JP2001239353A - Detecting method of abnormal casting condition inside mold in continuous casting - Google Patents

Detecting method of abnormal casting condition inside mold in continuous casting

Info

Publication number
JP2001239353A
JP2001239353A JP2000051521A JP2000051521A JP2001239353A JP 2001239353 A JP2001239353 A JP 2001239353A JP 2000051521 A JP2000051521 A JP 2000051521A JP 2000051521 A JP2000051521 A JP 2000051521A JP 2001239353 A JP2001239353 A JP 2001239353A
Authority
JP
Japan
Prior art keywords
mold
temperature
casting
heat flux
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000051521A
Other languages
Japanese (ja)
Other versions
JP4105839B2 (en
Inventor
Junichi Nakagawa
淳一 中川
Takahiro Katai
崇博 片井
Koichi Hirai
康一 平井
Hiroaki Iiboshi
弘昭 飯星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2000051521A priority Critical patent/JP4105839B2/en
Publication of JP2001239353A publication Critical patent/JP2001239353A/en
Application granted granted Critical
Publication of JP4105839B2 publication Critical patent/JP4105839B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a detecting method with high precision of abnormal casting conditions inside a mold such as a breakout, a defect on the casting surface or an abnormal flow of molten metals. SOLUTION: A mold temperature is measured with means for temperature measurement 16, 17 buried in a plurality of places inside the mold 11 leaving a space to the casting direction, and based on a temperature measuring value inside the mold, a thermal flux inside the mold 12 on each measuring point is estimated using a means for heat transfer inverse problems. A breakout is detected in a lapsed time when a random point on the mold piece 1 inside the mold passes the two measuring points or when the thermal flux estimated values around that time are lowered at more than the threshold values set up in advance on respective measuring points and concurrently in the order of measured points.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は連続鋳造における鋳
造異常、特に鋳型内の鋳片に発生したブレークアウト、
表面欠陥、溶融金属流動の異常などをオンラインで検出
する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to casting abnormalities in continuous casting, in particular, breakouts occurring in slabs in molds,
The present invention relates to a method for online detection of surface defects, abnormalities in molten metal flow, and the like.

【0002】[0002]

【従来の技術】連続鋳造機の鋳型内にある溶融金属の凝
固状態を鋳造中に知ることは、凝固シェルの不均一生成
に起因する鋳片表面欠陥発生のオンライン検出やブレー
クアウト、場面振動等の操業異常の予知を行う上での必
要条件であり、連続鋳造操業および品質管理上、重要で
ある。したがって、従来多くの鋳型内鋳造異常検出方法
が提案されている。
2. Description of the Related Art Knowing the solidification state of molten metal in a mold of a continuous casting machine during casting requires online detection, breakout, scene vibration, etc. of slab surface defects caused by uneven formation of solidified shells. This is a necessary condition for predicting the abnormal operation of the steelmaking, and is important for the continuous casting operation and quality control. Therefore, conventionally, many methods for detecting an abnormality in casting in a mold have been proposed.

【0003】溶融金属の凝固厚みと凝固シェルの温度プ
ロフイールを知るには鋳型内面の熱流束を知る必要があ
り、従来、溶融金属の鋳型内の熱流束を2つの熱電対を
鋳型の抜熱方向の異なる位置に配置し、鋳型材質の熱伝
導率λ、2点の熱電対の距離dと熱電対による温度計測
値から得られる温度差ΔTから、熱流束qを、 q=(λ/d)・ΔT の式により求めようとする試みはあった。しかし、鋳型
内面と水冷溝間の狭い空間内に2点の熱電対を配置し、
維持・管理をすることが困難であるという問題があっ
た。さらに、この方法で導出される熱流束は、鋳型内温
度分布が定常状態にあることが前提となっており、非定
常状態の程度が大きくなるにつれ、実際の熱流束値に対
する推定誤差が大きくなるという問題がある。
In order to know the solidified thickness of the molten metal and the temperature profile of the solidified shell, it is necessary to know the heat flux on the inner surface of the mold. Conventionally, the heat flux in the mold of the molten metal is determined by using two thermocouples in the direction of heat removal from the mold. From the thermal conductivity λ of the mold material, the distance d between the two thermocouples, and the temperature difference ΔT obtained from the temperature measured by the thermocouples, q = (λ / d) -Attempts have been made to obtain the equation ΔT. However, placing two thermocouples in a narrow space between the inner surface of the mold and the water cooling groove,
There was a problem that it was difficult to maintain and manage. Furthermore, the heat flux derived by this method is based on the assumption that the temperature distribution in the mold is in a steady state, and as the degree of the unsteady state increases, the estimation error with respect to the actual heat flux value increases. There is a problem.

【0004】また、特願平9−273745号公報「連
続鋳造設備における鋳型内異常判定方法」では、鋳型の
銅板表面に熱電対の先端を露出し、鋳型の銅板表面の鋳
造側となる温度を測定して鋳型内の溶融金属の凝固状態
およびパウダー潤滑状態を求め、鋳造時の異常を判定す
る。これにより、溶融金属の流出等による鋳造中断事故
(ブレークアウト)、鋳片表面欠陥の発生を最小に抑え
て歩留まりの向上を図る。この鋳型内異常判定方法で
は、鋳片内の熱流束を求めるものではないので、鋳型内
の凝固状態や凝固シェルの厚さを知ることはできない。
このために、表面欠陥、溶融金属流動の異常などをオン
ラインで検出することはできない。また、多数の熱電対
をこれの先端を鋳型表面に露出させて鋳型に取り付ける
必要がある。
[0004] In Japanese Patent Application No. 9-273745, "Method of judging abnormality in mold in continuous casting equipment", the tip of a thermocouple is exposed on the surface of a copper plate of a mold, and the temperature at the casting side of the copper plate surface of the mold is adjusted. The solidification state and the powder lubrication state of the molten metal in the mold are measured to determine abnormalities during casting. As a result, the occurrence of a casting interruption accident (breakout) due to the outflow of molten metal or the like and the occurrence of slab surface defects are minimized, and the yield is improved. In this method for determining an abnormality in a mold, since the heat flux in the slab is not determined, the solidification state in the mold and the thickness of the solidified shell cannot be known.
For this reason, surface defects, abnormalities in the flow of molten metal, and the like cannot be detected online. Also, it is necessary to attach a large number of thermocouples to the mold with their tips exposed on the mold surface.

【0005】[0005]

【発明が解決しようとする課題】本発明は、鋳型内面と
水冷溝間に配置した鋳型温度計測値から定常状態だけで
なく非定常状態にある溶融金属鋳型表面の熱流束を推定
し、これに基づき高い精度でブレークアウト、表面欠
陥、または溶融金属流動異常などの鋳型内鋳造異常を検
出する方法を提供することを課題とする。
SUMMARY OF THE INVENTION The present invention estimates the heat flux not only in the steady state but also in the unsteady state of the molten metal mold from the measured temperature of the mold disposed between the inner surface of the mold and the water cooling groove. An object of the present invention is to provide a method for detecting a casting abnormality in a mold such as a breakout, a surface defect, or a molten metal flow abnormality with high accuracy.

【0006】[0006]

【課題を解決するための手段】第1発明の連続鋳造にお
ける鋳型内鋳造異常検出方法は、鋳造方向に間隔をおい
て鋳型の複数箇所に埋設した温度計測手段で鋳型温度を
計測し、鋳型温度計測値に基づいて各計測点における鋳
型内面での熱流束を伝熱逆問題手法を用いてそれぞれ推
定する。そして、鋳型内鋳片の任意の点が2箇所の計測
点を通過する経過時間またはその近くで熱流束推定値が
それぞれの計測点についてあらかじめ設定した限界値以
上にかつ計測点順に低下したことによりブレークアウト
を検出する。
According to a first aspect of the present invention, there is provided a method for detecting abnormal casting in a mold in continuous casting, wherein the temperature of the mold is measured by temperature measuring means embedded in a plurality of locations of the mold at intervals in the casting direction. Based on the measured values, the heat flux at the inner surface of the mold at each measurement point is estimated by using the inverse heat transfer method. Then, at or near the elapsed time when an arbitrary point of the slab in the mold passes through the two measurement points, the heat flux estimation value drops below the preset limit value for each measurement point and in the order of the measurement points. Detect breakouts.

【0007】ブレークアウトは、鋳型と鋳片の間に噛み
込んだ異物や鋳片の割れ等で部分的に鋳片凝固層厚みが
薄くなった部位が破損し溶融金属が流出することで発生
する。ブレークアウトにつながるような凝固層が鋳型を
通過する際は、その原因となる異物または割れの影響で
凝固層から鋳型への熱移動が妨げられ、熱流束の低下が
起こる。したがって、上記方法で求めた各計測点におけ
る熱流束の減少量により、ブレークアウトの発生を検知
することができる。
[0007] Breakout occurs when a portion where the thickness of the slab solidified layer is thinned is partially damaged due to a foreign substance caught between the mold and the slab or a crack of the slab and molten metal flows out. . When a solidified layer that leads to breakout passes through the mold, heat transfer from the solidified layer to the mold is hindered by the influence of foreign substances or cracks that cause the solidified layer to cause a decrease in heat flux. Therefore, the occurrence of breakout can be detected from the amount of decrease in heat flux at each measurement point obtained by the above method.

【0008】第2発明の連続鋳造における鋳型内鋳造異
常検出方法は、鋳型に埋設した温度計測手段で鋳型温度
を計測し、鋳型温度計測値に基づいて鋳型内面での熱流
束を伝熱逆問題手法を用いて推定する。そして、熱流束
推定値をウエーブレット変換して得られる各変動周期ご
との変動成分および平均成分の時系列値に基づき鋳型内
鋳片の表面欠陥を検出する。
[0008] In the second invention, the method for detecting an abnormality in casting in a mold in continuous casting is to measure a mold temperature by temperature measuring means embedded in the mold and to determine a heat flux on the inner surface of the mold based on the measured value of the mold temperature. Estimate using a method. Then, the surface defect of the slab in the mold is detected based on the time series value of the fluctuation component and the average component for each fluctuation period obtained by performing the wavelet transform on the heat flux estimation value.

【0009】鋳片の割れは上記ブレークアウトの程度の
小さいものとみなせる。したがって、上述のブレークア
ウト判定の熱流束低下のレベル値を変更することで、大
きな割れは検知可能であるが、割れの大きさが小さくな
るにつれ、外乱等の影響で判定が困難になる。鋳片の割
れは、鋳型内における凝固不均一が原因で起こり、凝固
不均一の原因は主として鋳型と鋳片間に流入するパウダ
ー層の状態に支配されており、これは伝熱抵抗の変動と
して、鋳型内面の熱流束に反映される。したがって、第
1発明の方法で導出した熱流束の時系列変化の中には、
割れの原因となるパウダー層の状態に関する情報が埋め
込まれており、ウエーブレット変換により変動周期ごと
に熱流束の乱れ量を検知することで、パウダー層伝熱抵
抗の健全性の評価を介して鋳片表面欠陥の判定ができ
る。具体的には上記熱流束乱れの発生する変動周期から
表面欠陥の大きさが、各変動周期帯の熱流束変動量の振
幅から表面欠陥の発生頻度が判定できる。検出される表
面欠陥は、縦割れ、縦割れに比べて割れ長さが小さい横
割れ、微少ヘゲなどである。
[0009] Cracks in the slab can be considered to have a small degree of the breakout. Therefore, a large crack can be detected by changing the level value of the heat flux reduction in the breakout determination described above, but as the size of the crack decreases, the determination becomes difficult due to the influence of disturbance or the like. The slab cracks are caused by uneven solidification in the mold, and the cause of uneven solidification is mainly governed by the state of the powder layer flowing between the mold and the slab. Is reflected in the heat flux on the inner surface of the mold. Therefore, in the time series change of the heat flux derived by the method of the first invention,
Information on the state of the powder layer that causes cracks is embedded, and the wavelet transformation detects the amount of heat flux turbulence at every fluctuation cycle, and the casting is performed through the evaluation of the soundness of the powder layer heat transfer resistance. One surface defect can be determined. Specifically, the size of the surface defect can be determined from the fluctuation period in which the heat flux disturbance occurs, and the frequency of the surface defect can be determined from the amplitude of the heat flux fluctuation amount in each fluctuation period band. The surface defects detected are vertical cracks, horizontal cracks having a smaller crack length than the vertical cracks, and fine barbs.

【0010】第3発明の連続鋳造における鋳型内鋳造異
常検出方法は、鋳造方向に間隔をおいて鋳型の複数箇所
に埋設した温度計測手段で鋳型温度を計測し、鋳型温度
計測値に基づいて鋳型内面での熱流束を伝熱逆問題手法
を用いて推定し、熱流束推定値に基づき鋳片内部の熱流
束より溶融金属流出起因の対流熱伝達量を推定し、対流
熱伝達量推定値により鋳型内溶融金属流動の異常を判定
する。
In a third aspect of the invention, there is provided a method for detecting an abnormality in a casting in a mold in continuous casting, wherein the temperature of the mold is measured by temperature measuring means embedded in a plurality of locations of the mold at intervals in the casting direction, and the mold temperature is measured based on the measured temperature of the mold. Estimate the heat flux on the inner surface using the heat transfer inverse problem method, estimate the convection heat transfer caused by molten metal outflow from the heat flux inside the slab based on the heat flux estimation value, and An abnormality in the flow of the molten metal in the mold is determined.

【0011】上記のようにして算出した対流熱伝達量と
溶融金属流速との間には因果関係が存在するので、溶融
金属側の対流熱伝達量により鋳型内流動の異常を判定す
ることができる。鋳型内流動の異常は場面のパウダー巻
込み、介在物(アルミナクラスター、鍋スラグ)の鋳片
へのトラップなど内部欠陥の原因となる。
Since there is a causal relationship between the convective heat transfer amount calculated as described above and the molten metal flow rate, it is possible to determine the abnormality in the flow in the mold from the convective heat transfer amount on the molten metal side. . Abnormal flow in the mold causes internal defects such as powder entrainment in the scene and trapping of inclusions (alumina clusters, pot slag) in the slab.

【0012】[0012]

【発明の実施の形態】スラブの連続鋳造を例として、本
発明の実施の形態を説明する。図1は、鋳型および鋳型
内鋳片(溶融金属および凝固シェルからなっている)を
スラブ幅方向に沿う縦断面で模式的に示している。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described by taking continuous casting of a slab as an example. FIG. 1 schematically shows a mold and a slab (consisting of a molten metal and a solidified shell) in a mold in a longitudinal section along a slab width direction.

【0013】図1に示すように、鋳型11内に水冷溝1
3が形成されており、水冷溝13には冷却水温度を計測
する冷却水温度計測手段15が設けられている。冷却水
量は、流量計14で計測される。水冷溝13を通過する
冷却水で鋳型11を冷却し、鋳型内鋳片1より抜熱す
る。第1鋳型温度計測手段16および第2鋳型温度計測
手段17が、鋳型内面12と水冷溝13との間に上下
(鋳造)方向に間隔dをおいて埋設されている。熱流
束、鋳型温度分布その他を精度よく求めるために、第1
鋳型温度計測手段16は溶融スラグ液相部分7、または
凝固開始点もしくはこの近くに配置することが望まし
く、第2鋳型温度計測手段17は凝固シェル5の部分に
配置する。両温度計測手段16,17の間隔dは、鋳造
条件、鋳片寸法などに応じて操業実績に基づき鋳造異常
検出に適した間隔とする。図1では、上下方向に2個の
鋳型温度計測手段を配置しているが、必要に応じて上下
方向に例えば3〜5個配置してもよい。熱流束および鋳
型表面温度の鋳造方向の分布は、鋳型温度計測手段(温
度計測点)の数を増すとそれだけ高精度で求めることが
できる。また、上下で対となった鋳型温度計測手段1
6,17を、鋳片1の幅に従い鋳片幅方向に例えば2〜
6組配置するようにしてもよい。なお、鋳造方向に対し
直角方向に関しては、温度計測手段は1個でよい。上記
冷却水温度計測手段15、および鋳型温度計測手段1
6,17として、例えば熱電対、サーミスターなどを用
いる。温度計測値および流量計測値は、コンピュータ1
9に送信する。コンピューター19には、あらかじめ鋳
造条件、鋳型材質の熱伝導度、温度計測点の鋳型内面か
らの距離その他熱流束、温度分布、対流伝熱量などの演
算に必要なデータおよび演算プログラムが入力されてい
る。
As shown in FIG. 1, a water cooling groove 1 is provided in a mold 11.
The cooling water temperature measuring means 15 for measuring the temperature of the cooling water is provided in the water cooling groove 13. The cooling water amount is measured by the flow meter 14. The mold 11 is cooled with cooling water passing through the water cooling groove 13, and heat is removed from the in-mold slab 1. The first mold temperature measuring means 16 and the second mold temperature measuring means 17 are embedded between the inner surface 12 of the mold and the water cooling groove 13 with an interval d in the vertical (casting) direction. In order to obtain heat flux, mold temperature distribution, etc. with high accuracy,
The mold temperature measuring means 16 is preferably arranged at or near the molten slag liquid phase portion 7 or the solidification start point, and the second mold temperature measuring means 17 is arranged at the solidified shell 5. The interval d between the two temperature measuring units 16 and 17 is set to an interval suitable for detecting a casting abnormality based on operation results in accordance with casting conditions, slab dimensions, and the like. In FIG. 1, two mold temperature measuring means are arranged in the vertical direction. However, for example, three to five mold temperature measuring means may be arranged in the vertical direction as needed. The distribution of the heat flux and the mold surface temperature in the casting direction can be obtained with higher accuracy as the number of mold temperature measuring means (temperature measuring points) is increased. Also, a pair of upper and lower mold temperature measuring means 1
6, 17 are, for example, 2 to 2 in the slab width direction according to the width of the slab 1.
Six sets may be arranged. In the direction perpendicular to the casting direction, only one temperature measuring means may be used. The cooling water temperature measuring means 15 and the mold temperature measuring means 1
For example, a thermocouple, a thermistor, or the like is used as 6 and 17. The temperature measurement value and the flow measurement value are stored in the computer 1
9 The computer 19 is preliminarily input with necessary data and a calculation program for calculating the casting conditions, the thermal conductivity of the material of the mold, the distance of the temperature measurement point from the inner surface of the mold, the heat flux, the temperature distribution, and the amount of convection heat transfer. .

【0014】第1発明は、鋳造方向に間隔dをおいて鋳
型11の複数箇所に埋設した温度計測手段16,17で
鋳型温度を計測し、鋳型温度計測値に基づいて各計測点
における鋳型内面12での熱流束を伝熱逆問題手法を用
いてそれぞれ推定する。熱流束の推定方法は、温度分布
などの推定とともに後でまとめて説明する。
According to a first aspect of the present invention, the temperature of the mold is measured by temperature measuring means 16 and 17 embedded in a plurality of places of the mold 11 at intervals d in the casting direction, and the mold inner surface at each measurement point is measured based on the measured mold temperature. The heat flux at 12 is estimated using the inverse heat transfer method. The method of estimating the heat flux will be described later together with the estimation of the temperature distribution and the like.

【0015】鋳型内鋳片1の任意の点が2箇所の計測点
を通過する経過時間またはその近くで熱流束推定値がそ
れぞれの計測点についてあらかじめ設定した限界値以上
にかつ計測点順に低下したことによりブレークアウトを
検出する。上記経過時間またはその近くの時間τは、次
の式で示される。 d/vc≦τ≦(1+α)d/vc ここで、dは上下温度計測点の間隔であり、vcは鋳造
速度である。αは余裕係数で、0.01〜0.1程度で
ある。余裕係数αは、鋳型内鋳片の異物噛み込み部の移
動が第1計測点から第2計測点に至る間で遅れた場合、
遅れ時間を考慮した係数である。限界値は、鋳造条件、
鋳片寸法などに応じて操業実績に基づいて設定する。
At or near the elapsed time when an arbitrary point on the in-mold slab 1 passes through the two measurement points, the heat flux estimation value drops below a preset limit value for each measurement point and in the order of the measurement points. By doing so, a breakout is detected. The elapsed time or a time τ near it is expressed by the following equation. d / v c ≦ τ ≦ ( 1 + α) d / v c where, d is the distance between the upper and lower temperature measuring point, v c is the casting speed. α is a margin coefficient, which is about 0.01 to 0.1. The margin coefficient α is, when the movement of the foreign matter biting portion of the slab in the mold is delayed from the first measurement point to the second measurement point,
This is a coefficient considering the delay time. Limit values are casting conditions,
Set based on operation results according to slab dimensions and the like.

【0016】図2(a)は鋳造経過時間と熱電対により
計測した鋳型温度との関係を、図2(b)は鋳造経過時
間と鋳型計測温度より推測した熱流束との関係をそれぞ
れ示している。第1温度計測点は鋳型上面から180m
m、第2温度計測点は340mmである。これらの図か
ら、熱流束の変化が鋳型温度の変化より細かく、かつシ
ャープであり、明確となっていることがわかる。したが
って、熱流束の変化によるブレークアウトの検出が鋳型
温度の変化に比べて、より高い信頼度でより小さなブレ
ークアウトを検出できる。
FIG. 2A shows the relationship between the elapsed casting time and the mold temperature measured by the thermocouple, and FIG. 2B shows the relationship between the elapsed casting time and the heat flux estimated from the measured mold temperature. I have. The first temperature measurement point is 180m from the top of the mold
m, the second temperature measurement point is 340 mm. From these figures, it can be seen that the change in heat flux is finer, sharper, and clearer than the change in mold temperature. Therefore, the detection of a breakout due to a change in the heat flux can detect a smaller breakout with higher reliability than a change in the mold temperature.

【0017】図2(b)において、第1計測点の熱流束
推定値が限界値a以下に低下し、続いて前記経過時間内
に第1計測点の熱流束推定値が限界値b以下に低下する
と、ブレークアウトが発生したと判定する。なお、図2
(b)で円で囲んだ部分で示すように、異物噛込みも検
出可能である。
In FIG. 2B, the heat flux estimation value at the first measurement point drops below the limit value a, and the heat flux estimation value at the first measurement point falls below the limit value b within the elapsed time. If it falls, it is determined that a breakout has occurred. Note that FIG.
As shown by the circled portion in FIG. 7B, foreign matter can be detected.

【0018】第2発明は、上記熱流束に基づいて縦割れ
などの表面欠陥を検出する。鋳片の割れは上記ブレーク
アウトの程度の小さいものとみなせる。したがって、上
述のブレークアウト判定の前記限界値a、bを変更する
ことで、大きな割れは検知可能であるが、割れの大きさ
が小さくなるにつれ、外乱等の影響で判定が困難にな
る。
The second invention detects a surface defect such as a vertical crack based on the heat flux. The slab cracks can be considered to have a small degree of the breakout. Therefore, a large crack can be detected by changing the limit values a and b in the above-described breakout determination. However, as the size of the crack becomes smaller, the determination becomes difficult due to disturbance or the like.

【0019】図3(a)は、縦割れが生じた場合の鋳造
経過時間と熱電対により計測した鋳型温度との関係を示
している。図3(b)は、上記と同じ場合の鋳造経過時
間と鋳型計測温度より推定した熱流束との関係を示して
いる。温度計測手段から鋳型内面までの伝熱抵抗による
伝熱遅れのために、図3(a)に示すように鋳型内面に
おける伝熱変化が鈍った状態でしか検出できない。図2
で説明したと同様に、図3(b)では熱流束の変化は鋳
型温度の変化より細かく、かつシャープであり、明確と
なっていることがわかる。しかし、上述のように割れが
小さくなると、図3(b)により小さな割れを検出する
ことは困難である。
FIG. 3A shows the relationship between the elapsed casting time and the mold temperature measured by a thermocouple when a vertical crack occurs. FIG. 3B shows the relationship between the elapsed casting time and the heat flux estimated from the mold measurement temperature in the same case as described above. Due to the heat transfer delay due to the heat transfer resistance from the temperature measuring means to the inner surface of the mold, it can be detected only in a state where the change in the heat transfer on the inner surface of the mold is slow as shown in FIG. FIG.
3B, the change in the heat flux is finer, sharper, and clearer than the change in the mold temperature, as described in FIG. However, when the cracks are small as described above, it is difficult to detect the small cracks as shown in FIG.

