JP6859919B2 - Breakout prediction method - Google Patents

Breakout prediction method Download PDF

Info

Publication number
JP6859919B2
JP6859919B2 JP2017201639A JP2017201639A JP6859919B2 JP 6859919 B2 JP6859919 B2 JP 6859919B2 JP 2017201639 A JP2017201639 A JP 2017201639A JP 2017201639 A JP2017201639 A JP 2017201639A JP 6859919 B2 JP6859919 B2 JP 6859919B2
Authority
JP
Japan
Prior art keywords
mold wall
mold
cooling water
breakout
heat flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017201639A
Other languages
Japanese (ja)
Other versions
JP2019072749A (en
Inventor
谷口 聡
聡 谷口
洋 仁井谷
洋 仁井谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2017201639A priority Critical patent/JP6859919B2/en
Publication of JP2019072749A publication Critical patent/JP2019072749A/en
Application granted granted Critical
Publication of JP6859919B2 publication Critical patent/JP6859919B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Continuous Casting (AREA)

Description

本発明は、ブレークアウト予知方法に関し、詳細には、凝固シェルの再溶解に起因するブレークアウトの発生を予知する方法に関する。 The present invention relates to a breakout prediction method, and more particularly to a method of predicting the occurrence of breakout due to redissolution of a coagulated shell.

鋼の連続鋳造において、タンディッシュから浸漬ノズルを介して鋳型に注入された溶鋼は、鋳型内で冷却されて鋳型と接する部分が凝固し、凝固シェルを形成する。凝固シェルが形成された鋳片は、鋳型の下方から引き抜かれて二次冷却帯で冷却される。しかし、鋳型内溶鋼の流動異常により凝固界面において局所的に流動速度が大きな箇所が存在すると、溶鋼からの熱供給により凝固シェルが再溶解し、凝固シェル厚が薄くなる。この凝固シェル厚の薄い部位が鋳型出口に至ると、凝固シェルが破れて溶鋼が吹き出る、いわゆるブレークアウトが発生する危険がある。 In continuous casting of steel, the molten steel injected from the tundish into the mold through the dipping nozzle is cooled in the mold and the portion in contact with the mold solidifies to form a solidified shell. The slab on which the solidified shell is formed is drawn from below the mold and cooled in the secondary cooling zone. However, if there is a location where the flow velocity is locally high at the solidification interface due to the flow abnormality of the molten steel in the mold, the solidification shell is redissolved by the heat supply from the molten steel, and the solidification shell thickness becomes thin. If this thin solidified shell reaches the mold outlet, there is a risk that the solidified shell will break and molten steel will blow out, so-called breakout.

ブレークアウトが発生すると操業停止が避けられないため、ブレークアウトが発生しないような操業条件を選択する必要があるが、ブレークアウトの発生を恐れて鋳造速度を必要以上に遅くすることは操業効率の悪化を招き好ましくない。
このような背景から、ブレークアウトの発生を的確に予知できる手法の開発が望まれており、今までに様々な方法が提案されている。
Since operation stoppage is unavoidable when a breakout occurs, it is necessary to select operating conditions that do not cause a breakout. It causes deterioration and is not preferable.
Against this background, it is desired to develop a method that can accurately predict the occurrence of breakout, and various methods have been proposed so far.

例えば、特許文献1では、鋳型の外表面に配置した多数の熱流束計により、鋳型各部の局所的な熱流束を測定し、熱流束の時間的変化を表した熱流束波形の波高が急激に所定値を上まわった時に鋳込み速度を低下させ、前記波高が元に戻るまで低速鋳込みを行うことによりブレークアウトの発生を防止する技術が開示されている。 For example, in Patent Document 1, the local heat flux of each part of the mold is measured by a large number of heat flux meters arranged on the outer surface of the mold, and the wave height of the heat flux waveform representing the temporal change of the heat flux suddenly increases. A technique for preventing the occurrence of breakout by reducing the casting speed when the value exceeds a predetermined value and performing low-speed casting until the wave height returns to the original value is disclosed.

特許文献2では、鋳型壁内に鋳型壁温度を測定する熱電対を複数個埋め込み、熱電対により測定された鋳型壁温度を基に鋳型出口における凝固シェル厚みを演算し、演算した凝固シェル厚みが閾値以下となった場合に鋳造速度や鋳型内の溶鋼流速を低下させる制御を行うことによりブレークアウトの発生を防止する技術が開示されている。 In Patent Document 2, a plurality of thermocouples for measuring the mold wall temperature are embedded in the mold wall, the solidification shell thickness at the mold outlet is calculated based on the mold wall temperature measured by the thermocouple, and the calculated solidification shell thickness is calculated. A technique for preventing the occurrence of breakout by controlling the casting speed and the molten steel flow velocity in the mold when the value falls below the threshold value is disclosed.

また、特許文献3では、対向する鋳型壁内を流れる冷却水の入側及び出側の温度と冷却水量とを測定して、溶鋼から鋳型に抜熱される熱量を演算し、演算した熱量が上下限値を超える場合にブレークアウトの前兆であると判断する技術が開示されている。 Further, in Patent Document 3, the temperature of the inlet and outlet sides of the cooling water flowing in the opposite mold wall and the amount of cooling water are measured, the amount of heat extracted from the molten steel to the mold is calculated, and the calculated amount of heat is higher. A technique for determining that a breakout is signaled when the lower limit is exceeded is disclosed.

特公昭63−53903号公報Special Publication No. 63-53903 特開2010−194548号公報JP-A-2010-194548 特開昭57−39068号公報Japanese Unexamined Patent Publication No. 57-39068

特許文献1に開示された技術は、鋳型各部の局所的な熱流束を測定し、熱流束の変化を検出することによってブレークアウトの発生を防止する方法であるが、鋳型各部の局所的な熱流束の変化を監視することが、ブレークアウトの発生を予知するうえで必ずしも十分であるとは言えない。なぜなら、鋳型内における凝固シェル形成過程の初期段階において熱流束の異常があったとしても、凝固シェル形成過程のその後の段階において凝固が進行し、鋳型出口において所定の厚みの凝固シェルが形成されておればブレークアウトの危険が無いと判断できる場合もあるからである。即ち、ブレークアウトの発生を過検知することになる。 The technique disclosed in Patent Document 1 is a method of preventing the occurrence of breakout by measuring the local heat flux of each part of the mold and detecting the change of the heat flux, but the local heat flow of each part of the mold is prevented. Monitoring changes in the bundle is not always sufficient to predict the occurrence of breakouts. This is because even if there is an abnormality in heat flux in the initial stage of the solidification shell formation process in the mold, solidification proceeds in the subsequent stage of the solidification shell formation process, and a solidification shell of a predetermined thickness is formed at the mold outlet. This is because it may be judged that there is no risk of breakout. That is, the occurrence of breakout is over-detected.

特許文献2に開示された技術は、熱電対が設置された位置のみの温度測定結果から凝固シェルの厚みを推定することから、局所的に発生する凝固シェルの再溶解による凝固シェルの薄肉化の全てを把握することは困難である。また、ブレークアウト予知精度向上のために熱電対を増設することは、鋳型壁全面に敷設された冷却水流路を変更する必要が生じるため、鋳型壁構造の大幅な改造が必要となる。 The technique disclosed in Patent Document 2 estimates the thickness of the solidified shell from the temperature measurement result only at the position where the thermocouple is installed. It is difficult to grasp everything. In addition, adding thermocouples to improve breakout prediction accuracy requires a major modification of the mold wall structure because it is necessary to change the cooling water flow path laid on the entire surface of the mold wall.

一方、特許文献3に開示された技術は、鋳型壁構造の大幅な改造を必要とせず、鋳型内の局所的熱流束変化によらず、鋳型出側における凝固シェル厚と相関のある抜熱量を監視してブレークアウトを予知する方法であり、一応合理的ではあるが、溶鋼から鋳型に抜熱される熱量は、鋳造途中に生じる湯面高さの変動に伴う、鋳型と凝固シェルの接触面積の変動の影響を大きく受ける。そのため、溶鋼流動の異常を精度よく検知することは難しいといえる。 On the other hand, the technique disclosed in Patent Document 3 does not require a significant modification of the mold wall structure, and can remove heat that correlates with the solidification shell thickness on the mold exit side regardless of the local heat flux change in the mold. It is a method of monitoring and predicting breakout, and although it is rational, the amount of heat extracted from the molten steel to the mold is the contact area between the mold and the solidified shell due to fluctuations in the height of the molten metal that occur during casting. It is greatly affected by fluctuations. Therefore, it can be said that it is difficult to accurately detect abnormalities in molten steel flow.

本発明はかかる事情に鑑みてなされたもので、凝固シェルの再溶解に起因するブレークアウトの発生を、鋳型壁構造の大幅な改造を必要とせず、高い精度で予知することが可能な方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and a method capable of predicting the occurrence of breakout due to the remelting of a solidified shell with high accuracy without requiring a significant modification of the mold wall structure. The purpose is to provide.

本発明者らは、鋳型内の溶鋼が湯面から鋳型出口に至るまでの間に鋳型壁から抜熱される熱量、鋳型壁のサイズと鋳型壁近傍の湯面高さから算出される鋳型壁の平均熱流束がブレークアウト発生の指標となることを見出し、以下の本発明に想到した。 The present inventors have calculated the amount of heat removed from the mold wall by the molten steel in the mold from the molten metal surface to the mold outlet, the size of the mold wall, and the height of the molten metal near the mold wall. We have found that the average heat flux is an index for the occurrence of breakout, and have arrived at the following invention.

本発明に係るブレークアウト予知方法は、
浸漬ノズルの吐出孔に面する鋳型壁の内部を通流する冷却水の鋳型壁入側及び出側の温度と、前記冷却水の単位時間当たり流量と、前記鋳型壁近傍の湯面高さとを測定するステップと、
測定した前記鋳型壁入側の冷却水温度、前記鋳型壁出側の冷却水温度、前記冷却水の単位時間当たり流量、及び前記鋳型壁近傍の湯面高さから、前記鋳型壁の平均熱流束を(1)式を用いて算出するステップと、
算出された前記鋳型壁の平均熱流束が閾値を超えた場合にブレークアウトに至る可能性があると判定するステップとを備えることを特徴としている。
The breakout prediction method according to the present invention
The temperature of the cooling water entering and exiting the mold wall that flows inside the mold wall facing the discharge hole of the immersion nozzle, the flow rate of the cooling water per unit time, and the height of the molten metal near the mold wall. Steps to measure and
The average heat flux of the mold wall is based on the measured cooling water temperature on the side entering the mold wall, the temperature of the cooling water on the exit side of the mold wall, the flow rate of the cooling water per unit time, and the height of the molten metal in the vicinity of the mold wall. With the step of calculating using Eq. (1)
It is characterized by including a step of determining that a breakout may occur when the calculated average heat flux of the mold wall exceeds the threshold value.

q=QCWATER(TOUT−TIN)/(A×B) (1)
ここで、
q:前記鋳型壁の平均熱流束(J・s-1・m-2)、Q:前記冷却水の単位時間当たり流量(L(リットル)・s-1)、CWATER:水の比熱(J・kg-1・K-1)、TOUT:前記鋳型壁出側の冷却水温度(K)、TIN:前記鋳型壁入側の冷却水温度(K)、A:前記鋳型壁の下端から湯面までの距離(m)、B:前記鋳型壁の平均幅(m)
q = QC WATER (T OUT- T IN ) / (A × B) (1)
here,
q: Average heat flux of the mold wall (J · s -1 · m- 2 ), Q: Flow rate of the cooling water per unit time (L (liter) · s -1 ), C WATER : Specific heat of water (J)・ Kg -1・ K -1 ), T OUT : Cooling water temperature (K) on the outside of the mold wall, T IN : Cooling water temperature (K) on the inside of the mold wall, A: From the lower end of the mold wall Distance to the surface of the water (m), B: Average width of the mold wall (m)

鋳型内の溶鋼が湯面から鋳型出口に至るまでの間に、鋳型壁が溶鋼から抜熱する熱量は鋳型壁と凝固シェルの接触面積によって増減する。他方、鋳型壁と凝固シェルの接触面積は、鋳造中に生じる湯面高さの変動に大きく影響される。即ち、鋳型壁が溶鋼から抜熱する熱量は湯面高さによって変動する。そこで、本発明では、鋳型壁が溶鋼から抜熱する単位時間当たり熱量QCWATER(TOUT−TIN)を鋳型壁と凝固シェルの接触面積A×Bで除した鋳型壁の平均熱流束qをブレークアウト発生の指標としている。 The amount of heat that the mold wall removes heat from the molten steel during the period from the molten metal surface to the mold outlet in the mold increases or decreases depending on the contact area between the mold wall and the solidified shell. On the other hand, the contact area between the mold wall and the solidified shell is greatly affected by the fluctuation of the height of the molten metal that occurs during casting. That is, the amount of heat extracted from the molten steel by the mold wall varies depending on the height of the molten metal. Therefore, in the present invention, the average heat flux q of the mold wall obtained by dividing the amount of heat QC WATER (T OUT −T IN ) per unit time for the mold wall to remove heat from the molten steel by the contact area A × B between the mold wall and the solidified shell is obtained. It is used as an index for breakout occurrence.

再溶解性のブレークアウトが発生する際には、溶鋼流動の異常により凝固界面において局所的に溶鋼流動速度の高い箇所が存在し、溶鋼からの熱供給により凝固シェルが再溶解する。具体的には、浸漬ノズルの吐出孔から排出される溶鋼吐出流が衝突する鋳型壁の平均熱流束が高い場合にブレークアウトが発生する。そのため、本発明では、溶鋼吐出流に面する鋳型壁の入側冷却水温度、出側冷却水温度、冷却水の単位時間当たり流量、及び鋳型壁近傍の湯面高さを測定する。 When a resolubility breakout occurs, there is a location where the molten steel flow velocity is locally high at the solidification interface due to an abnormality in the molten steel flow, and the solidified shell is redissolved by the heat supply from the molten steel. Specifically, breakout occurs when the average heat flux of the mold wall where the molten steel discharge flow discharged from the discharge hole of the immersion nozzle collides is high. Therefore, in the present invention, the temperature of the inlet cooling water, the temperature of the outlet side cooling water, the flow rate of the cooling water per unit time, and the height of the molten metal near the mold wall facing the molten steel discharge flow are measured.

本発明に係るブレークアウト予知方法では、鋳造途中に生じる湯面高さの変動を考慮した鋳型壁の平均熱流束をブレークアウト発生の指標としているので、鋳型壁構造の大幅な改造を必要とせず、凝固シェルの再溶解に起因するブレークアウトを精度よく予知してブレークアウトの発生を防止することができる。 In the breakout prediction method according to the present invention, the average heat flux of the mold wall in consideration of the fluctuation of the molten metal surface height that occurs during casting is used as an index of breakout occurrence, so that the mold wall structure does not need to be significantly modified. , It is possible to accurately predict the breakout caused by the remelting of the solidified shell and prevent the breakout from occurring.

本発明の一実施の形態に係るブレークアウト予知方法を実行するブレークアウト予知システムの構成図である。It is a block diagram of the breakout prediction system which executes the breakout prediction method which concerns on one Embodiment of this invention. 過去の実績より算出した、ブレークアウトが発生した場合と発生しない場合における鋳型壁の平均熱流束の一例を示したグラフである。It is a graph which showed an example of the average heat flux of a mold wall with and without breakout calculated from the past results.

続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態について説明し、本発明の理解に供する。 Subsequently, an embodiment embodying the present invention will be described with reference to the attached drawings, and the present invention will be understood.

本発明の一実施の形態に係るブレークアウト予知方法を実行するブレークアウト予知システムの構成を図1に示す。連続鋳造用の鋳型10は、対向配置された一対の長辺側鋳型壁(図示省略)と、一対の長辺側鋳型壁に挟持され対向する一対の短辺側鋳型壁11、12とを備えている。なお、同図は、長辺側鋳型壁に平行な仮想鉛直面で鋳型10を切断した断面を模式的に示している。 FIG. 1 shows a configuration of a breakout prediction system that executes a breakout prediction method according to an embodiment of the present invention. The mold 10 for continuous casting includes a pair of long-side mold walls (not shown) arranged to face each other, and a pair of short-side mold walls 11 and 12 sandwiched between the pair of long-side mold walls and facing each other. ing. The figure schematically shows a cross section of the mold 10 cut in a virtual vertical plane parallel to the long side mold wall.

浸漬ノズル13は、底部を有する円筒状の管体からなり、内部に形成された流路13aの上端は溶鋼の流入口とされている。一方、管体の下がわ側面部には、流路13aと連通する一対の吐出孔13bが対向して形成されている。浸漬ノズル13の下端部は鋳型10内の溶鋼14に挿入され、各吐出孔13bが短辺側鋳型壁(以下では、単に「鋳型壁」と呼ぶ。)11、12に面するように、鋳型10の中央に配置されている。 The immersion nozzle 13 is made of a cylindrical tube having a bottom, and the upper end of the flow path 13a formed inside is an inflow port of molten steel. On the other hand, a pair of discharge holes 13b communicating with the flow path 13a are formed to face each other on the lower side surface portion of the tubular body. The lower end of the immersion nozzle 13 is inserted into the molten steel 14 in the mold 10, and the mold is provided so that the discharge holes 13b face the short side mold walls (hereinafter, simply referred to as "mold walls") 11 and 12. It is located in the center of 10.

鋳型10の内部には、その壁面を冷却する冷却水が流れる通水路が全周にわたって形成されている。鋳型壁11、12の内部にも、鋳型壁11、12の下端部を入側とし、鋳型壁11、12の上端部を出側とする通水路11a、12aが設けられている。 Inside the mold 10, a water passage through which cooling water for cooling the wall surface of the mold 10 flows is formed over the entire circumference. Water passages 11a and 12a are also provided inside the mold walls 11 and 12 with the lower ends of the mold walls 11 and 12 as the entrance side and the upper ends of the mold walls 11 and 12 as the exit side.

浸漬ノズル13により鋳型10内へ注入された溶鋼14は、鋳型10内に滞留している間に、水冷された内壁と接触して冷却されることにより、外側から凝固する。鋳型10内の溶鋼14は、下方移動するにつれてその外側が凝固シェル15で覆われ、鋳型10の下側開口部から下方へ引き抜かれた後、二次冷却帯(図示省略)で冷却される。 The molten steel 14 injected into the mold 10 by the dipping nozzle 13 is solidified from the outside by being cooled in contact with the water-cooled inner wall while staying in the mold 10. The outer side of the molten steel 14 in the mold 10 is covered with the solidified shell 15 as it moves downward, is pulled downward from the lower opening of the mold 10, and then cooled in a secondary cooling zone (not shown).

鋳型壁11、12の内部に設けられている通水路11a、12aには、鋳型壁11、12入側の冷却水温度を測定する温度計16、17と、鋳型壁11、12の内部を通流する冷却水の単位時間当たり流量を測定する流量計20、21が鋳型壁11、12の入側に設置され、鋳型壁11、12出側の冷却水温度を測定する温度計18、19が鋳型壁11、12の出側に設置されている。また、鋳型壁11、12近傍の湯面高さを測定するために、複数の熱電対22、23が鋳型壁11、12の内壁面の上部に埋設されている。 The water passages 11a and 12a provided inside the mold walls 11 and 12 pass through the thermometers 16 and 17 for measuring the cooling water temperature on the inlet side of the mold walls 11 and 12 and the inside of the mold walls 11 and 12. Flow meters 20 and 21 for measuring the flow rate of the flowing cooling water per unit time are installed on the inlet side of the mold walls 11 and 12, and thermometers 18 and 19 for measuring the cooling water temperature on the outlet side of the mold walls 11 and 12 are installed. It is installed on the outlet side of the mold walls 11 and 12. Further, in order to measure the height of the molten metal in the vicinity of the mold walls 11 and 12, a plurality of thermocouples 22 and 23 are embedded in the upper part of the inner wall surface of the mold walls 11 and 12.

さらにまた、本ブレークアウト予知システムは、温度計16、17、18、19及び流量計20、21の出力に基づいて、鋳型壁11、12が溶鋼14から抜熱する単位時間当たり熱量を演算する抜熱量演算部31、32と、複数の熱電対22、23の出力に基づいて鋳型壁11、12近傍の湯面高さを演算する湯面高さ演算部33、34とを備えている。
抜熱量演算部31、32と湯面高さ演算部33、34の演算結果は平均熱流束演算部35、36に出力され、平均熱流束演算部35、36において、鋳型壁11、12の平均熱流束が演算される。平均熱流束演算部35、36の演算結果は評価部37に出力され、評価部37において、鋳型壁11、12の平均熱流束が閾値を超えているかどうか判定される。
Furthermore, the breakout prediction system calculates the amount of heat per unit time at which the mold walls 11 and 12 remove heat from the molten steel 14 based on the outputs of the thermometers 16, 17, 18, 19 and the hygrometers 20 and 21. It is provided with heat removal amount calculation units 31 and 32, and molten metal height calculation units 33 and 34 that calculate the height of the molten metal in the vicinity of the mold walls 11 and 12 based on the outputs of the plurality of thermocouples 22 and 23.
The calculation results of the heat extraction amount calculation units 31 and 32 and the molten metal height calculation units 33 and 34 are output to the average heat flux calculation units 35 and 36, and the average heat flux calculation units 35 and 36 average the mold walls 11 and 12. The heat flux is calculated. The calculation results of the average heat flux calculation units 35 and 36 are output to the evaluation unit 37, and the evaluation unit 37 determines whether or not the average heat flux of the mold walls 11 and 12 exceeds the threshold value.

次に、上記ブレークアウト予知システムを用いてブレークアウトを予知する手順について説明する。なお、以下に示す(STEP−2A)〜(STEP−3)は、鋳型壁11と鋳型壁12それぞれについて実行される。 Next, a procedure for predicting a breakout using the breakout prediction system will be described. In addition, (STEP-2A) to (STEP-3) shown below are executed for each of the mold wall 11 and the mold wall 12.

(STEP−1)先ず、ブレークアウト発生の指標となる、鋳型壁11、12の平均熱流束の閾値qmaxを、過去の実績等に基づいて設定する。
図2に、過去3650チャージの実績より算出した、ブレークアウトが発生した場合と発生しない場合における鋳型壁の平均熱流束の一例を示す。この例では、鋳型壁の平均熱流束が150J・s-1・m-2を超えるとブレークアウトが発生している。
(STEP-1) First, the threshold value q max of the average heat flux of the mold walls 11 and 12, which is an index of breakout occurrence, is set based on past results and the like.
FIG. 2 shows an example of the average heat flux of the mold wall when the breakout occurs and when the breakout does not occur, which is calculated from the actual results of the past 3650 charges. In this example, breakout occurs when the average heat flux of the mold wall exceeds 150 J · s -1 · m- 2.

(STEP−2A)抜熱量演算部31、32が、温度計16、17、18、19及び流量計20、21の出力に基づいて、鋳型壁11、12が溶鋼14から抜熱する単位時間当たり熱量q(J・s-1)を(2)式を用いて演算する。
=QCWATER(TOUT−TIN) (2)
ここで、
Q:冷却水の単位時間当たり流量(L(リットル)・s-1)、CWATER:水の比熱(J・kg-1・K-1)、TOUT:鋳型壁11、12出側の冷却水温度(K)、TIN:鋳型壁11、12入側の冷却水温度(K)
(STEP-2A) Per unit time for the mold walls 11 and 12 to remove heat from the molten steel 14 based on the outputs of the thermometers 16, 17, 18, 19 and the flow meters 20 and 21 by the heat removal amount calculation units 31 and 32. The calorific value q 0 (J · s -1 ) is calculated using Eq. (2).
q 0 = QC WATER (T OUT- T IN ) (2)
here,
Q: Flow rate of cooling water per unit time (L (liter) · s -1 ), C WATER : Specific heat of water (J · kg -1 · K -1 ), T OUT : Cooling of mold walls 11 and 12 Water temperature (K), T IN : Cooling water temperature (K) on the mold walls 11 and 12

(STEP−2B)湯面高さ演算部33、34が、複数の熱電対22、23の出力に基づいて鋳型壁11、12近傍の湯面高さを演算する。なお、鋳造中の鋳型10は一定の振幅で上下に振動させており、鋳型10を基準とした湯面高さもそれに合わせて変化するため、数振動分、例えば5振動分連続して湯面高さを求め、その平均値を演算する。 (STEP-2B) The molten metal level calculation units 33 and 34 calculate the molten metal surface height in the vicinity of the mold walls 11 and 12 based on the outputs of the plurality of thermocouples 22 and 23. The mold 10 being cast is vibrated up and down with a constant amplitude, and the height of the molten metal with reference to the mold 10 changes accordingly. Therefore, the height of the molten metal is continuously increased by several vibrations, for example, 5 vibrations. Find the value and calculate the average value.

(STEP−3)平均熱流束演算部35、36が、鋳型壁11、12の平均熱流束q(J・s-1・m-2)を(3)式を用いて演算する。
q=q/(A×B) (3)
なお、Aは鋳型壁11、12の下端から湯面までの距離(m)、Bは鋳型壁11、12の平均幅(m)であり、鋳型壁11、12のサイズと湯面高さ演算部33、34から演算された湯面高さから算出される。
(STEP-3) The average heat flux calculation units 35 and 36 calculate the average heat flux q (J · s -1 · m- 2 ) of the mold walls 11 and 12 using the equation (3).
q = q 0 / (A × B) (3)
A is the distance (m) from the lower ends of the mold walls 11 and 12 to the molten metal surface, B is the average width (m) of the mold walls 11 and 12, and the size and the molten metal surface height of the mold walls 11 and 12 are calculated. It is calculated from the height of the molten metal calculated from the parts 33 and 34.

(STEP−4)評価部37は、鋳型壁11の平均熱流束が閾値qmaxを超えているかどうか、鋳型壁12の平均熱流束が閾値qmaxを超えているかどうかチェックし、鋳型壁11もしくは鋳型壁12の平均熱流速が閾値qmaxを超えている場合、ブレークアウトに至る可能性があると判定する。 (STEP-4) The evaluation unit 37 checks whether the average heat flux of the mold wall 11 exceeds the threshold value q max and whether the average heat flux of the mold wall 12 exceeds the threshold value q max. If the average heat flow velocity of the mold wall 12 exceeds the threshold value q max , it is determined that breakout may occur.

以上、本発明の一実施の形態について説明してきたが、本発明は何ら上記した実施の形態に記載の構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。例えば、上記実施の形態では、鋳型壁上部に熱電対群を設置し、それらの測定結果をもとに鋳型壁近傍の湯面高さを演算しているが、渦流式レベル計等を用いて鋳型壁近傍の湯面高さを求めてもよい。また、上記実施の形態では、流量計を鋳型壁入側の通水路上に設置しているが、鋳型壁出側の通水路上に設置してもよい。 Although one embodiment of the present invention has been described above, the present invention is not limited to the configuration described in the above-described embodiment, but is within the scope of the claims. It also includes other possible embodiments and variations. For example, in the above embodiment, a thermocouple group is installed on the upper part of the mold wall, and the height of the molten metal near the mold wall is calculated based on the measurement results. However, a vortex type level meter or the like is used. The height of the molten metal near the mold wall may be obtained. Further, in the above embodiment, the flow meter is installed on the water passage on the side of entering the mold wall, but it may be installed on the water passage on the side of exiting the mold wall.

本発明の効果について検証するために実施した検証試験について説明する。
ブレークアウト予知精度を検証するためには、ブレークアウトの発生を確実に予知し防止すること、並びにブレークアウトの危険が無い場合にブレークアウト予知を過剰に発報していないことを確認する必要がある。連続鋳造設備を用いて、実施例では3700チャージ、従来例では3650チャージの操業を実施し、その間に発生したブレークアウト発生件数及びブレークアウト予知発報総件数の結果を表1に示す。
The verification test carried out for verifying the effect of the present invention will be described.
In order to verify the breakout prediction accuracy, it is necessary to reliably predict and prevent the occurrence of breakouts, and to confirm that breakout predictions are not over-reported when there is no risk of breakouts. is there. Table 1 shows the results of the number of breakouts and the total number of breakout predictions issued during the operation of 3700 charges in the example and 3650 charges in the conventional example using the continuous casting equipment.

なお、従来例は、鋳型壁内部を通流する冷却水の入側と出側の水温差により算出される、鋳型壁が溶鋼から抜熱する熱量を監視することによりブレークアウトを予知する特許文献3記載の技術である。 In the conventional example, a patent document that predicts breakout by monitoring the amount of heat extracted from the molten steel by the mold wall, which is calculated by the difference in water temperature between the inlet side and the outlet side of the cooling water flowing through the inside of the mold wall. 3 is the technique described.

Figure 0006859919
Figure 0006859919

表1より以下のことがわかる。
ブレークアウト発生件数は、従来例では3件、実施例では0件であり、本実施形態に係るブレークアウト予知方法によってブレークアウトの発生を確実に予知し防止できている。
一方、ブレークアウト予知発報総件数は、従来例では201件、実施例では53件であり、本実施形態に係るブレークアウト予知方法では、ブレークアウト予知を過剰に発報していない。
上記結果より、本実施形態に係るブレークアウト予知方法は、従来技術と比べてブレークアウトを精度良く検出できることが確認できた。
The following can be seen from Table 1.
The number of breakouts is 3 in the conventional example and 0 in the embodiment, and the breakout prediction method according to the present embodiment can reliably predict and prevent the occurrence of breakouts.
On the other hand, the total number of breakout prediction reports is 201 in the conventional example and 53 in the embodiment, and the breakout prediction method according to the present embodiment does not excessively report breakout prediction.
From the above results, it was confirmed that the breakout prediction method according to the present embodiment can detect breakouts more accurately than the conventional technique.

10:鋳型、11、12:鋳型壁(短辺側鋳型壁)、11a、12a:通水路、13:浸漬ノズル、13a:流路、13b:吐出孔、14:溶鋼、15:凝固シェル、16、17、18、19:温度計、20、21:流量計、22、23:熱電対、31、32:抜熱量演算部、33、34:湯面高さ演算部、35、36:平均熱流束演算部、37:評価部 10: Mold, 11, 12: Mold wall (short side mold wall), 11a, 12a: Water passage, 13: Immersion nozzle, 13a: Flow path, 13b: Discharge hole, 14: Molten steel, 15: Solidified shell, 16 , 17, 18, 19: Thermometer, 20, 21: Flow meter, 22, 23: Thermocouple, 31, 32: Heat removal amount calculation unit, 33, 34: Hot water level calculation unit, 35, 36: Average heat flow Bundle calculation unit, 37: Evaluation unit

Claims (1)

浸漬ノズルの吐出孔に面する鋳型壁の内部を通流する冷却水の鋳型壁入側及び出側の温度と、前記冷却水の単位時間当たり流量と、前記鋳型壁近傍の湯面高さとを測定するステップと、
測定した前記鋳型壁入側の冷却水温度、前記鋳型壁出側の冷却水温度、前記冷却水の単位時間当たり流量、及び前記鋳型壁近傍の湯面高さから、前記鋳型壁の平均熱流束を(1)式を用いて算出するステップと、
算出された前記鋳型壁の平均熱流束が閾値を超えた場合にブレークアウトに至る可能性があると判定するステップとを備えることを特徴とするブレークアウト予知方法。
q=QCWATER(TOUT−TIN)/(A×B) (1)
ここで、
q:前記鋳型壁の平均熱流束(J・s-1・m-2)、Q:前記冷却水の単位時間当たり流量(L・s-1)、CWATER:水の比熱(J・kg-1・K-1)、TOUT:前記鋳型壁出側の冷却水温度(K)、TIN:前記鋳型壁入側の冷却水温度(K)、A:前記鋳型壁の下端から湯面までの距離(m)、B:前記鋳型壁の平均幅(m)
The temperature of the cooling water entering and exiting the mold wall that flows inside the mold wall facing the discharge hole of the immersion nozzle, the flow rate of the cooling water per unit time, and the height of the molten metal near the mold wall. Steps to measure and
The average heat flux of the mold wall is based on the measured cooling water temperature on the side entering the mold wall, the temperature of the cooling water on the exit side of the mold wall, the flow rate of the cooling water per unit time, and the height of the molten metal in the vicinity of the mold wall. With the step of calculating using Eq. (1)
A breakout prediction method comprising a step of determining that a breakout may occur when the calculated average heat flux of the mold wall exceeds a threshold value.
q = QC WATER (T OUT- T IN ) / (A × B) (1)
here,
q: average heat flux of the mold wall (J · s -1 · m -2 ), Q: the unit time per flow rate of the cooling water (L · s -1), C WATER: water specific heat (J · kg - 1 · K -1 ), T OUT : Cooling water temperature (K) on the outside of the mold wall, T IN : Cooling water temperature (K) on the inside of the mold wall, A: From the lower end of the mold wall to the molten metal surface Distance (m), B: Average width (m) of the mold wall
JP2017201639A 2017-10-18 2017-10-18 Breakout prediction method Active JP6859919B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017201639A JP6859919B2 (en) 2017-10-18 2017-10-18 Breakout prediction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017201639A JP6859919B2 (en) 2017-10-18 2017-10-18 Breakout prediction method

Publications (2)

Publication Number Publication Date
JP2019072749A JP2019072749A (en) 2019-05-16
JP6859919B2 true JP6859919B2 (en) 2021-04-14

Family

ID=66544543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017201639A Active JP6859919B2 (en) 2017-10-18 2017-10-18 Breakout prediction method

Country Status (1)

Country Link
JP (1) JP6859919B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7421103B2 (en) * 2020-06-29 2024-01-24 日本製鉄株式会社 Breakout prediction method in continuous casting
EP3981527A1 (en) * 2020-10-09 2022-04-13 MAGMA Giessereitechnologie GmbH Method for predicting porosity distribution in cast metal objects

Also Published As

Publication number Publication date
JP2019072749A (en) 2019-05-16

Similar Documents

Publication Publication Date Title
JP2609476B2 (en) Method and apparatus for detecting blowing in continuous casting
JP6950860B1 (en) Breakout prediction method, continuous casting machine operation method, and breakout prediction device
JP6859919B2 (en) Breakout prediction method
TWI389749B (en) Method and apparatus for detecting the casting leakage of continuous casting, casting leakage prevention device, method and device for estimating thickness of solidified shell, and continuous casting method for steel
JP5092631B2 (en) Breakout detection method and apparatus in continuous casting, steel continuous casting method and breakout prevention apparatus using the apparatus
JP4105839B2 (en) In-mold casting abnormality detection method in continuous casting
KR101257254B1 (en) Crack diagnosis device of solidified shell in mold and method thereof
JP7115240B2 (en) Breakout prediction method in continuous casting
JPH01210160A (en) Method for predicting longitudinal crack in continuous casting
JP2000317595A (en) Method for predicting surface flaw of continuously cast slab
KR101224961B1 (en) Crack diagnosis device of solidified shell in mold and method thereof
JP5365459B2 (en) Solid shell thickness estimation method and apparatus in continuous casting, breakout detection method and apparatus in continuous casting
JP5707844B2 (en) Breakout detection method and apparatus in continuous casting
JP4501892B2 (en) Method and apparatus for estimating molten metal temperature in continuous casting mold
JP7421103B2 (en) Breakout prediction method in continuous casting
JP6337848B2 (en) Method and apparatus for predicting constrained breakout
JP5412872B2 (en) Breakout detection method and apparatus in continuous casting, steel continuous casting method and breakout prevention apparatus using the apparatus
JP2022124069A (en) Method for estimating thickness of solidification shell and method for continuous casting of molten metal
JP6119807B2 (en) Method and apparatus for determining surface defects of continuous cast slab, and method for producing steel slab using the surface defect determination method
JPS5916865B2 (en) Breakout prediction device
JP7001074B2 (en) Prediction method of restrictive breakout and continuous casting method of steel
JPH01228658A (en) Method for predicting longitudinal crack in continuous casting
JP5387070B2 (en) Breakout detection method and apparatus in continuous casting, steel continuous casting method and breakout prevention apparatus using the apparatus
JP5915463B2 (en) Breakout prediction method
JP2010194548A (en) Method for estimating solidification shell thickness in continuous casting and apparatus therefor, and method for detecting breakout in continuous casting and apparatus therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200603

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210309

R151 Written notification of patent or utility model registration

Ref document number: 6859919

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151