating the average temperature, 4th. 5. FIG. 6 is a detailed explanatory diagram of the present invention, and FIGS. 7-8 are explanatory diagrams of problems in the prior art. 3... Mold 4... Slab 11.12.13...
Temperature measuring element 15, 25.35.45.55.65...Subtractor 16.26.36...Average temperature calculation circuit 17
.. 27.37...Standard deviation calculation circuit 18.28.3
8... Integrator 19.29.39.49.59゜69
... Comparator 20.30.40.50.60.70・
... Differential circuit 41 ... Alarm device patent Applicant Sumitomo Metal Industries Co., Ltd. Agent Patent attorney Noboru Kono Jinkai 5 Time distribution Honmoku 212 + 89 3 Zugin FI! (minutes) 6th 71st) Arithmetic 80. 1 0 + 2 3
4 5 gin (min) Q+ 2 34 5 gin t
ill (minutes) 0 + 2 3
4 5 till('d> Fig. 4

Claims (1)

【特許請求の範囲】[Claims] 1、連続鋳造用鋳型の複数の位置夫々で鋳型温度を測定
し、その測定時点近傍での単位時間当たりの鋳型温度変
化率と、測定時点より前の所定期間での鋳型温度の標準
偏差及び平均温度とを各位置毎に算出し、前記測定時点
での鋳型温度と算出した平均温度との差を求め、この鋳
型温度差と標準偏差に比例する第1のしきい値との大小
比較、前記鋳型温度変化率と所定の第2のしきい値との
大小比較、前記鋳型温度差と所定の第3のしきい値との
大小比較及び前記複数の位置の内の任意の2点間におけ
る鋳型温度差の単位時間当たりの変化率と所定の第4の
しきい値との大小比較を行うことによりブレークアウト
を予知することを特徴とする連続鋳造におけるブレーク
アウト予知方法。
1. Measure the mold temperature at each of multiple positions of the continuous casting mold, and calculate the mold temperature change rate per unit time near the measurement point, and the standard deviation and average of the mold temperature for a predetermined period before the measurement point. The temperature is calculated for each position, the difference between the mold temperature at the time of measurement and the calculated average temperature is determined, and the magnitude of this mold temperature difference is compared with a first threshold proportional to the standard deviation. Comparing the mold temperature change rate with a predetermined second threshold value, comparing the mold temperature difference with a predetermined third threshold value, and comparing the mold temperature between any two points among the plurality of positions. A breakout prediction method in continuous casting, characterized in that a breakout is predicted by comparing the rate of change of temperature difference per unit time with a predetermined fourth threshold.
JP3409587A 1987-02-17 1987-02-17 Method for predicting breakout in continuous casting Granted JPS63203260A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3409587A JPS63203260A (en) 1987-02-17 1987-02-17 Method for predicting breakout in continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3409587A JPS63203260A (en) 1987-02-17 1987-02-17 Method for predicting breakout in continuous casting

Publications (2)

Publication Number Publication Date
JPS63203260A true JPS63203260A (en) 1988-08-23
JPH0556223B2 JPH0556223B2 (en) 1993-08-19

Family

ID=12404716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3409587A Granted JPS63203260A (en) 1987-02-17 1987-02-17 Method for predicting breakout in continuous casting

Country Status (1)

Country Link
JP (1) JPS63203260A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0557412A (en) * 1991-08-28 1993-03-09 Nippon Steel Corp Method for predicting constrained breakout in continuous casting
JP2015167956A (en) * 2014-03-05 2015-09-28 Jfeスチール株式会社 Breakout prediction method in continuous casting facility

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5565124A (en) * 1978-11-10 1980-05-16 Mitsubishi Atom Power Ind Inc Thermal flow flux meter
JPS58148061A (en) * 1982-02-26 1983-09-03 Kawasaki Steel Corp Method for predicting breakout in continuous casting
JPS6061151A (en) * 1983-09-14 1985-04-08 Kawasaki Steel Corp Foreseeing method of breakout
JPS6146362A (en) * 1985-05-02 1986-03-06 Nippon Steel Corp Detection of rupture of casting steel in continuous casting mold

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5565124A (en) * 1978-11-10 1980-05-16 Mitsubishi Atom Power Ind Inc Thermal flow flux meter
JPS58148061A (en) * 1982-02-26 1983-09-03 Kawasaki Steel Corp Method for predicting breakout in continuous casting
JPS6061151A (en) * 1983-09-14 1985-04-08 Kawasaki Steel Corp Foreseeing method of breakout
JPS6146362A (en) * 1985-05-02 1986-03-06 Nippon Steel Corp Detection of rupture of casting steel in continuous casting mold

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0557412A (en) * 1991-08-28 1993-03-09 Nippon Steel Corp Method for predicting constrained breakout in continuous casting
JP2015167956A (en) * 2014-03-05 2015-09-28 Jfeスチール株式会社 Breakout prediction method in continuous casting facility

Also Published As

Publication number Publication date
JPH0556223B2 (en) 1993-08-19

Similar Documents

Publication Publication Date Title
US5020585A (en) Break-out detection in continuous casting
JPS6353903B2 (en)
JP2012139713A (en) Method for predicting breakout
JPS63203260A (en) Method for predicting breakout in continuous casting
JPH0556224B2 (en)
JPS63119963A (en) Method for predicting breakout in continuous casting
JPH0790343B2 (en) Breakout prediction method in continuous casting
JPH06304727A (en) Device for controlling casting velocity
JPH01210160A (en) Method for predicting longitudinal crack in continuous casting
JP3549318B2 (en) Unsteady bulging detection method in continuous casting
JP6079670B2 (en) Breakout prediction method in continuous casting equipment.
JPS63104766A (en) Predicting method for breakout in continuous casting
US5482106A (en) Process for the casting of metals in a continuous casting installation with continuous strand withdrawal
JP2668872B2 (en) Breakout prediction method in continuous casting.
JP3188148B2 (en) Continuous casting machine
JPH0437458A (en) Method for predicting breakout of continuous casting mold
JPH03180261A (en) Method for predicting breakout
JP2016215236A (en) Method for predicting breakout in continuous casting, breakout prevention method, method for measuring thickness of solidifying shell, breakout prediction device, and breakout prevention device
JPH0771726B2 (en) Continuous casting method
JPH0242409B2 (en)
JP6347236B2 (en) Breakout prediction method, breakout prediction apparatus, and continuous casting method
JP6337848B2 (en) Method and apparatus for predicting constrained breakout
JPH0446658A (en) Device for predicting breakout in continuous casting apparatus
JPH01228658A (en) Method for predicting longitudinal crack in continuous casting
JP2002035909A (en) Estimation method of constrained breakout

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term