【0020】第2発明では、図3(b)に示す熱流束推
定値の経時変化をウエーブレット解析することにより小
さな割れを検出する。図4(a)〜(d)および図5
(a)〜(d)は、ウエーブレット解析によるそれぞれ
熱流束の周期8秒、16秒、32秒および64秒変動結
果を示している。図4は鋳片に縦割れがある場合、図5
は健全な鋳片の場合である。図4(d)の下に鋳片の縦
割れ手入れ率つまり縦割れの発生率を示している。これ
らのウエーブレット解析結果から、健全鋳片と比較して
縦割れ発生スラブは8秒から32秒周期帯域の熱流束変
動の乱れが大きくなっていることがわかる。これらの変
動量の大きさ(振幅)と頻度とが縦割れ手入れ率の程度
とよく対応しており、これら周期帯の熱流束変動量を管
理することで縦割れ検出が可能となる。縦割れの大きさ
は上記振幅により、鋳片長さ方向の位置は鋳造経過時間
で決定することができる。縦割れ発生鋳片は、64秒周
期帯の上下熱流束挙動が一致しており、鋳片の鋳型から
の浮き上がり挙動を表わしているものと考えられ、縦割
れ原因系検出の可能性を示している。
In the second invention, a small crack is detected by performing a wavelet analysis on a change with time of the estimated heat flux shown in FIG. 3B. 4 (a) to 4 (d) and FIG.
(A)-(d) have shown the fluctuation | variation result of the period of the heat flux of 8 seconds, 16 seconds, 32 seconds, and 64 seconds by a wavelet analysis, respectively. FIG. 4 shows the case where the slab has vertical cracks.
Is the case of sound slabs. The lower part of FIG. 4D shows the care rate of vertical cracks, that is, the rate of occurrence of vertical cracks. From these wavelet analysis results, it can be understood that the slab having the vertical cracks has a larger disturbance of the heat flux fluctuation in the period band of 8 seconds to 32 seconds than the sound slab. The magnitude (amplitude) and frequency of these fluctuations correspond well to the degree of the vertical crack care rate, and vertical cracks can be detected by managing the heat flux fluctuations in these periodic bands. The size of the vertical crack can be determined by the amplitude, and the position in the slab length direction can be determined by the elapsed casting time. The vertical crack generation slab has the same upper and lower heat flux behavior in the 64 second period band, which is considered to represent the lifting behavior of the slab from the mold, indicating the possibility of detecting the vertical crack cause system. I have.

【0021】図4では、計測点が上部熱電対位置と下部
熱電対位置との2箇所であった。1箇所で計測した熱流
束変動量により縦割れなどの表面欠陥を検出することも
できるが、2箇所で計測した方が欠陥検出精度は高くな
る。2箇所で計測の場合、欠陥の有無、大きさ、および
鋳片長さ方向の位置は、熱流束変動量の振幅が大きい方
で判断する。
In FIG. 4, there are two measurement points, an upper thermocouple position and a lower thermocouple position. Although surface defects such as vertical cracks can be detected based on the heat flux variation measured at one location, the defect detection accuracy is higher when measured at two locations. In the case of measurement at two locations, the presence / absence, size, and position of the slab in the length direction of the slab are determined by the larger amplitude of the heat flux variation.

【0022】第3発明では、前記伝熱逆問題手法を鋳型
内にある鋳片凝固層に適用する。熱電対計測値から算出
した鋳型内面熱流束値を鋳片凝固層外表面の既知境界条
件に、鋳型内溶融金属の熱履歴計算で求めた鋳片凝固層
表面温度を観測点にして前記伝熱逆問題を解き、凝固層
厚みと凝固層内面の熱流束を算出し、凝固層内面の熱流
束凝固層内面の熱伝導量より溶融金属側の対流熱伝達量
を算出する。対流熱伝達量と溶融金属流速間には因果関
係が存在するので、溶融金属側の対流熱伝達量により鋳
型内流動の判定を行うことが可能となる。鋳型内流動の
異常が発生時の対流熱伝達量は操業実績データとして蓄
積されており、これと対流熱伝達量推定値と比較して鋳
型内流動の異常を判定する。
In the third invention, the heat transfer inverse problem method is applied to a slab solidified layer in a mold. Heat flux value on the inner surface of the mold calculated from the thermocouple measurement value to the known boundary conditions of the outer surface of the slab solidified layer, the heat transfer to the slab solidified layer surface temperature determined by the heat history calculation of the molten metal in the mold as the observation point The inverse problem is solved, the thickness of the solidified layer and the heat flux on the inner surface of the solidified layer are calculated, and the convective heat transfer amount on the molten metal side is calculated from the heat flux on the inner surface of the solidified layer. Since there is a causal relationship between the amount of convective heat transfer and the molten metal flow rate, it is possible to determine the flow in the mold based on the amount of convective heat transfer on the molten metal side. The convective heat transfer amount at the time of occurrence of the abnormal flow in the mold is accumulated as operation result data, and is compared with the estimated convective heat transfer amount to determine the abnormal flow in the mold.

【0023】前述のように、第1発明および第2発明で
は、鋳型内面と水冷溝との間に埋設した温度計測手段に
より計測した鋳型温度から鋳型内表面の熱流束を推定
し、ブレークアウトまたは表面欠陥を検出する。第3発
明では、上記熱流束に基づいて求めた溶融金属側の対流
熱伝達量により、鋳型内流動の異常を検出する。以下、
鋳型温度計測値に基づき、これら熱流束および対流熱伝
達量を求める方法について説明する。
As described above, in the first invention and the second invention, the heat flux on the inner surface of the mold is estimated from the mold temperature measured by the temperature measuring means embedded between the inner surface of the mold and the water cooling groove, and the breakout or Detect surface defects. In the third invention, an abnormality in the flow in the mold is detected based on the convective heat transfer amount on the molten metal side obtained based on the heat flux. Less than,
A method for obtaining the heat flux and the convective heat transfer amount based on the mold temperature measurement value will be described.

【0024】鋳型内表面の熱流束は、James.V.BECKの非
線形逆伝熱問題の手法[Int.J.Masss Transfer,vol.13,
pp703-716(1970)]を適用し、非定常伝熱方程式の数値
解より、鋳型表面と水冷溝との間に埋設した1点の鋳型
温度計測値を最も良く説明できる熱流束を時系列的に逐
次求める。また、熱流束と非定常伝熱差分方程式の解と
して求められる鋳型内面温度を同時に決定する。
The heat flux on the inner surface of the mold is determined by James V. BECK's method of non-linear heat transfer problem [Int. J. Masss Transfer, vol.
pp703-716 (1970)], and based on the numerical solution of the unsteady heat transfer equation, the heat flux that can best explain the measured value of the temperature of one mold buried between the mold surface and the water cooling groove is time-series. Sequentially. In addition, the heat flux and the mold inner surface temperature obtained as a solution of the unsteady heat transfer difference equation are simultaneously determined.

【0025】図6は、鋳型内面12と鋳型水冷溝13間
の熱移動を表す概念図である。溶融金属2から鋳型11
へ流入する熱流束が鋳型11内を通過し、鋳型水冷溝1
3を流れる冷却水wにより抜熱される。熱流束を検出す
るために鋳型内面12から鋳型水冷溝への垂直方向距離
Eの位置に熱電対16が設置されている。
FIG. 6 is a conceptual diagram showing heat transfer between the mold inner surface 12 and the mold water cooling groove 13. Mold 11 from molten metal 2
The heat flux flowing into the mold 11 passes through the mold 11 and the mold water cooling groove 1
Heat is removed by the cooling water w flowing through the cooling water 3. In order to detect a heat flux, a thermocouple 16 is provided at a position at a vertical distance E from the mold inner surface 12 to the mold water cooling groove.

【0026】図6において、鋳型厚み方向の1次元方向
伝熱のみを考えると、鋳型内面から鋳型水冷溝間の熱移
動を支配する方程式は以下の式で表される。 ρcp∂T/∂t=−∂(λ∂T/∂x)/∂x (1) T(E,t)=Y(t) (2) λ∂T(F,t)/∂x=hw(T(F,t)−Tw) (3) T(x,0)=T0(x) (4) ここで、ρは鋳型材料の密度、cpは鋳型材料の比熱、
xは鋳型内面から水冷溝への任意の位置における垂直方
向距離、Eは鋳型内面から鋳型熱電対設置点までの垂直
方向距離、Yはその計測値を示す。Fは鋳型内面12か
ら鋳型水冷溝13までの垂直方向距離を、hw,Twは
各々、水側冷却の総括熱伝達係数、水温を示す。T0
(x)は鋳型内面12から鋳型水冷溝13間の垂直方向
の初期温度分布を示し、鋳造開始直前にすべて室温に設
定する。
In FIG. 6, considering only the one-dimensional heat transfer in the thickness direction of the mold, the equation governing the heat transfer from the inner surface of the mold to the mold water cooling groove is expressed by the following equation. ρc p ∂T / ∂t = -∂ ( λ∂T / ∂x) / ∂x (1) T (E, t) = Y (t) (2) λ∂T (F, t) / ∂x = hw (T (F, t) -Tw) (3) T (x, 0) = T0 (x) (4) where ρ is the density of the mold material, c p is the specific heat of the mold material,
x is the vertical distance at an arbitrary position from the inner surface of the mold to the water cooling groove, E is the vertical distance from the inner surface of the mold to the mold thermocouple installation point, and Y is the measured value. F represents the vertical distance from the mold inner surface 12 to the mold water cooling groove 13, and hw and Tw respectively represent the overall heat transfer coefficient of water-side cooling and the water temperature. T0
(X) shows the initial temperature distribution in the vertical direction between the mold inner surface 12 and the mold water cooling groove 13, and all are set to room temperature immediately before the start of casting.

【0027】(1)、(3)、(4)式より計算した熱
電対計測点に於ける鋳型温度T(E,t)と計測温度Y
(t)の2乗誤差を以下の(5)式で定義し、これが最
小となるような熱流束q(t,0)≡λ∂T/∂xx=0
を(6)式より決定する。 F(q)=(T(E,t)−Y(t))2 (5) ∂F(q)/∂q=0 (6)
The mold temperature T (E, t) and the measured temperature Y at the thermocouple measurement point calculated from the equations (1), (3) and (4)
The square error of (t) is defined by the following equation (5), and the heat flux q (t, 0) ≡λ∂T / ∂x = 0 such that the square error is minimized.
Is determined from equation (6). F (q) = (T (E, t) −Y (t)) 2 (5) ∂F (q) / ∂q = 0 (6)

【0028】以上の説明では、図6で上側温度計測点
(温度計測手段16の位置)について熱流束を求めた
が、下側温度計測点(図1で温度17の位置)または計
測点が3箇所以上ある場合でも同様にして計測点の熱流
束を求めることができる。これら求めた熱流束により内
外挿して、鋳造方向の熱流束分布を求める。熱流束は鋳
造方向位置および時間の関数であるが、以下簡単にqm
で表す。
In the above description, the heat flux was obtained for the upper temperature measurement point (the position of the temperature measurement means 16) in FIG. 6, but the lower temperature measurement point (the position of the temperature 17 in FIG. 1) or the measurement point was 3 points. The heat flux at the measurement point can be obtained in the same manner even when there are more than two places. The heat flux distribution in the casting direction is obtained by extrapolation using the obtained heat flux. The heat flux is a function of the direction of casting position and time, the following briefly q m
Expressed by

【0029】つぎに、上記熱流束に基づいて凝固シェル
厚み、凝固シェル内温度分布および凝固シェル表面温度
を求める。
Next, the thickness of the solidified shell, the temperature distribution in the solidified shell, and the surface temperature of the solidified shell are determined based on the heat flux.

【0030】図7は、溶融金属内の熱移動を示す概念図
である。溶融金属プール内の溶融金属2は、メニスカス
3から鋳造速度に対応した速度で下方に引き抜かれる際
に、鋳型11により熱流束で冷却され、凝固シェル5を
形成する。メニスカス3における溶融金属温度を初期条
件とし、上で求めた鋳型表面熱流束を境界条件にして溶
融金属2のx方向一次元非定常伝熱計算を行う。計算の
便宜のために、x方向は図6とは逆方向にとってある。
ここで、パウダー層の熱慣性が小さいため、凝固シェル
・鋳型表面間のパウダー層内伝熱は擬定常状態が成立す
ると仮定し、鋳型表面熱流束が凝固シェル表面熱流束に
等しいとしている。 Csρs∂T/∂tmeni=∂(−λs∂T/∂x)/∂x (7) T=T0 ただし、tmeni=0 (8) −λs∂T/∂x=qm ただし、x=0 (9) T=TL ただし、x=δ (10) −λs∂T/∂x=ρsL(dδ/dt) ただし、x=0 (11) ここでtmeniはメニスカスからの経過時間、xは鋳型表
面から凝固シェル内の任意の位置における距離、δは凝
固シェル厚み、Lは凝固潜熱、λsは凝固シェルの熱伝
導度、Csは凝固シェルの比熱、TLは凝固温度を示す。
FIG. 7 is a conceptual diagram showing heat transfer in the molten metal. When the molten metal 2 in the molten metal pool is drawn downward from the meniscus 3 at a speed corresponding to the casting speed, it is cooled by the heat flux by the mold 11 to form the solidified shell 5. Using the temperature of the molten metal in the meniscus 3 as an initial condition and the heat flux of the mold surface obtained above as a boundary condition, a one-dimensional unsteady heat transfer calculation in the x direction of the molten metal 2 is performed. For convenience of calculation, the x direction is set in a direction opposite to that in FIG.
Here, since the thermal inertia of the powder layer is small, it is assumed that the heat transfer in the powder layer between the solidified shell and the mold surface is in a pseudo-steady state, and the heat flux on the mold surface is equal to the heat flux on the solidified shell surface. C s ρ s ∂T / ∂t meni = ∂ (−λ s ∂T / ∂x) / ∂x (7) T = T0 where t meni = 0 (8) -λ s ∂T / ∂x = q m where x = 0 (9) T = TL where x = δ (10) −λ s ∂T / ∂x = ρ s L (dδ / dt) where x = 0 (11) where t meni is Elapsed time from the meniscus, x is the distance from the mold surface at any position in the solidified shell, δ is the solidified shell thickness, L is the solidification latent heat, λ s is the thermal conductivity of the solidified shell, C s is the specific heat of the solidified shell, TL indicates the solidification temperature.

【0031】(7)〜(11)式を解くことにより、凝
固シェル厚みと同時に凝固シェル内温度分布が求まり、
メニスカスから鋳造方向の任意の位置における凝固シェ
ル表面温度が決定できる。
By solving the equations (7) to (11), the temperature distribution in the solidified shell is determined simultaneously with the thickness of the solidified shell.
The solidified shell surface temperature at an arbitrary position in the casting direction from the meniscus can be determined.

【0032】つぎに、凝固シェル表面熱流束を推定し、
熱対流(溶融金属流動)起因の熱流束を求める方法につ
いて説明する。前記と同様、J.V.BECKの非線形逆伝熱問
題の手法を使う。
Next, the heat flux of the solidified shell surface is estimated,
A method for obtaining a heat flux caused by thermal convection (molten metal flow) will be described. As before, the method of JVBECK's nonlinear inverse heat transfer problem is used.

【0033】図7に示すような凝固シェル厚み方向の一
次元方向伝熱のみを考えると、支配方程式は以下の式で
表わせる。 ρss∂T/∂t=−∂(λs∂T/∂x)/∂x (12) T(0,t)=Y(t) (13) λs∂T(0,t)/∂t=qm (14) T(x,0)=Ti(x) (15) ここで、tは任意の時刻を表し、メニスカスからの経過
時刻を示すtmeniとは別物である。
Considering only one-dimensional heat transfer in the thickness direction of the solidified shell as shown in FIG. 7, the governing equation can be expressed by the following equation. ρ s C s ∂T / ∂t = −∂ (λ s ∂T / ∂x) / ∂x (12) T (0, t) = Y (t) (13) λ s ∂T (0, t) / ∂t = q m (14) T (x, 0) = Ti (x) (15) Here, t represents an arbitrary time and is different from t meni which indicates an elapsed time from the meniscus.

【0034】ある凝固シェル厚みを仮定し、上の(1
2)〜(15)式を解くと、仮定した凝固シェル内表面
上の熱流束と温度が求まる。この凝固シェル厚みを適切
な値に設定することにより、計算で求めた凝固シェル内
表面温度と溶融金属凝固温度を一致させることができ、
このときの熱流束が凝固シェル内表面上の熱流束qm
なる。熱流束qmは溶融金属の熱対流起因の熱流束と凝
固シェルヘ熱伝導で移動する熱流束および溶融金属の凝
固潜熱として使われた熱量で構成され、これらの関係は
以下の(16)式で表される。 qm−ρL(dδ/dt)= 〔1/{(1/α)十Δx/λs}〕(Tb−Tx) (16) ここで、αは溶融金属対流による熱伝達係数、Txは凝
固シェル内表面からΔxの距離における凝固シェル温
度、Tbは溶融金属のバルク温度を示す。(16)式よ
り qconv=α(Tb−Tx) =(Tb−Tx)/〔(Tb−Tx)/{qm−ρL(dδ/dt)} −Δx/λs〕 (17) が熱対流起因の熱流束である。
Assuming a certain solidified shell thickness, the above (1)
By solving equations 2) to (15), the assumed heat flux and temperature on the inner surface of the solidified shell are obtained. By setting this solidified shell thickness to an appropriate value, it is possible to match the solidified shell inner surface temperature and the molten metal solidification temperature obtained by calculation,
Heat flux in this case is the heat flux q m on solidified shell surface. The heat flux q m is composed of the heat flux caused by the heat convection of the molten metal, the heat flux moving to the solidification shell by heat conduction, and the amount of heat used as the latent heat of solidification of the molten metal. These relations are expressed by the following equation (16). expressed. q m -ρL (dδ / dt) = [1 / {(1 / α) Ten Δx / λ s}] (Tb-Tx) (16) where, alpha is the heat transfer coefficient due to the molten metal convection, Tx coagulation The solidified shell temperature at a distance of Δx from the inner surface of the shell, Tb indicates the bulk temperature of the molten metal. (16) from equation q conv = α (Tb-Tx ) = (Tb-Tx) / [(Tb-Tx) / {q m -ρL (dδ / dt)} -Δx / λ s ] (17) heat This is the heat flux caused by convection.

【0035】上記熱流束などを求める演算は、図1に示
すコンピューター19により図8に示すフローチャート
の命令に従って実行される。
The calculation for obtaining the heat flux and the like is executed by the computer 19 shown in FIG. 1 in accordance with the instructions in the flowchart shown in FIG.

【0036】ステップ1で時間tにゼロを設定し、ステ
ップ2で時間tに微小時間間隔Δtを加算し、時間を更
新する。ステップ3にて鋳造方向に鋳型内設置された熱
電対の計測値をコンピューター19に読み込み、ステッ
プ4にてステップ3で読み込んだ熱電対の計測値に基づ
き、鋳型表面の熱流束と鋳型内表面温度Tmsを計算す
る。
In step 1, zero is set for the time t, and in step 2, the minute time interval Δt is added to the time t to update the time. In step 3, the measured value of the thermocouple installed in the casting direction in the casting direction is read into the computer 19, and in step 4, the heat flux of the mold surface and the temperature of the inner surface of the mold are determined based on the measured value of the thermocouple read in step 3. Calculate T ms .

【0037】具体的には、前述の(4)式を初期条件、
(2)式および(3)式を境界条件にして(1)式を離
散化して解く。(1)〜(4)式より計算した熱電対計
測点に於ける鋳型温度T(E,t)と計測温度Y(t)
の2乗誤差を以下の前述の(5)式により計算する。
Specifically, the above equation (4) is used as an initial condition,
Equation (1) is discretized and solved using equations (2) and (3) as boundary conditions. The mold temperature T (E, t) and the measured temperature Y (t) at the thermocouple measurement point calculated from the equations (1) to (4)
Is calculated by the following equation (5).

【0038】前述の(6)式に示すように2乗誤差F
(q)の熱流束qに関する偏微分係数がゼロに近づくよ
うに、仮定した熱流束値q0を以下の手順にしたがって
修正する。
As shown in the above equation (6), the square error F
Partial differential coefficient for heat flux q of (q) is closer to zero, modifying the heat flow flux value q 0 on the assumption according to the following procedure.

【0039】仮定した熱流束q0を境界条件にして計算
した鋳型温度計測点における鋳型温度計算値をT(E,
t)0、修正した熱流束q1を境界条件にして計算した
鋳型温度計測点における鋳型温度計算値をT(E,t)
1とすると、T(E,t)1をΔq≡q1−q0に関して
テーラー展開すると以下のようになる。 T(E,t)1=T(E,t)0+(∂T(E,t)0/∂q0) ・(q1−q0) (18) ここで、感度係数β0を次式のように定義する。 β0≡∂T(E,t)0/∂q0 =(T(E,t)1−T(E,t)0)/εq0 (19) ここで、εはqの最適値を探索するために設定する微小
値であり、例えば、0.001とする。(18)式と
(19)式を(6)式に代入し、q1に関して整理する
と、 q1=q0+(T(E,t)0−Y(t))/β0 (20) q1とq2を比較し、下記の収束判定式を満足すればq1
が求める熱流束である。 (q1−q0)/q0<0.001 (21)
The calculated mold temperature at the mold temperature measurement point calculated using the assumed heat flux q 0 as a boundary condition is represented by T (E,
t) 0, the mold temperature calc'd mold temperature measurement point the heat flux q 1 was modified was calculated boundary conditions T (E, t)
When T is 1, T (E, t) 1 is Taylor-expanded with respect to Δq≡q 1 −q 0 as follows. T (E, t) 1 = T (E, t) 0+ (∂T (E, t) 0 / ∂q 0) · (q 1 -q 0) (18) Here, following equation sensitivity coefficient beta 0 Is defined as β 0 ≡∂T (E, t) 0 / ∂q 0 = (T (E, t) 1 -T (E, t) 0) / εq 0 (19) Here, ε is a minute value set for searching for an optimum value of q, for example, 0.001 And (18) and (19) substituted formula (6) below, is rearranged with respect to q 1, q 1 = q 0 + (T (E, t) 0-Y (t)) / β 0 (20) q 1 and q 2 are compared, and if the following convergence judgment formula is satisfied, q 1
Is the desired heat flux. (Q 1 -q 0) / q 0 <0.001 (21)

【0040】(21)式を満足しない場合は、q1を基
準に上と同様の手順で以下の(22)式に従ってqi
計算を行い、(23)式を満足するまで、計算を繰り返
し、熱流束qを決定し、同時に鋳型内表面温度T(0,
t)が計算される。 qi=qi-1+(T(E,t)i-1−Y(t))/βi-1 i=2,3,… (22) (qi−qi-1)/qi-1<0.001 i=2,3,… (23)
If equation (21) is not satisfied, q i is calculated according to the following equation (22) based on q 1 in the same procedure as above, and the calculation is repeated until equation (23) is satisfied. , Heat flux q, and at the same time, the mold inner surface temperature T (0, 0,
t) is calculated. q i = q i−1 + (T (E, t) i−1 −Y (t)) / β i−1 i = 2, 3,... (22) (q i −q i−1 ) / q i-1 <0.001 i = 2,3, ... (23)

【0041】ステップ5では、(7)〜(11)式を使
って凝固シェル厚みδおよび凝固シェル表面温度TLを
求める。その際、(9)式に使用する熱流束値qmは、
熱電対計測値から逆問題で求めた熱流束値の鋳造方向内
外挿値を使用する。
In step 5, the solidified shell thickness δ and the solidified shell surface temperature TL are determined using the equations (7) to (11). At this time, the heat flux value q m used in the equation (9) is
The extrapolation value in the casting direction of the heat flux value obtained by the inverse problem from the thermocouple measurement value is used.

【0042】ステップ6では、(12)〜(15)式に
より凝固シェル内表面熱流束を求める。その際、(1
3)式のY(t)は各熱電対位置におけるステップS5
で求めた鋳片表面温度を使用し、(14)式のqmはス
テップS4で逆問題を解いて求めた鋳型内面熱流束値を
使用する。
In step 6, the heat flux inside the solidified shell surface is determined by the equations (12) to (15). At that time, (1
Y (t) in equation 3) is the value of step S5 at each thermocouple position.
In using the billet surface temperature obtained, (14) is the q m using a mold inner surface heat flux values obtained by solving the inverse problem in step S4.

【0043】ステップ7で上記凝固シェル内表面熱流束
により溶融金属流動に起因する対流熱伝達量を(17)
式より求める。
In step 7, the convection heat transfer caused by the flow of the molten metal is determined by the heat flux inside the solidified shell (17).
Obtain from the formula.

【0044】以上説明した発明の実施の形態では鋳片が
スラブであったが、本発明はこれに限られるものではな
い。例えば、鋳片がビレット、厚板材、丸棒材などであ
ってもよく、また水平連続鋳造にも適用することができ
る。
Although the slab is a slab in the embodiment of the present invention described above, the present invention is not limited to this. For example, the slab may be a billet, a thick plate, a round bar, or the like, and can be applied to horizontal continuous casting.

【0045】[0045]

【発明の効果】本発明方法では、鋳型内面と水冷溝間に
配置した鋳型温度計測値から定常状態だけでなく非定常
状態にある溶融金属鋳型表面または凝固シェル表面の熱
流束を求め、鋳型表面温度その他を推定するので、溶融
金属鋳型内の凝固状態を明確に検知することができる。
この結果、オンラインかつ高い精度で鋳型内鋳造異常を
検出でき、健全な凝固状態が得られるような鋳造操業方
法を管理することが可能となる。また、鋳型表面温度を
得るために、熱電対などの温度計測手段の先端を鋳型表
面に露出する必要はない。
According to the method of the present invention, the heat flux of the molten metal mold surface or the solidified shell surface in the unsteady state as well as the steady state is obtained from the measured temperature of the mold disposed between the inner surface of the mold and the water cooling groove. Since the temperature and the like are estimated, the solidification state in the molten metal mold can be clearly detected.
As a result, it is possible to detect a casting abnormality in a mold online and with high accuracy, and to manage a casting operation method that can obtain a sound solidification state. Further, in order to obtain the mold surface temperature, it is not necessary to expose the tip of a temperature measuring means such as a thermocouple to the mold surface.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明方法を実施する際の装置構成図である。FIG. 1 is a diagram showing the configuration of an apparatus for implementing a method of the present invention.

【図2】(a)はブレイクアウトが発生した鋳片の熱電
対温度変化の経時変化を示し、(b)は同鋳片の熱流束
の経時変化を示す線図である。
FIG. 2 (a) is a diagram showing a change over time of a thermocouple temperature change of a slab having a breakout, and FIG. 2 (b) is a diagram showing a change over time of a heat flux of the slab.

【図3】(a)は縦割れが発生した鋳片の熱電対温度変
化の経時変化を示し、(b)は同鋳片の熱流束の経時変
化を示す線図である。
FIG. 3 (a) is a diagram showing a change over time of a thermocouple temperature change of a slab having a vertical crack, and FIG. 3 (b) is a diagram showing a change over time of a heat flux of the slab.

【図4】縦割れが発生した鋳片について、熱流束のウエ
ーブレット解析結果を示す線図である。
FIG. 4 is a diagram showing a wavelet analysis result of a heat flux of a slab in which a vertical crack has occurred.

【図5】健全な鋳片について、熱流束のウエーブレット
解析結果を示す線図である。
FIG. 5 is a diagram showing a wavelet analysis result of a heat flux with respect to a sound slab.

【図6】鋳型内面と鋳型水冷溝間の熱移動を表す概念図
である。
FIG. 6 is a conceptual diagram showing heat transfer between an inner surface of a mold and a mold water cooling groove.

【図7】溶融金属内の熱移動を表す概念図である。FIG. 7 is a conceptual diagram illustrating heat transfer in a molten metal.

【図8】本発明に基づく演算フロー図である。FIG. 8 is a calculation flowchart according to the present invention.

【符号の説明】 1:鋳片 2:溶融金属 3:メニスカス 5:凝固シェル 7:溶融スラグ 11:鋳型 12:鋳型内表面 13:水冷溝 14:流量計 15:冷却水温度計測手段 16:第1鋳型温度計測手段 17:第2鋳型温度計測手段 19:コンピューター[Description of Signs] 1: Cast slab 2: Molten metal 3: Meniscus 5: Solidified shell 7: Molten slag 11: Mold 12: Mold inner surface 13: Water cooling groove 14: Flow meter 15: Cooling water temperature measuring means 16: No. 1 mold temperature measuring means 17: second mold temperature measuring means 19: computer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 平井 康一 大分県大分市大字西ノ洲1番地 新日本製 鐵株式会社大分製鐵所内 (72)発明者 飯星 弘昭 大分県大分市大字西ノ洲1番地 新日本製 鐵株式会社大分製鐵所内 Fターム(参考) 4E004 MA05 MC12  ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Koichi Hirai 1 Nishinosu, Oji, Oita City, Oita Prefecture Inside Nippon Steel Corporation Oita Works (72) Inventor Hiroaki Iiboshi 1 Nishinosu, Oita City, Oita City, Oita Prefecture New Japan F-term (reference) in Oita Works of Steel Corporation 4E004 MA05 MC12

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 鋳型に埋設した複数の温度計測手段で鋳
型温度を計測し、鋳型温度計測値に基づき鋳型内鋳造異
常を検出する方法において、鋳造方向に間隔をおいて鋳
型の複数箇所に埋設した温度計測手段で鋳型温度を計測
し、鋳型温度計測値に基づいて各計測点における鋳型内
面での熱流束を伝熱逆問題手法を用いてそれぞれ推定
し、鋳型内鋳片の任意の点が2箇所の計測点を通過する
経過時間またはその近くで熱流束推定値がそれぞれの計
測点についてあらかじめ設定した限界値以上にかつ計測
点順に低下したことによりブレークアウトを検出するこ
とを特徴とする連続鋳造における鋳型内鋳造異常検出方
法。
1. A method for measuring a mold temperature by a plurality of temperature measuring means embedded in a mold and detecting an abnormality in the casting in the mold based on the measured value of the mold temperature. The mold temperature is measured by the temperature measuring means, and the heat flux on the inner surface of the mold at each measurement point is estimated using the heat transfer inverse problem method based on the measured mold temperature value. A continuation characterized in that a breakout is detected when the heat flux estimation value falls below a preset limit value for each measurement point and in the order of the measurement points at or near the elapsed time passing through two measurement points. A method for detecting abnormal casting in a mold in casting.
【請求項2】 鋳型に埋設した温度計測手段で鋳型温度
を計測し、鋳型温度計測値に基づき鋳型内鋳造異常を検
出する方法において、鋳型に埋設した温度計測手段で鋳
型温度を計測し、鋳型温度計測値に基づいて鋳型内面で
の熱流束を伝熱逆問題手法を用いて推定し、熱流束推定
値をウエーブレット変換して得られる各変動周期ごとの
変動成分および平均成分の時系列値に基づき鋳型内鋳片
の表面欠陥を検出することを特徴とする連続鋳造におけ
る鋳型内鋳造異常検出方法。
2. A method for measuring a mold temperature with temperature measuring means embedded in a mold and detecting an abnormality in casting in the mold based on the measured temperature of the mold, wherein the temperature of the mold is measured by temperature measuring means embedded in the mold. Estimate the heat flux on the inner surface of the mold using the heat transfer inverse problem method based on the temperature measurement value, and time-series values of the fluctuation component and average component for each fluctuation cycle obtained by wavelet transform of the heat flux estimation value A method for detecting an abnormality in a casting in a mold in continuous casting, wherein the method detects a surface defect of a slab in the mold based on the method.
【請求項3】 鋳型に埋設した温度計測手段で鋳型温度
を計測し、鋳型温度計測値に基づき鋳型内鋳造異常を検
出する方法において、鋳造方向に間隔をおいて鋳型の複
数箇所に埋設した温度計測手段で鋳型温度を計測し、鋳
型温度計測値に基づいて鋳型内面での熱流束を伝熱逆問
題手法を用いて推定し、熱流束推定値に基づき鋳片内部
の熱流束より溶融金属流動起因の対流熱伝達量を推定
し、対流熱伝達量推定値により鋳型内溶融金属流動の異
常を検出することを特徴とする連続鋳造における鋳型内
鋳造異常検出方法。
3. A method for measuring a mold temperature with temperature measuring means embedded in a mold and detecting an abnormality in casting in the mold based on a measured value of the mold temperature, wherein the temperature embedded in a plurality of locations of the mold at intervals in the casting direction. The mold temperature is measured by the measuring means, the heat flux on the inner surface of the mold is estimated using the inverse heat transfer method based on the measured mold temperature, and the molten metal flows from the heat flux inside the slab based on the estimated heat flux. A method for detecting abnormality in casting in continuous casting, comprising estimating the amount of convective heat transfer caused by the heat and detecting an abnormality in molten metal flow in the mold based on the estimated value of convective heat transfer.
JP2000051521A 2000-02-28 2000-02-28 In-mold casting abnormality detection method in continuous casting Expired - Fee Related JP4105839B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000051521A JP4105839B2 (en) 2000-02-28 2000-02-28 In-mold casting abnormality detection method in continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000051521A JP4105839B2 (en) 2000-02-28 2000-02-28 In-mold casting abnormality detection method in continuous casting

Publications (2)

Publication Number Publication Date
JP2001239353A true JP2001239353A (en) 2001-09-04
JP4105839B2 JP4105839B2 (en) 2008-06-25

Family

ID=18573166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000051521A Expired - Fee Related JP4105839B2 (en) 2000-02-28 2000-02-28 In-mold casting abnormality detection method in continuous casting

Country Status (1)

Country Link
JP (1) JP4105839B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002143997A (en) * 2000-11-10 2002-05-21 Nippon Steel Corp Instrument and method for detecting state of cast slab in mold, and storage medium readable-out from computer
JP2002346715A (en) * 2001-05-18 2002-12-04 Nippon Steel Corp Device, method and computer program for evaluating state of cast slab in mold, and computer-readable storage medium
JP2004025202A (en) * 2002-06-21 2004-01-29 Nippon Steel Corp Method and instrument for detecting molten metal surface level, computer program and computer readable storage medium
JP2007167871A (en) * 2005-12-19 2007-07-05 Nippon Steel Corp Apparatus and method for determining operating state of working surfaces of casting mold or casting die, method for operating casting mold or casting die, computer program, and recording medium readable by computer
JP2009061469A (en) * 2007-09-06 2009-03-26 Jfe Steel Kk Method and device for detecting break-out in continuous casting, continuous casting method of steel using the same device, and device for preventing break-out
JP2009226480A (en) * 2008-02-28 2009-10-08 Jfe Steel Corp Method and apparatus for detecting breakout in continuous casting, continuous casting method for steel using the apparatus, and breakout prevention apparatus
WO2015115651A1 (en) 2014-01-31 2015-08-06 新日鐵住金株式会社 Method, device and program for determining casting state in continuous casting
JP2016175107A (en) * 2015-03-20 2016-10-06 新日鐵住金株式会社 Molten steel flow rate control method in continuous casting mold, device and program
JP2016175106A (en) * 2015-03-20 2016-10-06 新日鐵住金株式会社 Drift current detection method and drift current control method, molten metal surface variation detection method and molten metal surface variation control method in continuous casting mold, device and program
KR20170054479A (en) * 2014-10-15 2017-05-17 신닛테츠스미킨 카부시키카이샤 Device, method, and program for detecting molten-metal surface level in continuous casting mold
CN107096899A (en) * 2017-05-17 2017-08-29 安徽工业大学 The crystallizer bleedout prediction electric thermo system that a kind of logic-based judges
JP2019177421A (en) * 2016-03-02 2019-10-17 Jfeスチール株式会社 Flow state estimation method for molten steel, flow state estimation device, online display device for flow state of molten steel, and continuous casting method for steel

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002143997A (en) * 2000-11-10 2002-05-21 Nippon Steel Corp Instrument and method for detecting state of cast slab in mold, and storage medium readable-out from computer
JP2002346715A (en) * 2001-05-18 2002-12-04 Nippon Steel Corp Device, method and computer program for evaluating state of cast slab in mold, and computer-readable storage medium
JP2004025202A (en) * 2002-06-21 2004-01-29 Nippon Steel Corp Method and instrument for detecting molten metal surface level, computer program and computer readable storage medium
JP2007167871A (en) * 2005-12-19 2007-07-05 Nippon Steel Corp Apparatus and method for determining operating state of working surfaces of casting mold or casting die, method for operating casting mold or casting die, computer program, and recording medium readable by computer
JP4579820B2 (en) * 2005-12-19 2010-11-10 新日本製鐵株式会社 Apparatus and method for determining operating state of mold or mold operating surface, method for operating mold or mold, computer program, and computer-readable recording medium
JP2009061469A (en) * 2007-09-06 2009-03-26 Jfe Steel Kk Method and device for detecting break-out in continuous casting, continuous casting method of steel using the same device, and device for preventing break-out
JP2009226480A (en) * 2008-02-28 2009-10-08 Jfe Steel Corp Method and apparatus for detecting breakout in continuous casting, continuous casting method for steel using the apparatus, and breakout prevention apparatus
KR20160102043A (en) 2014-01-31 2016-08-26 신닛테츠스미킨 카부시키카이샤 Method, device and program for determining casting state in continuous casting
WO2015115651A1 (en) 2014-01-31 2015-08-06 新日鐵住金株式会社 Method, device and program for determining casting state in continuous casting
CN106413942A (en) * 2014-01-31 2017-02-15 新日铁住金株式会社 Method, device and program for determining casting state in continuous casting
EP3100802A4 (en) * 2014-01-31 2017-10-18 Nippon Steel & Sumitomo Metal Corporation Method, device and program for determining casting state in continuous casting
US10286447B2 (en) 2014-01-31 2019-05-14 Nippon Steel & Sumitomo Metal Corporation Method, apparatus, and program for determining casting state in continuous casting
KR20190105670A (en) 2014-01-31 2019-09-17 닛폰세이테츠 가부시키가이샤 Method, device and program for determining casting state in continuous casting
KR20170054479A (en) * 2014-10-15 2017-05-17 신닛테츠스미킨 카부시키카이샤 Device, method, and program for detecting molten-metal surface level in continuous casting mold
KR101896203B1 (en) 2014-10-15 2018-09-07 신닛테츠스미킨 카부시키카이샤 Device, method, and computer readable storage medium for detecting molten-metal surface level in continuous casting mold
JP2016175107A (en) * 2015-03-20 2016-10-06 新日鐵住金株式会社 Molten steel flow rate control method in continuous casting mold, device and program
JP2016175106A (en) * 2015-03-20 2016-10-06 新日鐵住金株式会社 Drift current detection method and drift current control method, molten metal surface variation detection method and molten metal surface variation control method in continuous casting mold, device and program
JP2019177421A (en) * 2016-03-02 2019-10-17 Jfeスチール株式会社 Flow state estimation method for molten steel, flow state estimation device, online display device for flow state of molten steel, and continuous casting method for steel
CN107096899A (en) * 2017-05-17 2017-08-29 安徽工业大学 The crystallizer bleedout prediction electric thermo system that a kind of logic-based judges

Also Published As

Publication number Publication date
JP4105839B2 (en) 2008-06-25

Similar Documents

Publication Publication Date Title
JP4105839B2 (en) In-mold casting abnormality detection method in continuous casting
JP4579820B2 (en) Apparatus and method for determining operating state of mold or mold operating surface, method for operating mold or mold, computer program, and computer-readable recording medium
JP5387508B2 (en) Continuous casting method, continuous casting control device and program
JP7091901B2 (en) Casting condition determination device, casting condition determination method, and program
JPS6353903B2 (en)
JP3230513B2 (en) Method of estimating molten steel flow velocity in continuous casting mold, quality control method in continuous casting of steel, and continuous casting method of steel
Thomas On-line detection of quality problems in continuous casting of steel
Petrus et al. New method to measure metallurgical length and application to improve computational models
JP4112783B2 (en) Breakout detection method in continuous casting equipment
JPS58148063A (en) Method for predicting cracking of ingot in continuous casting
JP6859919B2 (en) Breakout prediction method
JP2000317594A (en) Solidified shell thickness within molten metal casting mold and method for predicting powder inflow thickness
JP2000317595A (en) Method for predicting surface flaw of continuously cast slab
JP2020157333A (en) Learning model creation device, slab quality estimation device, learning model creation method, slab quality estimation method, and program
JP3537625B2 (en) Method and apparatus for measuring solidified shell thickness in continuous casting
JPH01210160A (en) Method for predicting longitudinal crack in continuous casting
JP5387507B2 (en) Continuous casting method, continuous casting control device and program
JP4244675B2 (en) Detection method of width direction distribution of molten steel flow velocity in continuous casting mold
JP2000263203A (en) Method for predicting longitudinal crack on continuously cast slab
JP4746466B2 (en) Slag outflow detection method, molten metal injection control method, slag outflow detection device, molten metal injection control device, program, and computer-readable recording medium
JP5408040B2 (en) Continuous casting method, continuous casting control device and program
JP2950188B2 (en) Method of controlling surface defects in continuous casting
JP4074443B2 (en) In-mold slab condition evaluation apparatus, method, computer program, and computer-readable storage medium
JP2005007460A (en) Method for detecting surface defect on continuously cast steel billet
JP4081399B2 (en) Slag outflow detection device, slag outflow detection method, computer-readable storage medium, and computer program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070724

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070925

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071228

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080325

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080328

R151 Written notification of patent or utility model registration

Ref document number: 4105839

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120404

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140404

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees