JPH08224648A - Method for restraining surface defect in continuous casting - Google Patents

Method for restraining surface defect in continuous casting

Info

Publication number
JPH08224648A
JPH08224648A JP5806695A JP5806695A JPH08224648A JP H08224648 A JPH08224648 A JP H08224648A JP 5806695 A JP5806695 A JP 5806695A JP 5806695 A JP5806695 A JP 5806695A JP H08224648 A JPH08224648 A JP H08224648A
Authority
JP
Japan
Prior art keywords
temperature
molten steel
depth
temp
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5806695A
Other languages
Japanese (ja)
Other versions
JP2950188B2 (en
Inventor
Tooru Akemiya
徹 朱宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP5806695A priority Critical patent/JP2950188B2/en
Publication of JPH08224648A publication Critical patent/JPH08224648A/en
Application granted granted Critical
Publication of JP2950188B2 publication Critical patent/JP2950188B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE: To obtain a method for restraining surface defect in a continuous casting, in which estimation accuracy of the surface quality of a cast slab is stably kept by obtaining the depth in the range having steep temp. gradient just below a meniscus and the molten steel temp. in the stable temp. range at the lower part thereof. CONSTITUTION: A temp. measuring probe 2 embedded with sheath thermocouples 1 at a prescribed pitch is dipped into the molten steel 5 in a mold 4 during casting for a prescribed time with an elevating device 3 and the molten steel temperatures are measured several times simultaneously at 5-10 points in the depth direction at the initial stage, middle stage and end stage of the casting. The measured temp. data are inputted into a process computer and the depth (d) of the range of the steep temp. gradient and the molten steel temp. TM in the stable temp. range are instantaneously obtd. When the depth (d) of the range of the steep temp. gradient in the mold 4 and the molten steel temp. TM in the stable temp. range are out of the safety range of the allowable surface quality of the cast slab, at least one condition among the charging quantity of powder, the impressed current for electromagnetic stirring and the depth of an immersion nozzle 6 is varied, and therefor, the surface quality of a cast slab is stably kept, and the man-hour for surface cleaning can be reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、鋼の連続鋳造におい
て、鋳片の表面品質を安定維持するための連続鋳造にお
ける表面欠陥の抑制方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for suppressing surface defects in continuous casting of steel for maintaining stable surface quality of the slab.

【0002】[0002]

【従来の技術】鋼の連続鋳造においては、鋳型内の初期
凝固過程で生成される凝固シェルが鋳型内面に固着した
り、あるいは凝固シェルに介在物を巻込む等の現象が生
じると、鋳型直下で凝固シェルが破断し、溶鋼が流出す
るブレークアウトが発生する。また、鋳型内で潤滑剤と
して用いられるパウダーが不均一に流入する現象が生じ
ると、凝固シェル表面に各種の欠陥が発生する。このよ
うな鋳造欠陥は、例えば、ブレークアウトが発生すると
その復旧に長時間を要し、生産性を著しく低下させる。
また、表面欠陥が発生すると、最終製品の表面品質を損
なうこととなるため、中間段階である半製品において表
面手入れ、研削を行う場合が多い。この際半製品におい
て表面性状の検査を行い、不具合を有する場合に表面手
入れをするのが一般的であるが、検査を全量について行
わなければならないため、リードタイムの延長、半製品
の在庫を招くこととなる。
2. Description of the Related Art In continuous casting of steel, when a phenomenon such as a solidified shell produced in the initial solidification process in the mold sticks to the inner surface of the mold or inclusions are caught in the solidified shell, the solidified shell is directly under the mold. At this point, the solidified shell breaks and a breakout occurs in which molten steel flows out. In addition, when the powder used as the lubricant flows in unevenly in the mold, various defects occur on the surface of the solidified shell. For example, such a casting defect requires a long time to recover when a breakout occurs, which significantly lowers productivity.
In addition, when a surface defect occurs, the surface quality of the final product is impaired, and therefore the surface of the semi-finished product which is an intermediate stage is often cared for and ground. At this time, it is common to inspect the surface texture of semi-finished products and, if there is a defect, to clean the surface, but since the inspection must be performed for all products, lead time is extended and semi-finished products are inventoried. It will be.

【0003】特に最近では、連続鋳造速度の高速化や連
続鋳造と圧延工程の直結化が積極的に進められている
が、前記鋳造欠陥の発生はそれらを実施するうえで大き
な障害となっていた。このため、従来から前記鋳造欠陥
を早期に予知、あるいは検出するための技術が数多く提
案されている。例えば、鋳型壁面に熱電対を埋設し、該
熱電対により検出された温度が通常状態の平均温度より
一旦上昇してから下降したときをブレークアウトとして
予知する方法(特開昭57−152356号公報)、鋳
型の相対する各面で温度を検出し、それらを互いに比較
してその温度差を指標としてブレークアウト発生の事前
現象を検知する方法(特開昭55−84259号公
報)、鋳型に埋設した熱電対による検出温度が平均温度
より急激に低下したことから凝固シェルの表面部に大型
介在物を巻込んだ現象を検出する方法(特開昭57−1
15960号公報)、鋳型に埋設した熱電対による検出
温度から時間変化率を求め、該時間変化率と予め定めた
所定範囲の値とを比較することによって、凝固シェルの
異常を検出する方法(特開昭57−115962号公
報)が提案されている。
In particular, recently, the continuous casting speed has been increased and the continuous casting and the rolling process have been directly connected. However, the occurrence of the casting defects has been a major obstacle to the implementation thereof. . Therefore, many techniques have been proposed in the past for early prediction or detection of the casting defect. For example, a method of embedding a thermocouple in the wall surface of the mold and predicting when the temperature detected by the thermocouple once rises and then falls below the average temperature in the normal state as a breakout (Japanese Patent Laid-Open No. 57-152356). ), A method of detecting temperatures on respective surfaces of the mold, comparing them with each other, and detecting a prior phenomenon of breakout occurrence by using the temperature difference as an index (JP-A-55-84259), embedded in the mold. A method for detecting a phenomenon in which a large inclusion is entrained in the surface of the solidified shell because the temperature detected by the thermocouple has dropped sharply below the average temperature (Japanese Patent Laid-Open No. 57-1).
No. 15960), a method of detecting an abnormality of a solidified shell by obtaining a time change rate from the temperature detected by a thermocouple embedded in a mold and comparing the time change rate with a value in a predetermined range. Japanese Unexamined Patent Publication No. 57-115962) has been proposed.

【0004】しかしながら、上記従来技術に基づく鋳造
欠陥の検出法は、いずれも熱電対等の温度検出端によっ
て検出される温度の絶対値をそのまま用いると共に、鋳
造方向において1箇所で検出された温度の絶対値を基準
として、定常状態の平均温度、または相対する壁面の温
度と比較し、あるいはその上昇率、または下降率を予め
定めた目標範囲と比較して行うものである。ところが鋳
造欠陥発生時における温度の上昇や下降あるいはそれら
の単位時間当たりの変化量は、鋳造欠陥の種類やその時
の状況等に応じて大きくバラツキ、極端な場合には、同
一の鋳造欠陥であってもその温度変化パターンは大きく
バラツクのが普通である。このため、鋳造欠陥発生時の
温度変化パターンの特徴認識は、複雑となって鋳造欠陥
を精度よく検出することは期待できなかった。
However, in any of the casting defect detection methods based on the above-mentioned conventional techniques, the absolute value of the temperature detected by the temperature detecting end such as a thermocouple is used as it is, and the absolute value of the temperature detected at one location in the casting direction is used. Based on the value, the average temperature in the steady state or the temperature of the opposite wall surface is compared, or the rate of increase or the rate of decrease thereof is compared with a predetermined target range. However, when the casting defect occurs, the temperature rises and falls or their variation per unit time greatly varies depending on the type of casting defect and the situation at that time, and in the extreme case, it is the same casting defect. However, the temperature change pattern is usually large and varies. Therefore, the feature recognition of the temperature change pattern when a casting defect occurs becomes complicated, and it cannot be expected that the casting defect can be accurately detected.

【0005】上記従来技術の欠点を解消する方法として
は、鋳型に埋設した熱電対による温度推移パターンより
鋳造欠陥を検出する方法において、過去の鋳造欠陥発生
時における時系列温度検出値をフーリエ変換し、その各
項係数と前記鋳造欠陥発生状況との相関関係から鋳造欠
陥発生間係数を設定し、次いで連続鋳造中に実測される
温度検出値をフーリエ変換して各項係数を求め、該各項
係数が前記鋳造欠陥発生間係数内となった時を異常発生
と判断する方法(特開昭61−200453号公報)、
鋳型温度と鋳型直下の鋳片表面温度とを幅方向の複数点
で経時的に測定して、それらの測温値を用い、鋳型温度
が第1設定値より低いとき、もしくは該鋳型温度と該鋳
型温度より以前に測温された鋳型温度との差が第2設定
値より大きいとき、該鋳型温度測定幅方向位置における
鋳片表面温度が局部的に他の部分より高く、その温度差
が第3設定値より大きい場合、または鋳片表面温度が全
て第4設定値より高く、また該表面温度の一部が他の部
分より高く、その温度差が第5設定値より高い場合であ
って、鋳型温度が全て第6設定値より低いときに、縦割
れ疵、または縦割れ性ブレークアウトの発生と予知する
方法(特開平1−210160号公報)が提案されてい
る。
As a method of eliminating the above-mentioned drawbacks of the prior art, in a method of detecting a casting defect from a temperature transition pattern by a thermocouple embedded in a mold, a time-series temperature detection value at the time of occurrence of a casting defect in the past is Fourier-transformed. , A coefficient between casting defects is set from the correlation between each term coefficient and the casting defect occurrence status, and then each term coefficient is obtained by Fourier transforming the temperature detection value actually measured during continuous casting. A method of judging that an abnormality has occurred when the coefficient is within the coefficient between the occurrences of the casting defects (JP-A-61-200453),
The mold temperature and the slab surface temperature immediately below the mold are measured with time at a plurality of points in the width direction, and the temperature measurement values are used, when the mold temperature is lower than the first set value, or the mold temperature and the When the difference between the mold temperature measured before the mold temperature and the mold temperature is larger than the second set value, the slab surface temperature at the mold temperature measurement width direction position is locally higher than other parts, and the temperature difference is When the slab surface temperature is higher than the fourth setting value, or a part of the surface temperature is higher than the other part, and the temperature difference is higher than the fifth setting value. There has been proposed a method (Japanese Unexamined Patent Publication No. 1-210160) for predicting the occurrence of vertical cracking flaws or vertical cracking breakouts when the mold temperatures are all lower than the sixth set value.

【0006】[0006]

【発明が解決しようとする課題】上記特開昭61−20
0453号公報に開示の方法は、鋳型に埋設した熱電対
による温度推移パターンより鋳造欠陥を検出するもの
で、ブレークアウトやパウダーの不均一流入による表面
疵等の鋳造欠陥を検出対象としており、鋳型内の初期凝
固現象を定量的に測定し、推定するものではないため、
ブレークアウトは検出できるが、品質不良鋳片を見逃し
たり、あるいは品質良好な鋳片を品質不良と判定し、必
要のない表面手入れを行うという欠点を有している。ま
た、特開平1−210160号公報に開示の方法は、鋳
片表面に発生する縦割れ疵あるいは縦割れ性ブレークア
ウトを検出対象としており、オシレーションマークやピ
ンホール等の表面欠陥の検出は不可能である。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
The method disclosed in Japanese Patent No. 0453 discloses detecting casting defects from a temperature transition pattern by a thermocouple embedded in a mold, and is intended to detect casting defects such as breakouts and surface defects due to non-uniform inflow of powder. Since it does not quantitatively measure and estimate the initial solidification phenomenon in the
Although the breakout can be detected, it has a drawback that defective slabs are overlooked, or slabs with good quality are judged as poor quality, and unnecessary surface maintenance is performed. Further, the method disclosed in Japanese Unexamined Patent Publication No. 1-210160 targets vertical cracks or breaks that occur on the surface of the slab, and it is impossible to detect surface defects such as oscillation marks and pinholes. It is possible.

【0007】この発明の目的は、上記従来技術の欠点を
解消し、連続鋳造における鋳片の表面品質の推定精度を
安定維持できる連続鋳造における表面欠陥の抑制方法を
提供することにある。
An object of the present invention is to solve the above-mentioned drawbacks of the prior art and to provide a method of suppressing surface defects in continuous casting which can stably maintain the estimation accuracy of the surface quality of the cast pieces in continuous casting.

【0008】[0008]

【課題を解決するための手段】本発明者らは、上記目的
を達成すべく鋳片の表面品質推定の精度を向上すべく鋭
意試験研究を重ねた。その結果、鋳型内の深さ方向の溶
鋼温度分布は、図6に示すとおり、メニスカスから離れ
た深層部においては±2℃と安定しているが、メニスカ
ス直下には温度勾配の急激な領域が存在する。この温度
勾配の急激な領域の厚さをd(mm)とし、深層部の温
度安定域における溶鋼温度をTM(℃)とすると、鋳片
の表面品質は、鋳型内における初期凝固状況(メニスカ
ス直下5mm程度の領域における凝固)に大きく影響さ
れることが知られているが、前記温度勾配の急激な領域
の厚さdと温度安定域における溶鋼温度TMと鋳片表面
品質の相関を調査した結果、図7に示すとおりであっ
た。
[Means for Solving the Problems] The inventors of the present invention have conducted extensive studies to improve the accuracy of estimation of the surface quality of a slab to achieve the above object. As a result, the molten steel temperature distribution in the depth direction in the mold is stable at ± 2 ° C. in the deep layer away from the meniscus, as shown in FIG. 6, but there is a sharp temperature gradient region just below the meniscus. Exists. Assuming that the thickness of the region where this temperature gradient is abrupt is d (mm) and the molten steel temperature in the temperature stable region of the deep layer is T M (° C), the surface quality of the slab is determined by the initial solidification state (meniscus) in the mold. It is known that it is greatly affected by solidification in a region of about 5 mm immediately below, but the correlation between the thickness d of the region where the temperature gradient is abrupt and the molten steel temperature T M in the temperature stable region and the slab surface quality is investigated. As a result, it was as shown in FIG. 7.

【0009】図7に示すとおり、温度安定域における溶
鋼温度TMが高く、温度勾配の急激な領域の厚さdが小
さいほど鋳片の表面品質は良好となる傾向がある。これ
は、温度安定域における溶鋼温度TMが上昇することに
より鋳片と鋳型との間隙に流入すべきモールドパウダー
の滓化が促進され、均一な流れ込みによる均一な初期凝
固が得られること、さらに、温度勾配の急激な領域の厚
さdが小さくなることにより、メニスカス直下の温度が
高位安定となるため、初期凝固シェルの均一成長が得ら
れるためと考えられる。一方、温度安定域における溶鋼
温度TMに係わらず、温度勾配の急激な領域の厚さdが
2mm以下となると、鋳片の表面品質不良が増加する。
温度勾配の急激な領域の厚さdが2mm以下と小さいこ
とは、メニスカス直下の溶鋼流動速度が大きいことを意
味しており、メニスカス直下の溶鋼流動速度が大き過ぎ
ることによりパウダーの撹拌・混入が発生するための表
面品質不良であると推定される。したがって、メニスカ
ス直下の温度勾配の急激な領域の厚さdと深層部の温度
安定域における溶鋼温度TMとを鋳片の表面品質安定領
域に移行させるべく制御することによって、鋳片の表面
品質を安定維持できることを究明し、この発明に到達し
た。
As shown in FIG. 7, the higher the molten steel temperature T M in the temperature stable region and the smaller the thickness d in the region where the temperature gradient is abrupt, the better the surface quality of the slab tends to be. This is because the molten steel temperature T M in the temperature stable region is increased to promote the slag formation of the mold powder that should flow into the gap between the cast piece and the mold, and to obtain a uniform initial solidification due to a uniform inflow. It is considered that, since the thickness d of the region where the temperature gradient is abrupt becomes small, the temperature immediately below the meniscus becomes stable at a high level, and uniform growth of the initial solidified shell can be obtained. On the other hand, regardless of the molten steel temperature T M in the temperature stable region, when the thickness d of the region where the temperature gradient is abrupt is 2 mm or less, the surface quality defect of the slab increases.
The small thickness d of 2 mm or less in the region where the temperature gradient is abruptly means that the molten steel flow velocity immediately below the meniscus is high. It is presumed that the surface quality is poor due to the occurrence. Therefore, the surface quality of the cast slab is controlled by controlling the thickness d of the region having a sharp temperature gradient immediately below the meniscus and the molten steel temperature T M in the temperature stable region of the deep layer to shift to the surface quality stable region of the cast slab. The present invention has been achieved by investigating that the above can be stably maintained.

【0010】すなわち、本願の第1発明は、溶鋼の連続
鋳造において、鋳型内の溶鋼温度を深さ方向に2〜3m
m間隔で5〜10点同時に測定し、その温度分布および
絶対温度を把握してメニスカス直下の温度勾配の急激な
領域の深さdを求めると共に、その下部の温度安定域の
溶鋼温度TMを求め、前記温度勾配の急激な領域の深さ
dと温度安定域の溶鋼温度TMを、温度勾配の急激な領
域の深さdと温度安定域の溶鋼温度TMと鋳片表面品質
との関係から求まる鋳片表面品質の安全領域に移行させ
るべく、パウダー投入量、電磁撹拌の印加電流および浸
漬ノズル深さのうちの少なくとも一つを変更することを
特徴とする連続鋳造における表面欠陥の抑制方法であ
る。
That is, according to the first invention of the present application, in continuous casting of molten steel, the temperature of the molten steel in the mold is 2 to 3 m in the depth direction.
Simultaneously measuring 5 to 10 points at m intervals, grasping the temperature distribution and the absolute temperature to determine the depth d of the region with a steep temperature gradient directly below the meniscus, and the molten steel temperature T M in the temperature stable region therebelow. determined, the molten steel temperature T M of the depth d and the temperature stability range of sharp regions of the temperature gradient, and the molten steel temperature T M and slab surface quality of the depth d and the temperature stability range of rapid areas of temperature gradients Suppression of surface defects in continuous casting characterized by changing at least one of powder input amount, electromagnetic stirring applied current and immersion nozzle depth in order to shift to a safe area of slab surface quality determined from the relationship Is the way.

【0011】また、本願の第2発明は、溶鋼の連続鋳造
において、鋳型内の溶鋼温度を深さ方向に5〜10点同
時に測定し、その温度分布および絶対温度を把握してメ
ニスカス直下の温度勾配の急激な領域の深さdを求める
と共に、その下部の温度安定域の溶鋼温度TMを求め、
前記温度勾配の急激な領域の深さdと温度安定域の溶鋼
温度TMを、温度勾配の急激な領域の深さdと温度安定
域の溶鋼温度TMと鋳片表面品質との関係から求まる鋳
片表面品質の安全領域に移行させるべく、パウダー投入
量、電磁撹拌および浸漬ノズル深さのうちの少なくとも
一つを変更し、結果として品質安全領域で鋳造できなか
った鋳片は、表面手入れ工程を経由させることを特徴と
する連続鋳造における表面欠陥の抑制方法である。
In the second invention of the present application, in continuous casting of molten steel, the molten steel temperature in the mold is simultaneously measured at 5 to 10 points in the depth direction, and the temperature distribution and absolute temperature are grasped to determine the temperature immediately below the meniscus. The depth d of the steep gradient region is obtained, and the molten steel temperature T M in the temperature stable region below is obtained,
The molten steel temperature T M of the depth d and the temperature stability range of sharp regions of the temperature gradient, the relationship between the molten steel temperature T M and slab surface quality of the depth d and the temperature stability range of rapid areas of temperature gradients At least one of the powder input amount, electromagnetic stirring, and immersion nozzle depth was changed in order to shift to the required safety area of the surface quality of the cast piece. It is a method for suppressing surface defects in continuous casting, which is characterized by passing through steps.

【0012】[0012]

【作用】この発明において鋳型内の温度勾配の急激な領
域の深さdと温度安定域の溶鋼温度TMの測定は、図1
に示すとおり、測温紙管に2〜3mmピッチでシース熱
電対1を埋め込んだ測温プローブ2を、昇降装置3によ
って鋳造中に鋳型4内溶鋼5に約1分間浸漬し、鋳込み
の初期、中期、末期にかけて数回測定し、測温プローブ
2の各シース熱電対1の測温データを図示しないプロセ
スコンピュータに入力し、瞬時に温度勾配の急激な領域
の深さdと温度安定域の溶鋼温度TMを求めるのであ
る。この場合、測温プローブ2は、図1に示すとおり、
少なくとも鋳型4の壁面の影響をうけないよう壁面から
の距離Wが15〜20mm中央寄りで、かつ浸漬深さH
が20mm前後、浸漬ノズル6からの距離Lが300〜
400mmで設置する。なお、7はモールドパウダーで
ある。
In the present invention, the depth d of the region where the temperature gradient is abrupt in the mold and the molten steel temperature T M in the temperature stable region are measured as shown in FIG.
As shown in, the temperature measuring probe 2 in which the sheath thermocouple 1 is embedded in the temperature measuring paper tube at a pitch of 2 to 3 mm is immersed in the molten steel 5 in the mold 4 for about 1 minute during casting by the elevating device 3, and in the initial stage of casting, Measured several times during the middle and final stages, input the temperature measurement data of each sheath thermocouple 1 of the temperature measurement probe 2 to the process computer (not shown), and instantly the depth d of the steep temperature gradient region and the molten steel in the temperature stable region. The temperature T M is obtained. In this case, the temperature measuring probe 2 is, as shown in FIG.
At least the distance W from the wall surface is 15 to 20 mm toward the center so that the wall surface of the mold 4 is not affected, and the immersion depth H is
Is about 20 mm, and the distance L from the immersion nozzle 6 is 300 to
Install at 400 mm. In addition, 7 is a mold powder.

【0013】上記実測した鋳型内の温度勾配の急激な領
域の深さdと温度安定域の溶鋼温度TMが鋳片表面品質
の安全領域から外れている場合は、鋳片表面品質の安全
領域に移行させることによって、鋳片表面品質を向上さ
せることができる。モールドパウダー粉末層厚と鋳型内
の温度勾配の急激な領域の深さdとの関係は、図2に示
すとおりで、パウダーをモールド内に多量に投入してモ
ールドパウダー粉末層厚を厚くし、溶鋼表面の保温を強
化することによって、鋳型内の温度勾配の急激な領域の
深さdを小さくすることができる。また、鋳型内電磁撹
拌装置(M−EMS)への印加電流(A)と鋳型内の温
度勾配の急激な領域の深さdとの関係は、図3に示すと
おりで、鋳型内電磁撹拌装置への電流印加によって溶鋼
表面直下の流動が促進され、鋳型内の温度勾配の急激な
領域の深さdが小さくなる。さらに、浸漬ノズル深さと
温度安定域の溶鋼温度TMとタンディッシュ内溶鋼温度
の関係は、図4に示すとおりで、浸漬ノズル深さが深く
なるほど温度安定域の溶鋼温度TMは低下する。これは
浸漬ノズルの吐出孔が溶鋼表面から遠くなるためと考え
られる。
When the measured depth d of the region where the temperature gradient is abrupt and the molten steel temperature T M in the temperature stable region are outside the safe region of the slab surface quality, the safe region of the slab surface quality is measured. It is possible to improve the surface quality of the cast slab by shifting to. The relationship between the mold powder powder layer thickness and the depth d of the region where the temperature gradient in the mold is abrupt is as shown in FIG. 2, and a large amount of powder is injected into the mold to increase the mold powder powder layer thickness. By strengthening the heat retention of the molten steel surface, the depth d of the region where the temperature gradient is abrupt in the mold can be reduced. The relationship between the current (A) applied to the electromagnetic stirring device in the mold (M-EMS) and the depth d of the region where the temperature gradient in the mold is steep is as shown in FIG. The flow of current just below the surface of the molten steel is promoted by the application of a current to the molten steel, and the depth d of the region in the mold where the temperature gradient is abrupt becomes small. Furthermore, the relationship between the immersion nozzle depth and the molten steel temperature T M in the temperature stable region and the molten steel temperature in the tundish is as shown in FIG. 4, and the deeper the immersion nozzle depth, the lower the molten steel temperature T M in the temperature stable region. It is considered that this is because the discharge hole of the immersion nozzle becomes far from the molten steel surface.

【0014】上記のとおり、鋳型内の温度勾配の急激な
領域の深さdは、鋳型内へのパウダー投入量および/ま
たは電磁撹拌装置への印加電流を変更することによって
制御でき、また、温度安定域の溶鋼温度TMは、浸漬ノ
ズル深さを変更することによって制御することが可能で
ある。したがって、図1により実測した鋳型内の温度勾
配の急激な領域の深さdまたは温度安定域の溶鋼温度T
Mが鋳片表面品質の安全領域から外れている場合は、鋳
型内へのパウダー投入量および/または電磁撹拌装置へ
の印加電流を変更することによって温度勾配の急激な領
域の深さdを、また、浸漬ノズル深さを変更することに
よって温度安定域の溶鋼温度TMを鋳片表面品質の安全
領域に入れることができる。
As described above, the depth d of the region where the temperature gradient is steep in the mold can be controlled by changing the amount of the powder charged into the mold and / or the current applied to the electromagnetic stirrer. The molten steel temperature T M in the stable region can be controlled by changing the immersion nozzle depth. Therefore, the depth d of the region where the temperature gradient is abruptly measured in FIG. 1 or the molten steel temperature T in the temperature stable region is measured.
When M is out of the safe area of the slab surface quality, the depth d of the area where the temperature gradient is sharp can be changed by changing the amount of powder input into the mold and / or the current applied to the electromagnetic stirrer. Further, by changing the depth of the immersion nozzle, the molten steel temperature T M in the temperature stable region can be put in the safe region of the surface quality of the slab.

【0015】本願の第1発明においては、鋳型内の溶鋼
温度を深さ方向に2〜3mm間隔で5〜10点同時に測
定し、その温度分布および絶対温度を把握してメニスカ
ス直下の温度勾配の急激な領域の深さdを求めると共
に、その下部の温度安定域の溶鋼温度TMを求め、前記
温度勾配の急激な領域の深さdと温度安定域の溶鋼温度
Mを、温度勾配の急激な領域の深さdと温度安定域の
溶鋼温度TMと鋳片表面品質との関係から求まる鋳片表
面品質の安全領域に移行させるべく、パウダー投入量、
電磁撹拌の印加電流および浸漬ノズル深さのうちの少な
くとも一つを変更することによって、鋳片の表面品質を
安定維持することができ、表面手入れ工数を大幅に低減
することができる。
In the first invention of the present application, the molten steel temperature in the mold is measured simultaneously at 5 to 10 points at intervals of 2 to 3 mm in the depth direction, and the temperature distribution and absolute temperature are grasped to determine the temperature gradient immediately below the meniscus. The depth d of the abrupt region is obtained, the molten steel temperature T M in the lower temperature stable region is obtained, and the depth d of the abrupt region of the temperature gradient and the molten steel temperature T M of the temperature stable region are calculated as follows. In order to shift to the safe area of the slab surface quality, which is obtained from the relationship between the depth d of the abrupt area, the molten steel temperature T M in the temperature stable area, and the slab surface quality, the powder input amount,
By changing at least one of the applied current of the electromagnetic stirring and the depth of the immersion nozzle, the surface quality of the slab can be stably maintained, and the man-hour for surface maintenance can be significantly reduced.

【0016】また、本願の第2発明においては、鋳型内
の溶鋼温度を深さ方向に2〜3mm間隔で5〜10点同
時に測定し、その温度分布および絶対温度を把握してメ
ニスカス直下の温度勾配の急激な領域の深さdを求める
と共に、その下部の温度安定域の溶鋼温度TMを求め、
前記温度勾配の急激な領域の深さdと温度安定域の溶鋼
温度TMを、温度勾配の急激な領域の深さdと温度安定
域の溶鋼温度TMと鋳片表面品質との関係から求まる鋳
片表面品質の安全領域に移行させるべく、パウダー投入
量、電磁撹拌の印加電流および浸漬ノズル深さのうちの
少なくとも一つを変更し、結果として品質安全領域で鋳
造できなかった鋳片は、表面手入れ工程を経由させるこ
とによって、鋳片の表面品質を安定維持することがで
き、表面手入れ工数を大幅に低減できると共に、半製品
または最終製品における表面欠陥の発生を防止すること
ができる。
Further, in the second invention of the present application, the molten steel temperature in the mold is simultaneously measured at 5 to 10 points at intervals of 2 to 3 mm in the depth direction, the temperature distribution and absolute temperature are grasped, and the temperature immediately below the meniscus is measured. The depth d of the steep gradient region is obtained, and the molten steel temperature T M in the temperature stable region below is obtained,
The molten steel temperature T M of the depth d and the temperature stability range of sharp regions of the temperature gradient, the relationship between the molten steel temperature T M and slab surface quality of the depth d and the temperature stability range of rapid areas of temperature gradients At least one of the powder input amount, the applied current of electromagnetic stirring, and the immersion nozzle depth was changed in order to move to the safe area of the required slab surface quality. By passing through the surface care step, the surface quality of the slab can be stably maintained, the number of surface care steps can be significantly reduced, and the occurrence of surface defects in the semi-finished product or the final product can be prevented.

【0017】[0017]

【実施例】転炉および真空炉で溶製したステンレス鋼S
US304の溶鋼を、電磁撹拌装置を備えた垂直型スラ
ブ連続鋳造機を用い、厚さ206mm、幅1000〜1
250mmのスラブに、0.5〜0.9m/minの鋳
造速度で、CaO−SiO2系パウダーを用いて連続鋳
造するに際し、表1に示すとおり、電磁撹拌装置への印
加電流、モールドパウダー粉末層厚、浸漬ノズル深さを
一定として鋳造し、鋳型内の温度勾配の急激な領域の深
さdおよび温度安定域の溶鋼温度TMを、2mm間隔で
実測し、鋳型内の温度勾配の急激な領域の深さdおよび
温度安定域の溶鋼温度TMと鋳片表面品質との関係から
求まる鋳片表面品質の安全領域で鋳造できなかった鋳片
を表面手入れした従来法と、鋳型内の温度勾配の急激な
領域の深さdおよび温度安定域の溶鋼温度TMを、2m
m間隔で実測し、鋳型内の温度勾配の急激な領域の深さ
dおよび温度安定域の溶鋼温度TMと鋳片表面品質との
関係から求まる鋳片表面品質の安全領域に移行させるべ
く、表1に示すとおり、パウダー投入量、電磁撹拌の印
加電流および浸漬ノズル深さのうちの少なくとも一つを
変更し、結果として鋳片表面品質の安全領域で鋳造でき
なかった鋳片を表面手入れした本発明法のそれぞれにつ
いて、鋳片手入れ比率と最終製品の欠陥発生率を調査し
た。その結果を1週間平均を1プロットとして図5に示
す。
[Example] Stainless steel S melted in a converter and a vacuum furnace
Using molten steel of US304, a vertical slab continuous casting machine equipped with an electromagnetic stirrer, a thickness of 206 mm, and a width of 1000 to 1
As shown in Table 1, when continuously casting a CaO—SiO 2 powder on a 250 mm slab at a casting speed of 0.5 to 0.9 m / min, as shown in Table 1, the applied current to the electromagnetic stirrer and the mold powder powder Casting was performed with the layer thickness and the immersion nozzle depth being constant, and the depth d of the region where the temperature gradient was abrupt in the mold and the molten steel temperature T M in the temperature stable region were measured at 2 mm intervals, and the temperature gradient in the mold was abrupt. Of the surface area of the slab that could not be cast in the safe area of the slab surface quality obtained from the relationship between the depth d of various areas and the molten steel temperature T M in the stable temperature area and the surface quality of the slab. The depth d of the steep temperature gradient region and the molten steel temperature T M in the temperature stable region are set to 2 m.
In order to make a transition to a safe region of the slab surface quality, which is obtained from the relationship between the depth d of the region where the temperature gradient is abrupt in the mold and the molten steel temperature T M in the temperature stable region and the slab surface quality, measured at m intervals. As shown in Table 1, at least one of the powder charging amount, the applied current of electromagnetic stirring, and the immersion nozzle depth was changed, and as a result, the slab that could not be cast in the safe area of the slab surface quality was surface-treated. For each of the methods of the present invention, the slab care ratio and the defect occurrence rate of the final product were investigated. The result is shown in FIG. 5 with one week average as one plot.

【0018】[0018]

【表1】 [Table 1]

【0019】図5に示すとおり、本発明法を適用するこ
とによって鋳片表面品質の推定精度が向上し、必要最小
限の鋳片表面手入れによって、製品の表面欠陥を従来法
の約半分以下の低位に抑制することができた。
As shown in FIG. 5, by applying the method of the present invention, the accuracy of estimation of the surface quality of the slab is improved, and with the minimum necessary surface care of the slab, the surface defects of the product are reduced to about half or less of those of the conventional method. I was able to suppress it to a low level.

【0020】[0020]

【発明の効果】以上述べたとおり、この発明方法によれ
ば、連続鋳造における鋳片の表面品質の推定精度を安定
維持でき、必要最小限の鋳片表面手入れによって、製品
の表面欠陥を大幅に低減することができる。
As described above, according to the method of the present invention, it is possible to stably maintain the estimation accuracy of the surface quality of the slab in continuous casting, and the surface defects of the product can be significantly reduced by the minimum required slab surface care. It can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】鋳型内の温度勾配の急激な領域の深さdおよび
温度安定域の溶鋼温度TMの実測方法の説明図で、
(A)図は側断面図、(B)図は平面図である。
FIG. 1 is an explanatory view of a measurement method of a depth d of a region having a sharp temperature gradient in a mold and a molten steel temperature T M in a temperature stable region,
(A) is a side sectional view, and (B) is a plan view.

【図2】モールドパウダー粉末層厚と鋳型内の温度勾配
の急激な領域の深さdとの関係を示すグラフである。
FIG. 2 is a graph showing the relationship between the mold powder powder layer thickness and the depth d of a region where the temperature gradient in the mold is sharp.

【図3】電磁撹拌装置(M−EMS)への印加電流と鋳
型内の温度勾配の急激な領域の深さdとの関係を示すグ
ラフである。
FIG. 3 is a graph showing the relationship between the current applied to an electromagnetic stirrer (M-EMS) and the depth d of a region having a sharp temperature gradient in the mold.

【図4】タンディッシュ内溶鋼温度と浸漬ノズル深さと
温度安定域の溶鋼温度TMとの関係を示すグラフであ
る。
FIG. 4 is a graph showing the relationship between the molten steel temperature in the tundish, the immersion nozzle depth, and the molten steel temperature T M in the temperature stable region.

【図5】実施例における鋳片手入れ比率と製品欠陥発生
率との関係を示すグラフである。
FIG. 5 is a graph showing a relationship between a slab care ratio and a product defect occurrence rate in Examples.

【図6】鋳型内の溶鋼温度と測定深さと温度勾配の急激
な領域の深さdおよび温度安定域の溶鋼温度TMの状態
説明図である。
FIG. 6 is a state explanatory view of a molten steel temperature in a mold, a measurement depth, a depth d in a region where a temperature gradient is abrupt and a molten steel temperature T M in a temperature stable region.

【図7】鋳型内の温度安定域の溶鋼温度TMと温度勾配
の急激な領域の深さdと鋳片表面品質との関係を示すグ
ラフである。
FIG. 7 is a graph showing the relationship between the molten steel temperature T M in the temperature stable region in the mold, the depth d of the region where the temperature gradient is sharp, and the surface quality of the slab.

【符号の説明】[Explanation of symbols]

1 シース熱電対 2 測温プローブ 3 昇降装置 4 鋳型 5 溶鋼 6 浸漬ノズル 7 モールドパウダー 1 Sheath Thermocouple 2 Temperature Measuring Probe 3 Lifting Device 4 Mold 5 Molten Steel 6 Immersion Nozzle 7 Mold Powder

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 溶鋼の連続鋳造において、鋳型内の溶鋼
温度を深さ方向に5〜10点同時に測定し、その温度分
布および絶対温度を把握してメニスカス直下の温度勾配
の急激な領域の深さdを求めると共に、その下部の温度
安定域の溶鋼温度TMを求め、前記温度勾配の急激な領
域の深さdと温度安定域の溶鋼温度TMを、温度勾配の
急激な領域の深さdと温度安定域の溶鋼温度TMと鋳片
表面品質との関係から求まる鋳片表面品質の安全領域に
移行させるべく、パウダー投入量、電磁撹拌および浸漬
ノズル深さのうちの少なくとも一つを変更することを特
徴とする連続鋳造における表面欠陥の抑制方法。
1. In continuous casting of molten steel, the molten steel temperature in the mold is simultaneously measured at 5 to 10 points in the depth direction, and the temperature distribution and absolute temperature are grasped to determine the depth of a region with a steep temperature gradient immediately below the meniscus. The molten steel temperature T M in the temperature stable region below the temperature d is obtained, and the depth d of the region where the temperature gradient is abrupt and the molten steel temperature T M in the temperature stable region are calculated as the depth of the region where the temperature gradient is abrupt. At least one of the powder input amount, electromagnetic stirring, and immersion nozzle depth in order to shift to a safe area of the slab surface quality obtained from the relationship between the surface d, the molten steel temperature T M in the temperature stable range, and the slab surface quality. A method for suppressing surface defects in continuous casting, characterized in that:
【請求項2】 溶鋼の連続鋳造において、鋳型内の溶鋼
温度を深さ方向に5〜10点同時に測定し、その温度分
布および絶対温度を把握してメニスカス直下の温度勾配
の急激な領域の深さdを求めると共に、その下部の温度
安定域の溶鋼温度TMを求め、前記温度勾配の急激な領
域の深さdと温度安定域の溶鋼温度TMを、温度勾配の
急激な領域の深さdと温度安定域の溶鋼温度TMと鋳片
表面品質との関係から求まる鋳片表面品質の安全領域に
移行させるべく、パウダー投入量、電磁撹拌および浸漬
ノズル深さのうちの少なくとも一つを変更し、結果とし
て品質安全領域で鋳造できなかった鋳片は、表面手入れ
工程を経由させることを特徴とする連続鋳造における表
面欠陥の抑制方法。
2. In continuous casting of molten steel, the molten steel temperature in the mold is simultaneously measured at 5 to 10 points in the depth direction, and the temperature distribution and absolute temperature are grasped to determine the depth of a steep temperature gradient region immediately below the meniscus. The molten steel temperature T M in the temperature stable region below the temperature d is obtained, and the depth d of the region where the temperature gradient is abrupt and the molten steel temperature T M in the temperature stable region are calculated as the depth of the region where the temperature gradient is abrupt. At least one of the powder input amount, electromagnetic stirring, and immersion nozzle depth in order to shift to a safe area of the slab surface quality obtained from the relationship between the surface d, the molten steel temperature T M in the temperature stable range, and the slab surface quality. The method for suppressing surface defects in continuous casting is characterized in that the slab that cannot be cast in the quality and safety area as a result is subjected to a surface maintenance process.
JP5806695A 1995-02-21 1995-02-21 Method of controlling surface defects in continuous casting Expired - Lifetime JP2950188B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5806695A JP2950188B2 (en) 1995-02-21 1995-02-21 Method of controlling surface defects in continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5806695A JP2950188B2 (en) 1995-02-21 1995-02-21 Method of controlling surface defects in continuous casting

Publications (2)

Publication Number Publication Date
JPH08224648A true JPH08224648A (en) 1996-09-03
JP2950188B2 JP2950188B2 (en) 1999-09-20

Family

ID=13073539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5806695A Expired - Lifetime JP2950188B2 (en) 1995-02-21 1995-02-21 Method of controlling surface defects in continuous casting

Country Status (1)

Country Link
JP (1) JP2950188B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002036292A2 (en) * 2000-11-04 2002-05-10 Sms Demag Aktiengesellschaft Method and device for controlling the temperature of steel from the surface of the bath of a continuous casting installation up to the furnace tap
KR101239537B1 (en) * 2005-12-22 2013-03-06 주식회사 포스코 Method for deceasing a depression of strip surface by optimization a deposition depth in submerged entry nozzle
KR101505160B1 (en) * 2013-04-30 2015-03-23 현대제철 주식회사 Method for sorting steel product
JP2016027945A (en) * 2014-07-11 2016-02-25 Jfeスチール株式会社 Steel continuous casting method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4501892B2 (en) * 2006-04-21 2010-07-14 Jfeスチール株式会社 Method and apparatus for estimating molten metal temperature in continuous casting mold

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002036292A2 (en) * 2000-11-04 2002-05-10 Sms Demag Aktiengesellschaft Method and device for controlling the temperature of steel from the surface of the bath of a continuous casting installation up to the furnace tap
WO2002036292A3 (en) * 2000-11-04 2002-08-08 Sms Demag Ag Method and device for controlling the temperature of steel from the surface of the bath of a continuous casting installation up to the furnace tap
KR101239537B1 (en) * 2005-12-22 2013-03-06 주식회사 포스코 Method for deceasing a depression of strip surface by optimization a deposition depth in submerged entry nozzle
KR101505160B1 (en) * 2013-04-30 2015-03-23 현대제철 주식회사 Method for sorting steel product
JP2016027945A (en) * 2014-07-11 2016-02-25 Jfeスチール株式会社 Steel continuous casting method

Also Published As

Publication number Publication date
JP2950188B2 (en) 1999-09-20

Similar Documents

Publication Publication Date Title
JP3386051B2 (en) Method for estimating flow pattern of molten steel in continuous casting, temperature measuring device for mold copper plate, method for determining surface defects of continuous cast slab, method for detecting molten steel flow, method for evaluating non-uniformity of heat removal in mold, method for controlling molten steel flow, Quality control method in continuous casting, continuous casting method of steel, estimation method of molten steel flow velocity
RU2433885C2 (en) Method of continuous casting of billet with small cross section
US6179041B1 (en) Method and apparatus for the early recognition of ruptures in continuous casting of steel with an oscillating mold
JP2003181609A (en) Method and apparatus for estimating and controlling flow pattern of molten steel in continuous casting
JPH08224648A (en) Method for restraining surface defect in continuous casting
JP2004306085A (en) Quality monitoring device and quality monitoring method for continuous cast cast slab
JP2001239353A (en) Detecting method of abnormal casting condition inside mold in continuous casting
JP7115240B2 (en) Breakout prediction method in continuous casting
JPH01210160A (en) Method for predicting longitudinal crack in continuous casting
JP2020157333A (en) Learning model creation device, slab quality estimation device, learning model creation method, slab quality estimation method, and program
JPH01262050A (en) Detection of leaning flow of molten steel in mold at continuous casting of steel and method for continuous casting steel
KR100965975B1 (en) The method on the prediction the falling of clogging material in the submerged entry nozzle and operation method of finishing line at continuous casting
Yao et al. Monitoring and analysis of local mould thermal behaviour in continuous casting of round billets
JPH0790343B2 (en) Breakout prediction method in continuous casting
KR100516028B1 (en) Method and device for estimating/controlling molten steel flowing pattern in continuous casting
JPS63119963A (en) Method for predicting breakout in continuous casting
JPH04284956A (en) Method for continuously casting steel
JPH0771726B2 (en) Continuous casting method
JPH0344658B2 (en)
JPH0929407A (en) Continuous caster
JP2668872B2 (en) Breakout prediction method in continuous casting.
JP5375622B2 (en) Breakout prediction method for continuous casting
JP3062723B2 (en) Measurement method of slab surface dent shape due to solidification shrinkage in mold
JP2895603B2 (en) Surface defect judgment method for continuous cast slab
JPH0556224B2 (en)