JP2668872B2 - Breakout prediction method in continuous casting. - Google Patents
Breakout prediction method in continuous casting.Info
- Publication number
- JP2668872B2 JP2668872B2 JP4173187A JP4173187A JP2668872B2 JP 2668872 B2 JP2668872 B2 JP 2668872B2 JP 4173187 A JP4173187 A JP 4173187A JP 4173187 A JP4173187 A JP 4173187A JP 2668872 B2 JP2668872 B2 JP 2668872B2
- Authority
- JP
- Japan
- Prior art keywords
- mold temperature
- mold
- threshold value
- breakout
- continuous casting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/16—Controlling or regulating processes or operations
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Continuous Casting (AREA)
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、連続鋳造用鋳型の温度変化を利用して鋳造
中に発生するブレークアウトを予知する方法に関する。
〔従来技術〕
連続鋳造設備においてブレークアウト(B0)が発生
し、鋳片内部の未凝固溶鋼が漏出した場合は、鋳造を停
止してブレークアウトを起した鋳片の排出及び溶鋼が付
着したロール等の設備の交換をする必要があり、相当の
期間に亘って操業の停止を余儀なくされる。このため、
ブレークアウトは連続鋳造の操業トラブルの中で最大の
ものであり、その防止対策の確立が望まれていた。
ところで、引抜かれている鋳片の凝固殻が上下振動す
る鋳型に固着して破断し、そこから溶鋼が漏出してこれ
が十分に冷却される前に鋳型下端より出ることにより所
謂拘束性ブレークアウトが発生する場合は、凝固殻の破
断部が通過する鋳型部分では破断部の通過前に徐々に鋳
型温度が上昇し、破断部の通過後に徐々に降下すること
が知られている。
このため、鋳型の銅板に熱電対等の測温素子を埋設し
てこれにて鋳型銅板の温度(以下これを鋳型温度とい
う)を測定し、測定した鋳型温度の単位時間当たりの変
化率を求めてその値と基準値との大小を監視するか(特
開昭57−115962)、或いは測定した鋳型温度とそれ以前
の鋳型温度の移動平均値との差を求めて、その値と基準
値との大小を監視することにより(特開昭57−11595
9)、ブレークアウトを予知することは一応可能であ
る。
〔発明が解決しようとする問題点〕
ところで引抜速度が速い高速鋳造のときには安定鋳造
時及び異常発生時、つまり拘束性ブレークアウト発生時
の鋳型温度が共に高くなり、逆に低速鋳造のときには安
定鋳造時及び異常発生時の鋳型温度が共に低くなる。
このため、上述の監視方法によりブレークアウトを予
知する場合、高速鋳造時に低速鋳造時の予知に適当な低
しきい値を用いると、凝固殻の破断が実際には発生して
いないときにもブレークアウトと誤って予知する頻度が
高くなり、また低速鋳造時に高速鋳造時の予知に適当な
高しきい値を用いると、凝固殻破断が発生してもそれを
検出できず見逃すことがあった。
またブレークアウトを予知すると、一般に引抜を停止
するか或いは引抜速度を相当遅くするため操業安定性が
悪く、鋳片品質が低下する。
本発明は斯かる事情に鑑みてなされたものであり、引
抜速度が異なる場合であっても高精度で拘束性ブレーク
アウトを予知できる方法を提供することを目的とする。
〔問題点を解決するための手段〕
第1発明に係る連続鋳造におけるブレークアウト予知
方法は、上下振動する連続鋳造用鋳型の1又は2以上の
位置夫々で鋳型温度を時系列的に測定し、各測定時点近
傍での単位時間当たりの鋳型温度変化率と測定時点より
前の所定期間での鋳型温度の標準偏差及び平均温度とを
各位置毎に算出する一方、連続鋳造鋳片の引抜速度又は
それと鋳型の振動周期とに基づき第1,第2,第3のしきい
値を定め、各測定時点での鋳型温度と算出した平均温度
との差を求め、この鋳型温度差と第1のしきい値及び標
準偏差の積との大小比較、前記鋳型温度変化率と第2の
しきい値との大小比較、前記鋳型温度差と第3のしきい
値との大小比較を行うことによりブレークアウトを予知
することを特徴とする。
第2発明に係る連続鋳造におけるブレークアウト予知
方法は、前記鋳型温度差が第1のしきい値と標準偏差と
の積よりも大きいか、また前記鋳型温度変化率が第2の
しきい値よりも大きいか、更に前記鋳型温度差が第3の
しきい値よりも大きいか、の少なくとも一つ以上成立す
る場合にブレークアウトと判定することを特徴とする。
第3発明に係る連続鋳造におけるブレークアウト予知
方法は、鋳型の上下方向2位置以上において、夫々前記
鋳型温度差が第1のしきい値と標準偏差との積よりも大
きいか、また前記鋳型温度変化率が第2のしきい値より
も大きいか、更に前記鋳型温度差が第3のしきい値より
も大きいか、の少なくとも一つ以上成立する場合にブレ
ークアウトと判定することを特徴とする。
〔実施例〕
以下本発明を図面に基づき具体的に説明する。第1図
は引抜速度(Vc)とオッシレーションサイクル(c)と
が所定の関数
を満足する連続鋳造に本発明を適用した場合の実施状態
を示す模式図であり、図示しないタンディッシュに収容
された溶鋼等の溶融金属1はその下に取付けられた浸漬
ノズル2を経て一定周期で上下にオッシレートしている
鋳型3へ装入される。鋳型3内の溶融金属1は、潤滑用
の投入パウダ6が鋳型3の内壁に沿って流れ込んで形成
されたパウダ膜を介して一次冷却されて凝固殻5を形成
し、これを周壁とする鋳片4は図示しないピンチロール
により下方に引抜かれていく。その引抜速度Vcはパルス
ジェネレータ9にて検出され、しきい値設定器10へ与え
られる。
鋳型3の湯面レベルよりも下には鋳片4の引抜方向
(矢符方向)に沿って3箇所に熱電対等の測温素子11,1
2,13の先端が埋設されており、各測温素子11,12,13にて
測定された鋳型温度TはA/D変換器14にてアナログ/デ
ィジタル変換されて夫々微分回路20,30,40、減算器15,2
5,35、平均温度算出回路16,26,36及び標準偏差算出回路
17,27,37へ与えられる。
平均温度算出回路16,26,36及び標準偏差算出回路17,2
7,37は夫々A/D変換器14からの入力信号を例えば0.5乃至
1秒の所定ピッチ(Δt)で取込む。この取込み信号に
ついては、鋳型3の周りに設ける電磁撹拌装置等による
雑音の影響を除去すべく、A/D変換器14から例えば数10
ミリ秒ピッチで出力される信号の複数個分の平均値を用
いる。
そして、平均温度算出回路16,26,36及び標準偏差算出
回路17,27,37は最新の入力信号を含むそれ以前のm個分
の入力信号を記憶,更新し、平均温度算出回路16,26,36
は記憶している信号のうちで記憶順位の若い方(換言す
れば時間の古い方)からn個分の信号の平均温度を求
め、これを標準偏差算出回路17,27,37及び減算器15,25,
35へ与える。
減算器15,25,35は入力した鋳型温度Tと平均温度と
の差(T−)を求め、これを比較器19,29,39へ与え
る。
微分回路20,30,40には夫々単位時間当たりの鋳型温度
変化率dT/dtを数値微分により求めるべく、公知の下記
(1)式が設定されている。
この(1)式は、ピッチΔtで取込んだ鋳型温度のう
ち、現測定時点での鋳型温度(T0)とそれよりも1,3,4
回前に取込んだ鋳型温度(T1,T3,T4)の4つを用いて、
時刻T2における鋳型温度変化率を算出するものである。
なお、上記(1)式のT0,…,T4は取込みピッチ毎の測
定値そのものを使用せずに複数の測定値が得られる期間
を複数設定してその各期間での平均値を用いてもよい。
また、鋳型温度変化率dT/dtは上記(1)式に限らず他
の微分係数を求める式を用いてもよい。
微分回路20,30,40は入力信号と上記(1)式とにより
鋳型温度変化率dT/dtを求めてこれを比較器19,29,39へ
与える。
標準偏差算出回路17,27,37は前同様のn個分の信号の
標準偏差σを求め、これを積算器18,28,38へ与える。前
記しきい値設定器10はVc及び下記(2),(3),
(4)式に基づき第1,第2,第3のしきい値K1(定数)、
K2〔℃/秒〕,K3〔℃〕を算出し、K1を積算器18,28,38
へ与え、またK2,K3を比較器19,29,39へ与える。
但し、A1:0.1〜1〔(分/m)1/2〕
B1:3〜15
A2:0.1〜1〔℃/秒・(分/m)1/2〕
B2:0.5〜3〔℃/秒〕
A3:0.1〜1〔℃・(分/m)1/2〕
B3:3〜15〔℃〕
積算器18,28,38はK1と標準偏差σとの積K1・σを求め
て比較器19,29,39へ出力する。
比較器19,29,39には下記(5),(6),(7)式が
設定されており、比較器19,29,39は、入力した3種の信
号が、取込みピッチ毎に(5),(6),(7)式を各
別に満足するか否かを判定し、例えば(2〜10)秒を1B
O判定期間としてその間に、(5),(6),(7)各
式を満足する時点がタイミング的に異なってもすべて存
在する場合、またはいずれか1つの式が成立する場合に
は警報器41にて警報を発せしめると共に、図示しない制
御装置へ異常発生信号を出力する。上記BO判定期間は取
込みピッチ毎にそのピッチで移動するように設ける。
(T−)≧K1・σ …(5)
dT/dt≧K2 …(6)
(T−)≧K3 …(7)
なお、K1,K2,K3については、凝固殻の破断開口部の上
下方向長さ(l)がオッシレーションマークピッチ
(P)に応じて異なり、つまりPが大であればlは大、
逆にPが小であればlは小となり、このようなlに基づ
いて凝固殻破断部の開口面積が定まり、更にこの面積に
基づいて鋳型温度が定まるため、P(=Vc/c)を規定す
る引抜速度Vcとオッシレーションサイクルcとに基づく
関数とする。但し、この実施例のように
の関係を有する連続鋳造の場合には、
となるため、前記(2),(3),(4)式はcを項に
含まないVcのみの関数となる。
なお引抜き速度VCと鋳型のオッシレーションサイクル
cとを用いてしきい値を表わすと、下記(2)′,
(3)′,(4)′式で表わせる。
勿論、しきい値は前述した如く一般式としてK=AP+
Bのパターンで表わせ、しかもPは上式から明らかな如
くP=VC/cであるから、しきい値K1,K2,K3は引抜き速度
VCとオッシレーションサイクルcとを用いて下記
(2)′,(3)′,(4)′式の如くに表わせること
は言うまでもない。
K1=A1×VC/c+B1 …(2)′
K2=A2×VC/c+B2 …(3)′
K3=A3×VC/c+B3 …(4)′
但し、A1,A2,A3、B1,B2,B3は(2),(3),(4)
式におけるのと同じである。
ここでの場合、(2)′,(3)′,(4)′式は前述の
(2),(3),(4)式となるが、cの定数の場合
A1:〔分/m〕
B1:定数
A2:〔℃/秒・分/m〕
B2:〔℃/秒〕
A3:〔℃・分/m〕
B3〔℃〕
となる。
また、(2),(3),(4)式のA1,A2,A3,B1,B2,B
3は測温素子の埋込み位置,深さに応じて異なる値を用
いてもよい。
そして、前記制御装置(図示せず)は異常発生信号を
入力すると、浸漬ノズル2の中途に設けたスライディン
グノズル部7を油圧シリンダ8にて駆動して、浸漬ノズ
ル2を一端閉じると共に図示しないピンチロールの回転
を停止する。これについては浸漬ノズル2を僅かに開け
た状態にすると共に引抜速度を相当低下させるようにし
てもよい。
このように構成された予知装置による本発明方法を以
下に説明する。
まず、上記m,nを次のように定める。連続鋳造する鋼
種が中炭素鋼又は低炭素鋼である場合には、鋳型温度は
第2図(横軸に時間をとり縦軸に鋳型温度をとってい
る)に示す如く温度変化に周期があり、その周期は約20
〜30秒である。なお、第2図は鋳型の上下方向に異なる
3位置での鋳型温度Ta,Tb,Tcについて示している。この
ためnは30秒間に測定された信号のうち高精度で予知で
きる数、例えば0.5秒毎に記憶するとして約60個に定め
る。
また、凝固殻が破断した部分を測定する場合は、第3
図に示す如く鋳型温度が上昇直前の元の温度からピーク
値に達するまでの時間が5〜15秒である。このため、m
はこの5〜15秒に相当する温度変化期間が予知に必要な
期間に含まれないようにするのが良く、5〜15秒に上記
30秒を加えた35〜45秒間に連続的に測定された信号のう
ち高精度で予知できるピッチの数、例えば0.5秒毎に記
憶するとして70〜90個に定める。
なお、K1,K2,K3の値については夫々前記(2),
(3),(4)式に基づいて算出するようにしている
が、丸鋳片を連続鋳造するときのように鋳片寸法に応じ
て引抜速度及びオッシレーションストロークが所定値に
定まっている場合には、鋳型寸法に基づき、引抜速度に
応じて凝固殻破断が起こる臨界の温度変化量,変化率に
定めるようにしてもよい。この場合には上位計算機を設
けてこれから鋳型寸法又は鋳型寸法に基づいて決定した
しきい値を第1図に破線矢符にて示すようにしきい値設
定器10へ与えるようにする。鋳型寸法を与える場合には
しきい値設定器10にテーブルを設定しておき、このテー
ブルに基づきしきい値を読出させる。
斯かる準備が終了すると、連続鋳造を開始し、その後
引抜を開始すると予知装置を作動させる。測温素子11,1
2,13にて各位置の鋳型温度Tが測定されると、平均温度
算出回路16,26,36及び標準偏差算出回路17,27,37は鋳型
温度T信号を記憶し、記憶信号の数がm個となるまで演
算を行わず、また出力しない。そして、m個目の信号が
記憶されると、そのうち記憶順位が若い方からn個分の
信号の平均温度と標準偏差σを夫々算出し、出力す
る。
減算器15,25,35はm個目に入力した鋳型温度Tと平均
温度との差(T−)を求める。また積算器18,28,38
は定数K1と標準偏差σとの積(K1・σ)を求める。
微分回路20,30,40はA/D変換器14からの鋳型温度に関
する信号を入力すると、(1)式に基づいて時間変化率
dT/dtを算出し、これを比較器19,29,39へ与える。
比較器19,29,39は5種の入力信号、つまりT−,K1
・σ,dT/dt,K2,K3が上記(5),(6),(7)式を満
足するか否かを各式毎に判定する。
次いで、m+1個目以降の信号が平均温度算出回路16
等及び標準偏差算出回路17等に記憶されると、前同様に
して繰り返す。
このようにして信号処理を行っている間に、比較器19
等のいずれか1つにて或るBO判定期間に、(5),
(6),(7)各式を満足する時点がタイミング的に異
なってもすべて存在すると判定されると、又はいずれか
1つが存在すると判定されると、該当する比較器はブレ
ークアウトと予知し、警報器41にて警報を発せしめると
共に図示しない制御装置に異常発生信号を出力する。
制御装置は前述の如くスライディングノズル部7及び
図示しないピッチロールを制御して一旦装入及び引抜を
停止する。
これにより、凝固殻が破断してその破断部から未凝固
溶鋼が漏出してもブレークアウトを未然に防止できる。
なお、上記実施例ではブレークアウト予知の判定の1
つを上記(5)式にて行っているが、本発明はこれに限
らず下記(8)式を用いてもよいことは勿論である。
(T−)/σ≧K1 …(8)
また、詳細には説明しなかったが、しきい値設定器10
において下記(9)式でK4を定め、比較器19,29,39にお
いて測定鋳型温度Tとの比較を示す下記(10)式が満足
する時点にブレークアウトの警報を警報器41から発して
もよい。
A4:定数
B4:定数
T≧K4 …(10)
なおK4〔℃〕は前述したK1,K2,K3と同様に与えられ
る。
第1表は鋳片寸法が種々異なる丸鋳片鋳造のときに本
発明を適用した場合の予知的中回数,誤警報回数及びブ
レークアウトの見逃し回数を、そのときの鋳片寸法(R1
<R2<R3<R4<R5,R51.5R1),基準引抜速度(Vc1>V
c2>Vc3>Vc4>Vc5,Vc12Vc5)と共にまとめて示す表
である。なお、比較のために、同一鋳片寸法,基準引抜
速度のときにしきい値を、高速鋳造時に適当な一定の高
しきい値として設定してブレークアウトの予知を行う従
来方法Iによる場合の結果と、しきい値を低速鋳造時に
適当な一定の引きしきい値として設定してブレークアウ
トの予知を行う従来方法IIによる場合の結果とを、夫々
第2表,第3表に示す。
これらの表より理解される如く、従来方法Iによる場
合(第2表)には予知的中率〔=予知的中回数/(予知
的中回数+誤警報回数)〕が38/43=90.5(%)、見逃
し率〔=見逃し回数/(予知的中回数+見逃し回数)〕
が5/43=11.6%であり、見逃し率が高かった。また、従
来方法IIによる場合(第3表)には予知的中率が50.8
%、見逃し率が0%であり、的中率が悪かった。これに
対して本発明による場合(第1表)には予知的中率が8
7.1%、見逃し率が0%であり、凝固殻の破断発生を全
く見逃すことなく、高い的中率を得ることができた。
なお、上記実施例では引抜方向に異なる鋳型の3位置
で鋳型温度を測定しているが、本発明はこれに限らず、
引抜方向及びそれに直交する方向に拘わらずに1若しく
は2又は4以上の任意の位置での鋳型温度を測定しても
ブレークアウトを予知できることは勿論である。但し、
鋳型温度の引抜方向測定位置としては、凝固殻破断を検
出して操業条件を変更し、これによりブレークアウトを
未然に防止できる時間的に余裕のある位置にするのが好
ましい。
また、本発明は測温素子を鋳型の上下方向に2個以上
設ける場合には、次のようにすると更に確実にブレーク
アウトを予知できる。
鋳型の上下方向に複数設けた温度素子夫々にて凝固殻
破断部が時間差をもって検出されるとき、その移行時間
tB(秒)は下記(9)式にて表わされることが一般に知
られている。
但し、L:上下方向に離隔した測温素子間距離
e:定数(0.5〜0.9)
したがって、各測温素子からの信号を処理する各比較
器19,29,39の出側にタイマ機能を有する演算器を設け、
上側の測温素子に関する比較器から凝固殻破断の検出信
号(前記異常発生信号の出力条件にて出力され、異常発
生信号とは異なる信号)を入力し、それからtB秒程度経
たのちにその直下の測温素子に関する比較器から同様の
凝固殻破断の検出信号を入力するとブレークアウトと予
知し、これにより警報を発し、また制御装置へ異常発生
信号を出力する。これにより、より確実にブレークアウ
トを予知できる。
〔効果〕
以上詳述した如く本発明は、連続鋳造用鋳型の1又は
2以上の位置の鋳型温度を測定し、その測定時点での鋳
型温度及びそれ以前の所定期間での平均鋳型温度の鋳型
温度差及び第1のしきい値と標準偏差との積の大小比
較、鋳型温度変化率と第2のしきい値との大小比較及び
前記鋳型温度差と第3のしきい値との大小比較を行うの
で、引抜速度が変化してもそれに影響を受けずに拘束性
ブレークアウトを確実に予知できると共に誤警報の回数
を減少でき、これにより信頼性の向上を図れ、また従来
では誤警報により操業条件を変更してこのために鋳片品
質が低下していたのを防止できる等優れた効果を奏す
る。Description: TECHNICAL FIELD The present invention relates to a method for predicting a breakout occurring during casting by using a temperature change of a continuous casting mold. [Prior art] When a breakout (B0) occurs in a continuous casting facility and unsolidified molten steel leaks from the inside of the slab, the casting is stopped to discharge the slab that caused the breakout and the roll to which the molten steel adhered. It is necessary to replace equipment such as the above, and the operation must be stopped for a considerable period of time. For this reason,
Breakout is the largest operation trouble in continuous casting, and establishment of preventive measures has been desired. By the way, the solidified shell of the cast slab that has been drawn adheres to the vertically vibrating mold and breaks, and the molten steel leaks out of it and exits from the lower end of the mold before it is sufficiently cooled. When it occurs, it is known that the temperature of the mold gradually increases before passing through the fractured portion and gradually falls after passing through the fractured portion in the mold portion where the fractured portion of the solidified shell passes. For this reason, a temperature measuring element such as a thermocouple is embedded in a copper plate of a mold, and the temperature of the mold copper plate (hereinafter, this is referred to as a mold temperature) is measured therewith, and a rate of change of the measured mold temperature per unit time is obtained. The magnitude of the value and the reference value are monitored (JP-A-57-115962), or the difference between the measured mold temperature and the moving average value of the previous mold temperature is determined, and the difference between the value and the reference value is determined. By monitoring the size (Japanese Patent Application Laid-Open No. 57-11595)
9) It is possible to predict a breakout. [Problems to be Solved by the Invention] By the way, at the time of high-speed casting with a high drawing speed, the mold temperature at the time of stable casting and at the time of occurrence of an abnormality, that is, at the time of occurrence of restraint breakout, becomes high. Both the mold temperature at the time of occurrence and at the time of occurrence of an abnormality become low. For this reason, when a breakout is predicted by the above monitoring method, if a low threshold suitable for prediction at a low speed casting is used at a high speed casting, the breakage can be performed even when the fracture of the solidified shell does not actually occur. The frequency of erroneously predicting out is increased, and if a high threshold suitable for prediction during high speed casting is used during low speed casting, even if a solidified shell fracture occurs, it cannot be detected and sometimes overlooked. In addition, when a breakout is predicted, the drawing is generally stopped or the drawing speed is slowed considerably, so that the operation stability is poor and the quality of the cast product is deteriorated. The present invention has been made in view of such circumstances, and an object of the present invention is to provide a method capable of predicting a restrictive breakout with high accuracy even when the drawing speed is different. [Means for Solving the Problems] The method for predicting breakout in continuous casting according to the first invention is to measure a mold temperature in time series at one or more positions of a continuous casting mold that vibrates up and down, While calculating the mold temperature change rate per unit time in the vicinity of each measurement time and the standard deviation and average temperature of the mold temperature in a predetermined period before the measurement time for each position, the drawing speed of the continuous cast slab or First, second, and third thresholds are determined based on this and the vibration period of the mold, and the difference between the mold temperature at each measurement point and the calculated average temperature is determined. Breakout by performing a magnitude comparison between the product of the threshold value and the standard deviation, a magnitude comparison between the mold temperature change rate and a second threshold, and a magnitude comparison between the mold temperature difference and a third threshold. It is characterized by predicting. In the method for predicting breakout in continuous casting according to the second invention, the mold temperature difference is larger than a product of a first threshold value and a standard deviation, and the mold temperature change rate is larger than a second threshold value. It is characterized in that a breakout is determined when at least one of the following is satisfied, or whether the mold temperature difference is greater than the third threshold value. The method for predicting breakout in continuous casting according to the third invention is characterized in that at two or more vertical positions of the mold, the mold temperature difference is larger than a product of a first threshold value and a standard deviation, respectively. A breakout is determined when at least one of a change rate is larger than a second threshold value and the mold temperature difference is larger than a third threshold value is satisfied. . EXAMPLES Hereinafter, the present invention will be specifically described with reference to the drawings. FIG. 1 shows that the drawing speed (Vc) and the oscillation cycle (c) are predetermined functions. FIG. 1 is a schematic view showing an embodiment in which the present invention is applied to continuous casting satisfying the following condition. A molten metal 1 such as molten steel contained in a tundish (not shown) is passed through a dipping nozzle 2 attached thereunder at a constant period. Into the mold 3 which is oscillated up and down. The molten metal 1 in the mold 3 is primarily cooled through a powder film formed by pouring the lubricating powder 6 along the inner wall of the mold 3 to form a solidified shell 5, which is used as a peripheral wall. The piece 4 is pulled downward by a pinch roll (not shown). The pulling speed Vc is detected by the pulse generator 9 and provided to the threshold value setting device 10. Below the molten metal level of the mold 3, there are three temperature measuring elements 11, 1 such as thermocouples along the drawing direction (arrow direction) of the slab 4.
The mold temperature T measured by each of the temperature measuring elements 11, 12 and 13 is converted from analog to digital by the A / D converter 14 and differentiated by the differentiating circuits 20 and 30, respectively. 40, subtractor 15,2
5,35, average temperature calculation circuit 16,26,36 and standard deviation calculation circuit
17,27,37. Average temperature calculation circuits 16, 26, 36 and standard deviation calculation circuits 17, 2
7 and 37 fetch the input signal from the A / D converter 14 at a predetermined pitch (Δt) of, for example, 0.5 to 1 second. Regarding this acquisition signal, in order to eliminate the influence of noise due to an electromagnetic stirring device provided around the mold 3, for example, a few tens
An average value of a plurality of signals output at a millisecond pitch is used. Then, the average temperature calculating circuits 16, 26, 36 and the standard deviation calculating circuits 17, 27, 37 store and update m input signals including the latest input signal and the previous m input signals. , 36
Calculates the average temperature of n signals from the stored signal with the lowest storage order (in other words, the oldest one), and calculates the average temperature of the standard deviation calculation circuits 17, 27, 37 and the subtractor 15. ,twenty five,
Give to 35. Subtractors 15, 25 and 35 find the difference (T-) between the input mold temperature T and the average temperature, and apply this to comparators 19, 29 and 39. The well-known formula (1) is set in the differentiating circuits 20, 30, and 40 in order to obtain the mold temperature change rate dT / dt per unit time by numerical differentiation. This equation (1) is obtained by using the mold temperature (T 0 ) at the current measurement time out of the mold temperatures taken at the pitch Δt and 1,3,4
Using the four mold temperatures (T 1 , T 3 , T 4 ) taken before
And calculates a mold temperature change rate at time T 2. Note that T 0 , ..., T 4 in the above formula (1) uses a mean value in each period by setting a plurality of periods in which a plurality of measurement values are obtained without using the measurement value itself for each acquisition pitch. May be.
Further, the mold temperature change rate dT / dt is not limited to the above equation (1), and another equation for calculating a differential coefficient may be used. The differentiating circuits 20, 30, 40 obtain the mold temperature change rate dT / dt from the input signal and the equation (1), and apply this to the comparators 19, 29, 39. The standard deviation calculation circuits 17, 27, 37 obtain the standard deviation σ of n signals as in the previous case, and apply this to the integrators 18, 28, 38. The threshold value setting device 10 is connected to Vc and the following (2), (3),
Based on equation (4), the first, second, and third thresholds K 1 (constant),
Calculate K 2 [℃ / sec] and K 3 [℃], and use K 1 as the integrator
, And K 2 and K 3 to comparators 19, 29 and 39. However, A 1 : 0.1 to 1 [(min / m) 1/2 ] B 1 : 3 to 15 A 2 : 0.1 to 1 [° C / sec. (Min / m) 1/2 ] B 2 : 0.5 to 3 [° C / sec] A 3 : 0.1 to 1 [° C (min / m) 1/2 ] B 3 : 3 to 15 [° C] The accumulators 18, 28, 38 are the product K of K 1 and the standard deviation σ. 1 · σ is calculated and output to comparators 19, 29, and 39. The following equations (5), (6), and (7) are set in the comparators 19, 29, 39, and the comparators 19, 29, 39 receive the three types of input signals at each acquisition pitch ( 5), (6), (7) is determined separately whether or not satisfied, for example (2-10) seconds 1B
An alarm device if all of the equations (5), (6), and (7) are satisfied at different timings during the O determination period, or if any one of the equations is satisfied. At 41, an alarm is issued, and an abnormality occurrence signal is output to a control device (not shown). The BO determination period is provided so as to move at the pitch for each capture pitch. (T−) ≧ K 1 · σ (5) dT / dt ≧ K 2 (6) (T−) ≧ K 3 (7) Note that for K 1 , K 2 , and K 3 , The vertical length (l) of the break opening differs depending on the oscillation mark pitch (P). That is, if P is large, l is large,
Conversely, if P is small, l becomes small, and the opening area of the solidified shell fracture is determined based on such l, and since the mold temperature is further determined based on this area, P (= Vc / c) is determined. A function based on the specified pulling speed Vc and the oscillation cycle c is used. However, as in this embodiment In the case of continuous casting with the relationship Therefore, the above equations (2), (3), and (4) are functions of Vc only, which does not include c as a term. When the threshold value is expressed using the drawing speed V C and the oscillation cycle c of the mold, the following (2) ′,
(3) ', (4)'. Of course, the threshold value is K = AP +
It is represented by the pattern of B, and since P is P = V C / c as is clear from the above equation, the threshold values K 1 , K 2 and K 3 are the drawing speeds.
It goes without saying that it can be expressed as in the following expressions (2) ', (3)', and (4) 'using V C and the oscillation cycle c. K 1 = A 1 × V C / c + B 1 (2) ′ K 2 = A 2 × V C / c + B 2 (3) ′ K 3 = A 3 × V C / c + B 3 (4) ′ A 1 , A 2 , A 3 , B 1 , B 2 , B 3 are (2), (3), (4)
The same as in the formula. here In the case of, the expressions (2) ', (3)', and (4) 'are the above-mentioned expressions (2), (3), and (4), but for a constant c, A 1 : [minute / m] B 1 : Constant A 2 : [° C / sec.min / m] B 2 : [° C / sec] A 3 : [° C / min / m] B 3 [° C] In addition, A 1 , A 2 , A 3 , B 1 , B 2 , B of the expressions (2), (3), and (4) are
As for 3, different values may be used depending on the embedding position and depth of the temperature measuring element. When the control device (not shown) inputs the abnormality occurrence signal, the sliding nozzle unit 7 provided in the middle of the immersion nozzle 2 is driven by the hydraulic cylinder 8 to close the immersion nozzle 2 once and to pinch it (not shown). Stop the rotation of the roll. For this, the immersion nozzle 2 may be slightly opened and the drawing speed may be reduced considerably. The method of the present invention using the prediction device configured as described above will be described below. First, the above m and n are determined as follows. When the steel type to be continuously cast is medium carbon steel or low carbon steel, the mold temperature has a period of temperature change as shown in Fig. 2 (time is taken on the horizontal axis and mold temperature is taken on the vertical axis). , Its cycle is about 20
~ 30 seconds. Note that FIG. 2 shows the mold temperatures Ta, Tb, and Tc at three different positions in the vertical direction of the mold. For this reason, n is set to a number that can be predicted with high accuracy among the signals measured in 30 seconds, for example, about 60 to be stored every 0.5 seconds. When measuring the portion where the solidified shell is broken,
As shown in the figure, the time required for the mold temperature to reach the peak value from the original temperature immediately before the rise is 5 to 15 seconds. For this reason, m
It is better not to include the temperature change period corresponding to this 5 to 15 seconds in the period necessary for prediction,
The number of highly predictable pitches of the signals continuously measured in 35 to 45 seconds including 30 seconds, for example, 70 to 90, is stored for every 0.5 seconds. The values of K 1 , K 2 , and K 3 are respectively described in the above (2),
(3) and (4) are calculated based on the formulas, but when the drawing speed and the oscillation stroke are set to predetermined values according to the slab size, such as when continuously casting round slabs. Alternatively, the critical temperature change amount and change rate at which solidified shell fracture occurs may be set according to the drawing speed based on the mold size. In this case, a host computer is provided, and the mold size or the threshold value determined based on the mold size is supplied to the threshold value setting device 10 as shown by a broken arrow in FIG. When the mold size is given, a table is set in the threshold value setting device 10 and the threshold value is read based on this table. When such preparation is completed, continuous casting is started, and when drawing is started thereafter, the prediction device is operated. Temperature measuring element 11,1
When the mold temperature T at each position is measured at 2 and 13, the average temperature calculation circuits 16, 26 and 36 and the standard deviation calculation circuits 17, 27 and 37 store the mold temperature T signals, and the number of stored signals is No calculation is performed until the number becomes m, and no output is made. Then, when the m-th signal is stored, the average temperature and the standard deviation σ of the n-th signal are calculated and output from the n-th signal having the smaller storage order. Subtractors 15, 25 and 35 find the difference (T-) between the m-th inputted mold temperature T and the average temperature. Integrators 18, 28, 38
Calculates the product (K 1 · σ) of the constant K 1 and the standard deviation σ. When the signals relating to the mold temperature from the A / D converter 14 are input to the differentiating circuits 20, 30, 40, the time change rate is calculated based on the equation (1).
Calculate dT / dt and give it to comparators 19, 29 and 39. The comparators 19, 29 and 39 have five types of input signals, that is, T−, K 1
It is determined for each equation whether σ, dT / dt, K 2 , K 3 satisfy the above equations (5), (6), (7). Next, the (m + 1) th and subsequent signals are output to the average temperature calculating circuit 16.
And the like, and stored in the standard deviation calculation circuit 17 or the like, the same is repeated as before. While performing the signal processing in this way, the comparator 19
In any one of the above, during a certain BO judgment period, (5),
(6), (7) If it is determined that all of the points satisfying the respective expressions are different even if the timings are different, or if it is determined that any one exists, the corresponding comparator predicts a breakout. The alarm device 41 issues an alarm and outputs an abnormality occurrence signal to a control device (not shown). As described above, the control device controls the sliding nozzle unit 7 and the pitch roll (not shown) to temporarily stop the loading and the withdrawal. Thereby, even if the solidified shell breaks and unsolidified molten steel leaks from the broken portion, breakout can be prevented beforehand. In the above embodiment, one of the breakout prediction determinations is performed.
However, the present invention is not limited to this, and it goes without saying that the following equation (8) may be used. (T −) / σ ≧ K 1 (8) Although not described in detail, the threshold value setting device 10
The K 4 below (9) defined by an alarm of breakout in time following the equation (10) satisfies showing the comparison between the measured mold temperature T in comparator 19,29,39 from the alarm 41 in Is also good. A 4 : constant B 4 : constant T ≧ K 4 (10) Note that K 4 [° C.] is given in the same manner as K 1 , K 2 and K 3 described above. Table 1 shows the number of predictive median times, the number of false alarms and the number of missed breakouts when the present invention is applied to the casting of round slabs with various slab sizes, and the slab size (R 1
<R 2 <R 3 <R 4 <R 5 , R 5 1.5R 1 ), reference drawing speed (V c1 > V
c2 > V c3 > V c4 > V c5 , V c1 2V c5 ) together. For comparison, the results in the case of the conventional method I in which the threshold value is set as an appropriate constant high threshold value at the time of high-speed casting at the same ingot size and the standard drawing speed, and the breakout is predicted. Tables 2 and 3 show the results of the conventional method II for predicting breakout by setting the threshold value as an appropriate constant pulling threshold value during low speed casting. As can be understood from these tables, in the case of the conventional method I (Table 2), the predictive predictive value [= predictive predictive count / (predictive predictive count + false alarm count)] is 38/43 = 90.5 ( %), Missed rate [= number of missed times / (number of times of intellectual intelligence + number of missed times)]
However, 5/43 = 11.6%, and the oversight rate was high. In the case of the conventional method II (Table 3), the predictive predictive value is 50.8%.
%, The oversight rate was 0%, and the hit rate was poor. On the other hand, in the case of the present invention (Table 1), the predictive predictive value is 8
The miss rate was 7.1% and the miss rate was 0%, and it was possible to obtain a high hit rate without overlooking the occurrence of fracture of the solidified shell. In the above embodiment, the mold temperature is measured at three positions of the mold different in the drawing direction. However, the present invention is not limited to this.
Needless to say, the breakout can be predicted by measuring the mold temperature at any position of 1 or 2 or 4 regardless of the drawing direction and the direction orthogonal thereto. However,
It is preferable that the position where the mold temperature is measured in the drawing direction is set to a position where the operating conditions are changed by detecting solidified shell breakage, thereby allowing breakout to be prevented beforehand. Further, in the present invention, when two or more temperature measuring elements are provided in the vertical direction of the mold, the breakout can be more reliably predicted by the following method. When a solidified shell fracture is detected with a time difference at each of a plurality of temperature elements provided in the vertical direction of the mold, the transition time
It is generally known that tB (second) is represented by the following equation (9). However, L: distance between temperature measuring elements separated in the vertical direction e: constant (0.5 to 0.9) Therefore, each of the comparators 19, 29, and 39 that processes signals from each temperature measuring element has a timer function on the output side. Provide a calculator,
A detection signal of solidification shell fracture (a signal that is output under the output condition of the abnormality occurrence signal and is different from the abnormality occurrence signal) is input from the comparator for the upper temperature measuring element, and after about tB seconds, it is immediately below the signal. When a similar detection signal of solidification shell rupture is input from a comparator relating to a temperature measuring element, a breakout is predicted, whereby an alarm is issued and an abnormality occurrence signal is output to the control device. Thereby, a breakout can be predicted more reliably. [Effects] As described in detail above, the present invention measures the mold temperature at one or more positions of the continuous casting mold, and determines the mold temperature at the measurement time and the average mold temperature during a predetermined period before that. Comparison of temperature difference and product of first threshold value and standard deviation, comparison of mold temperature change rate and second threshold value, and comparison of mold temperature difference and third threshold value Therefore, even if the drawing speed changes, the restraint breakout can be reliably predicted without being affected by the change and the number of false alarms can be reduced, thereby improving the reliability. It has an excellent effect such that it can prevent the quality of the slab from being deteriorated by changing the operating condition.
【図面の簡単な説明】
第1図は本発明の実施状態を示す模式図、第2図は鋳型
温度変化の周期の説明図、第3図は本発明の標準偏差,
平均温度を算出する期間の説明図である。
3……鋳型、4……鋳片、10……しきい値設定器
11,12,13……測温素子、15,25,35……減算器
16,26,36……平均温度算出回路
17,27,37……標準偏差算出回路
18,28,38……積算器、19,29,39……比較器
20,30,40……微分回路BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram showing an embodiment of the present invention, FIG. 2 is an explanatory diagram of a cycle of mold temperature change, and FIG. 3 is a standard deviation of the present invention.
FIG. 4 is an explanatory diagram of a period for calculating an average temperature. 3 ... mold, 4 ... slab, 10 ... threshold value setting device 11, 12, 13 ... temperature measuring element, 15, 25, 35 ... subtractor 16, 26, 36 ... average temperature calculation circuit 17,27,37 …… Standard deviation calculation circuit 18,28,38 …… Integrator, 19,29,39 …… Comparator 20,30,40 …… Differentiation circuit
Claims (1)
夫々で鋳型温度を時系列的に測定し、各測定時点近傍で
の単位時間当たりの鋳型温度変化率と測定時点より前の
所定期間での鋳型温度の標準偏差及び平均温度とを各位
置毎に算出する一方、連続鋳造鋳片の引抜速度又はそれ
と鋳型の振動周期とに基づき第1,第2,第3のしきい値を
定め、各測定時点での鋳型温度と算出した平均温度との
差を求め、この鋳型温度差と第1のしきい値及び標準偏
差の積との大小比較、前記鋳型温度変化率と第2のしき
い値との大小比較、前記鋳型温度差と第3のしきい値と
の大小比較を行うことによりブレークアウトを予知する
ことを特徴とする連続鋳造におけるブレークアウト予知
方法。 2.前記鋳型温度差が第1のしきい値と標準偏差との積
よりも大きいか、また前記鋳型温度変化率が第2のしき
い値よりも大きいか、更に前記鋳型温度差が第3のしき
い値よりも大きいか、の少なくとも一つ以上成立する場
合にブレークアウトと判定する特許請求の範囲第1項記
載の連続鋳造におけるブレークアウト予知方法。 3.鋳型の上下方向2位置以上において、夫々前記鋳型
温度差が第1のしきい値と標準偏差との積よりも大きい
か、また前記鋳型温度変化率が第2のしきい値よりも大
きいか、更に前記鋳型温度差が第3のしきい値よりも大
きいか、の少なくとも一つ以上成立する場合にブレーク
アウトと判定する特許請求の範囲第1項記載の連続鋳造
におけるブレークアウト予知方法。(57) [Claims] The mold temperature is measured in time series at each of one or more positions of the continuous casting mold that vibrates up and down, and the mold temperature change rate per unit time near each measurement time point and a predetermined time period before the measurement time point. While calculating the standard deviation and the average temperature of the mold temperature for each position, the first, second, and third thresholds are determined based on the drawing speed of the continuous cast slab or the vibration cycle of the mold, and The difference between the mold temperature at the time of measurement and the calculated average temperature is determined, the magnitude of the mold temperature difference is multiplied by the product of the first threshold value and the standard deviation, and the mold temperature change rate and the second threshold value are compared. A method for predicting breakout in continuous casting, wherein a breakout is predicted by comparing the size of the mold temperature difference with a third threshold value. 2. Whether the mold temperature difference is greater than the product of the first threshold value and the standard deviation, the mold temperature change rate is greater than the second threshold value, and the mold temperature difference is the third threshold value. The breakout prediction method in continuous casting according to claim 1, wherein a breakout is determined when at least one of the threshold values is satisfied. 3. At two or more vertical positions of the mold, whether the mold temperature difference is greater than the product of the first threshold value and the standard deviation, and whether the mold temperature change rate is greater than the second threshold value, The breakout prediction method in continuous casting according to claim 1, further comprising the step of judging a breakout when at least one of the mold temperature differences is greater than or equal to a third threshold value.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4173187A JP2668872B2 (en) | 1987-02-24 | 1987-02-24 | Breakout prediction method in continuous casting. |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4173187A JP2668872B2 (en) | 1987-02-24 | 1987-02-24 | Breakout prediction method in continuous casting. |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63207459A JPS63207459A (en) | 1988-08-26 |
JP2668872B2 true JP2668872B2 (en) | 1997-10-27 |
Family
ID=12616567
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4173187A Expired - Fee Related JP2668872B2 (en) | 1987-02-24 | 1987-02-24 | Breakout prediction method in continuous casting. |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2668872B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NO345054B1 (en) * | 2019-02-01 | 2020-09-07 | Norsk Hydro As | Casting Method and Casting Apparatus for DC casting |
CN115178721B (en) * | 2022-06-07 | 2023-05-26 | 武汉钢铁有限公司 | Method, recording medium and system for controlling billet drawing speed in continuous casting crystallizer |
-
1987
- 1987-02-24 JP JP4173187A patent/JP2668872B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPS63207459A (en) | 1988-08-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3386051B2 (en) | Method for estimating flow pattern of molten steel in continuous casting, temperature measuring device for mold copper plate, method for determining surface defects of continuous cast slab, method for detecting molten steel flow, method for evaluating non-uniformity of heat removal in mold, method for controlling molten steel flow, Quality control method in continuous casting, continuous casting method of steel, estimation method of molten steel flow velocity | |
JPH02280951A (en) | Method for detecting blowoff in continuous casting and apparatus therefor | |
EP0196746A1 (en) | Method and apparatus for preventing cast defects in continuous casting plant | |
JP2668872B2 (en) | Breakout prediction method in continuous casting. | |
JP2009061469A (en) | Method and device for detecting break-out in continuous casting, continuous casting method of steel using the same device, and device for preventing break-out | |
KR20140003314A (en) | Method for preventing breakout in continuous casting | |
JPH0790343B2 (en) | Breakout prediction method in continuous casting | |
JPH01210160A (en) | Method for predicting longitudinal crack in continuous casting | |
JPH0671389A (en) | Horizontal continuous casting method | |
JPH0229419B2 (en) | RENZOKUCHUZOIGATANIOKERUCHUZOKONOHADANKENSHUTSUHOHO | |
JPH06304727A (en) | Device for controlling casting velocity | |
JPH0556224B2 (en) | ||
JP2019098394A (en) | Method and device for evaluating quality of steel | |
JPS63119963A (en) | Method for predicting breakout in continuous casting | |
JPH03180261A (en) | Method for predicting breakout | |
KR101204955B1 (en) | Apparatus for monitoring frictional force in mold and method therefor | |
JP3151918B2 (en) | Continuous casting method | |
JPH0556223B2 (en) | ||
KR100928775B1 (en) | A predicting device of the main polarization stage in the performance process by measurement of mold vibration and frictional force | |
JPH0663716A (en) | Device for monitoring friction force between mold for continuous casting and cast slab | |
JP6337848B2 (en) | Method and apparatus for predicting constrained breakout | |
JPH0771725B2 (en) | Breakout prediction method in continuous casting | |
JP2914817B2 (en) | Missing casting method in continuous casting | |
JPH08224648A (en) | Method for restraining surface defect in continuous casting | |
JP2004276050A (en) | Method for starting continuous casting |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |