JP4105839B2 - In-mold casting abnormality detection method in continuous casting - Google Patents

In-mold casting abnormality detection method in continuous casting Download PDF

Info

Publication number
JP4105839B2
JP4105839B2 JP2000051521A JP2000051521A JP4105839B2 JP 4105839 B2 JP4105839 B2 JP 4105839B2 JP 2000051521 A JP2000051521 A JP 2000051521A JP 2000051521 A JP2000051521 A JP 2000051521A JP 4105839 B2 JP4105839 B2 JP 4105839B2
Authority
JP
Japan
Prior art keywords
mold
temperature
heat flux
casting
slab
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000051521A
Other languages
Japanese (ja)
Other versions
JP2001239353A (en
Inventor
淳一 中川
崇博 片井
康一 平井
弘昭 飯星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2000051521A priority Critical patent/JP4105839B2/en
Publication of JP2001239353A publication Critical patent/JP2001239353A/en
Application granted granted Critical
Publication of JP4105839B2 publication Critical patent/JP4105839B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Continuous Casting (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は連続鋳造における鋳造異常、特に鋳型内の鋳片に発生したブレークアウト、表面欠陥、溶融金属流動の異常などをオンラインで検出する方法に関する。
【0002】
【従来の技術】
連続鋳造機の鋳型内にある溶融金属の凝固状態を鋳造中に知ることは、凝固シェルの不均一生成に起因する鋳片表面欠陥発生のオンライン検出やブレークアウト、場面振動等の操業異常の予知を行う上での必要条件であり、連続鋳造操業および品質管理上、重要である。したがって、従来多くの鋳型内鋳造異常検出方法が提案されている。
【0003】
溶融金属の凝固厚みと凝固シェルの温度プロフイールを知るには鋳型内面の熱流束を知る必要があり、従来、溶融金属の鋳型内の熱流束を2つの熱電対を鋳型の抜熱方向の異なる位置に配置し、鋳型材質の熱伝導率λ、2点の熱電対の距離dと熱電対による温度計測値から得られる温度差ΔTから、熱流束qを、
q=(λ/d)・ΔT
の式により求めようとする試みはあった。しかし、鋳型内面と水冷溝間の狭い空間内に2点の熱電対を配置し、維持・管理をすることが困難であるという問題があった。さらに、この方法で導出される熱流束は、鋳型内温度分布が定常状態にあることが前提となっており、非定常状態の程度が大きくなるにつれ、実際の熱流束値に対する推定誤差が大きくなるという問題がある。
【0004】
また、特願平9−273745号公報「連続鋳造設備における鋳型内異常判定方法」では、鋳型の銅板表面に熱電対の先端を露出し、鋳型の銅板表面の鋳造側となる温度を測定して鋳型内の溶融金属の凝固状態およびパウダー潤滑状態を求め、鋳造時の異常を判定する。これにより、溶融金属の流出等による鋳造中断事故(ブレークアウト)、鋳片表面欠陥の発生を最小に抑えて歩留まりの向上を図る。この鋳型内異常判定方法では、鋳片内の熱流束を求めるものではないので、鋳型内の凝固状態や凝固シェルの厚さを知ることはできない。このために、表面欠陥、溶融金属流動の異常などをオンラインで検出することはできない。また、多数の熱電対をこれの先端を鋳型表面に露出させて鋳型に取り付ける必要がある。
【0005】
【発明が解決しようとする課題】
本発明は、鋳型内面と水冷溝間に配置した鋳型温度計測値から定常状態だけでなく非定常状態にある溶融金属鋳型表面の熱流束を推定し、これに基づき高い精度でブレークアウト、表面欠陥、または溶融金属流動異常などの鋳型内鋳造異常を検出する方法を提供することを課題とする。
【0006】
【課題を解決するための手段】
本発明の連続鋳造における鋳型内鋳造異常検出方法は、鋳造方向に間隔をおいて鋳型の複数箇所に埋設した温度計測手段で鋳型温度を計測し、鋳型温度計測値に基づいて各計測点における鋳型内面での熱流束を、伝熱逆問題手法を用いて非定常伝熱方程式の数値解よりそれぞれ推定する。そして、前記推定した熱流束の経過時間変化から、鋳型内鋳片の任意の点が2箇所の計測点を通過する経過時間またはその近くで熱流束推定値がそれぞれの計測点についてあらかじめ設定した限界値以下にかつ計測点順に低下したことによりブレークアウト又は縦割れを検出する。
【0007】
ブレークアウトは、鋳型と鋳片の間に噛み込んだ異物や鋳片の割れ等で部分的に鋳片凝固層厚みが薄くなった部位が破損し溶融金属が流出することで発生する。ブレークアウトにつながるような凝固層が鋳型を通過する際は、その原因となる異物または割れの影響で凝固層から鋳型への熱移動が妨げられ、熱流束の低下が起こる。したがって、上記方法で求めた各計測点における熱流束の減少量により、ブレークアウトの発生を検知することができる。
【0012】
【発明の実施の形態】
スラブの連続鋳造を例として、本発明の実施の形態を説明する。図1は、鋳型および鋳型内鋳片(溶融金属および凝固シェルからなっている)をスラブ幅方向に沿う縦断面で模式的に示している。
【0013】
図1に示すように、鋳型11内に水冷溝13が形成されており、水冷溝13には冷却水温度を計測する冷却水温度計測手段15が設けられている。冷却水量は、流量計14で計測される。水冷溝13を通過する冷却水で鋳型11を冷却し、鋳型内鋳片1より抜熱する。第1鋳型温度計測手段16および第2鋳型温度計測手段17が、鋳型内面12と水冷溝13との間に上下(鋳造)方向に間隔dをおいて埋設されている。熱流束、鋳型温度分布その他を精度よく求めるために、第1鋳型温度計測手段16は溶融スラグ液相部分7、または凝固開始点もしくはこの近くに配置することが望ましく、第2鋳型温度計測手段17は凝固シェル5の部分に配置する。両温度計測手段16,17の間隔dは、鋳造条件、鋳片寸法などに応じて操業実績に基づき鋳造異常検出に適した間隔とする。図1では、上下方向に2個の鋳型温度計測手段を配置しているが、必要に応じて上下方向に例えば3〜5個配置してもよい。熱流束および鋳型表面温度の鋳造方向の分布は、鋳型温度計測手段(温度計測点)の数を増すとそれだけ高精度で求めることができる。また、上下で対となった鋳型温度計測手段16,17を、鋳片1の幅に従い鋳片幅方向に例えば2〜6組配置するようにしてもよい。なお、鋳造方向に対し直角方向に関しては、温度計測手段は1個でよい。上記冷却水温度計測手段15、および鋳型温度計測手段16,17として、例えば熱電対、サーミスターなどを用いる。温度計測値および流量計測値は、コンピュータ19に送信する。コンピューター19には、あらかじめ鋳造条件、鋳型材質の熱伝導度、温度計測点の鋳型内面からの距離その他熱流束、温度分布、対流伝熱量などの演算に必要なデータおよび演算プログラムが入力されている。
【0014】
本発明は、鋳造方向に間隔dをおいて鋳型11の複数箇所に埋設した温度計測手段16,17で鋳型温度を計測し、鋳型温度計測値に基づいて各計測点における鋳型内面12での熱流束を伝熱逆問題手法を用いてそれぞれ推定する。熱流束の推定方法は、温度分布などの推定とともに後でまとめて説明する。
【0015】
鋳型内鋳片1の任意の点が2箇所の計測点を通過する経過時間またはその近くで熱流束推定値がそれぞれの計測点についてあらかじめ設定した限界値以下にかつ計測点順に低下したことによりブレークアウトを検出する。上記経過時間またはその近くの時間τは、次の式で示される。
d/v≦τ≦(1+α)d/v
ここで、dは上下温度計測点の間隔であり、vは鋳造速度である。αは余裕係数で、0.01〜0.1程度である。余裕係数αは、鋳型内鋳片の異物噛み込み部の移動が第1計測点から第2計測点に至る間で遅れた場合、遅れ時間を考慮した係数である。限界値は、鋳造条件、鋳片寸法などに応じて操業実績に基づいて設定する。
【0016】
図2(a)は鋳造経過時間と熱電対により計測した鋳型温度との関係を、図2(b)は鋳造経過時間と鋳型計測温度より推測した熱流束との関係をそれぞれ示している。第1温度計測点は鋳型上面から180mm、第2温度計測点は340mmである。これらの図から、熱流束の変化が鋳型温度の変化より細かく、かつシャープであり、明確となっていることがわかる。したがって、熱流束の変化によるブレークアウトの検出が鋳型温度の変化に比べて、より高い信頼度でより小さなブレークアウトを検出できる。
【0017】
図2(b)において、第1計測点の熱流束推定値が限界値a以下に低下し、続いて前記経過時間内に第1計測点の熱流束推定値が限界値b以下に低下すると、ブレークアウトが発生したと判定する。なお、図2(b)で円で囲んだ部分で示すように、異物噛込みも検出可能である。
【0018】
参考形態は、上記熱流束に基づいて縦割れなどの表面欠陥を検出する。鋳片の割れは上記ブレークアウトの程度の小さいものとみなせる。したがって、上述のブレークアウト判定の前記限界値a、bを変更することで、大きな割れは検知可能であるが、割れの大きさが小さくなるにつれ、外乱等の影響で判定が困難になる。
【0019】
図3(a)は、縦割れが生じた場合の鋳造経過時間と熱電対により計測した鋳型温度との関係を示している。図3(b)は、上記と同じ場合の鋳造経過時間と鋳型計測温度より推定した熱流束との関係を示している。温度計測手段から鋳型内面までの伝熱抵抗による伝熱遅れのために、図3(a)に示すように鋳型内面における伝熱変化が鈍った状態でしか検出できない。図2で説明したと同様に、図3(b)では熱流束の変化は鋳型温度の変化より細かく、かつシャープであり、明確となっていることがわかる。しかし、上述のように割れが小さくなると、図3(b)により小さな割れを検出することは困難である。
【0020】
参考形態では、図3(b)に示す熱流束推定値の経時変化をウエーブレット解析することにより小さな割れを検出する。図4(a)〜(d)および図5(a)〜(d)は、ウエーブレット解析によるそれぞれ熱流束の周期8秒、16秒、32秒および64秒変動結果を示している。図4は鋳片に縦割れがある場合、図5は健全な鋳片の場合である。図4(d)の下に鋳片の縦割れ手入れ率つまり縦割れの発生率を示している。これらのウエーブレット解析結果から、健全鋳片と比較して縦割れ発生スラブは8秒から32秒周期帯域の熱流束変動の乱れが大きくなっていることがわかる。これらの変動量の大きさ(振幅)と頻度とが縦割れ手入れ率の程度とよく対応しており、これら周期帯の熱流束変動量を管理することで縦割れ検出が可能となる。縦割れの大きさは上記振幅により、鋳片長さ方向の位置は鋳造経過時間で決定することができる。縦割れ発生鋳片は、64秒周期帯の上下熱流束挙動が一致しており、鋳片の鋳型からの浮き上がり挙動を表わしているものと考えられ、縦割れ原因系検出の可能性を示している。
【0021】
図4では、計測点が上部熱電対位置と下部熱電対位置との2箇所であった。1箇所で計測した熱流束変動量により縦割れなどの表面欠陥を検出することもできるが、2箇所で計測した方が欠陥検出精度は高くなる。2箇所で計測の場合、欠陥の有無、大きさ、および鋳片長さ方向の位置は、熱流束変動量の振幅が大きい方で判断する。
【0023】
前述のように、本発明および参考形態では、鋳型内面と水冷溝との間に埋設した温度計測手段により計測した鋳型温度から鋳型内表面の熱流束を推定し、ブレークアウトまたは表面欠陥を検出する。以下、鋳型温度計測値に基づき、これら熱流束および対流熱伝達量を求める方法について説明する。
【0024】
鋳型内表面の熱流束は、James.V.BECKの非線形逆伝熱問題の手法[Int.J.Mass s Transfer,vol.13,pp703-716(1970)]を適用し、非定常伝熱方程式の数値解より、鋳型表面と水冷溝との間に埋設した1点の鋳型温度計測値を最も良く説明できる熱流束を時系列的に逐次求める。また、熱流束と非定常伝熱差分方程式の解として求められる鋳型内面温度を同時に決定する。
【0025】
図6は、鋳型内面12と鋳型水冷溝13間の熱移動を表す概念図である。溶融金属2から鋳型11へ流入する熱流束が鋳型11内を通過し、鋳型水冷溝13を流れる冷却水wにより抜熱される。熱流束を検出するために鋳型内面12から鋳型水冷溝への垂直方向距離Eの位置に熱電対16が設置されている。
【0026】
図6において、鋳型厚み方向の1次元方向伝熱のみを考えると、鋳型内面から鋳型水冷溝間の熱移動を支配する方程式は以下の式で表される。
ρcp∂T/∂t=−∂(λ∂T/∂x)/∂x (1)
T(E,t)=Y(t) (2)
λ∂T(F,t)/∂x=hw(T(F,t)−Tw) (3)
T(x,0)=T0(x) (4)
ここで、ρは鋳型材料の密度、cpは鋳型材料の比熱、xは鋳型内面から水冷溝への任意の位置における垂直方向距離、Eは鋳型内面から鋳型熱電対設置点までの垂直方向距離、Yはその計測値を示す。Fは鋳型内面12から鋳型水冷溝13までの垂直方向距離を、hw,Twは各々、水側冷却の総括熱伝達係数、水温を示す。T0(x)は鋳型内面12から鋳型水冷溝13間の垂直方向の初期温度分布を示し、鋳造開始直前にすべて室温に設定する。
【0027】
(1)、(3)、(4)式より計算した熱電対計測点に於ける鋳型温度T(E,t)と計測温度Y(t)の2乗誤差を以下の(5)式で定義し、これが最小となるような熱流束q(t,0)≡λ∂T/∂xx=0を(6)式より決定する。
F(q)=(T(E,t)−Y(t))2 (5)
∂F(q)/∂q=0 (6)
【0028】
以上の説明では、図6で上側温度計測点(温度計測手段16の位置)について熱流束を求めたが、下側温度計測点(図1で温度17の位置)または計測点が3箇所以上ある場合でも同様にして計測点の熱流束を求めることができる。これら求めた熱流束により内外挿して、鋳造方向の熱流束分布を求める。熱流束は鋳造方向位置および時間の関数であるが、以下簡単にqmで表す。
【0029】
つぎに、上記熱流束に基づいて凝固シェル厚み、凝固シェル内温度分布および凝固シェル表面温度を求める。
【0030】
図7は、溶融金属内の熱移動を示す概念図である。溶融金属プール内の溶融金属2は、メニスカス3から鋳造速度に対応した速度で下方に引き抜かれる際に、鋳型11により熱流束で冷却され、凝固シェル5を形成する。メニスカス3における溶融金属温度を初期条件とし、上で求めた鋳型表面熱流束を境界条件にして溶融金属2のx方向一次元非定常伝熱計算を行う。計算の便宜のために、x方向は図6とは逆方向にとってある。ここで、パウダー層の熱慣性が小さいため、凝固シェル・鋳型表面間のパウダー層内伝熱は擬定常状態が成立すると仮定し、鋳型表面熱流束が凝固シェル表面熱流束に等しいとしている。
sρs∂T/∂tmeni=∂(−λs∂T/∂x)/∂x (7)
T=T0 ただし、tmeni=0 (8)
−λs∂T/∂x=qm ただし、x=0 (9)
T=TL ただし、x=δ (10)
−λs∂T/∂x=ρsL(dδ/dt) ただし、x=0 (11)
ここでtmeniはメニスカスからの経過時間、xは鋳型表面から凝固シェル内の任意の位置における距離、δは凝固シェル厚み、Lは凝固潜熱、λsは凝固シェルの熱伝導度、Csは凝固シェルの比熱、TLは凝固温度を示す。
【0031】
(7)〜(11)式を解くことにより、凝固シェル厚みと同時に凝固シェル内温度分布が求まり、メニスカスから鋳造方向の任意の位置における凝固シェル表面温度が決定できる。
【0032】
つぎに、凝固シェル表面熱流束を推定し、熱対流(溶融金属流動)起因の熱流束を求める方法について説明する。前記と同様、J.V.BECKの非線形逆伝熱問題の手法を使う。
【0033】
図7に示すような凝固シェル厚み方向の一次元方向伝熱のみを考えると、支配方程式は以下の式で表わせる。
ρss∂T/∂t=−∂(λs∂T/∂x)/∂x (12)
T(0,t)=Y(t) (13)
λs∂T(0,t)/∂t=qm (14)
T(x,0)=Ti(x) (15)
ここで、tは任意の時刻を表し、メニスカスからの経過時刻を示すtmeniとは別物である。
【0034】
ある凝固シェル厚みを仮定し、上の(12)〜(15)式を解くと、仮定した凝固シェル内表面上の熱流束と温度が求まる。この凝固シェル厚みを適切な値に設定することにより、計算で求めた凝固シェル内表面温度と溶融金属凝固温度を一致させることができ、このときの熱流束が凝固シェル内表面上の熱流束qmとなる。熱流束qmは溶融金属の熱対流起因の熱流束と凝固シェルヘ熱伝導で移動する熱流束および溶融金属の凝固潜熱として使われた熱量で構成され、これらの関係は以下の(16)式で表される。

Figure 0004105839
ここで、αは溶融金属対流による熱伝達係数、Txは凝固シェル内表面からΔxの距離における凝固シェル温度、Tbは溶融金属のバルク温度を示す。
(16)式より
Figure 0004105839
が熱対流起因の熱流束である。
【0035】
上記熱流束などを求める演算は、図1に示すコンピューター19により図8に示すフローチャートの命令に従って実行される。
【0036】
ステップ1で時間tにゼロを設定し、ステップ2で時間tに微小時間間隔Δtを加算し、時間を更新する。ステップ3にて鋳造方向に鋳型内設置された熱電対の計測値をコンピューター19に読み込み、ステップ4にてステップ3で読み込んだ熱電対の計測値に基づき、鋳型表面の熱流束と鋳型内表面温度Tmsを計算する。
【0037】
具体的には、前述の(4)式を初期条件、(2)式および(3)式を境界条件にして(1)式を離散化して解く。(1)〜(4)式より計算した熱電対計測点に於ける鋳型温度T(E,t)と計測温度Y(t)の2乗誤差を以下の前述の(5)式により計算する。
【0038】
前述の(6)式に示すように2乗誤差F(q)の熱流束qに関する偏微分係数がゼロに近づくように、仮定した熱流束値q0を以下の手順にしたがって修正する。
【0039】
仮定した熱流束qを境界条件にして計算した鋳型温度計測点における鋳型温度計算値をT(E,t)0、修正した熱流束qを境界条件にして計算した鋳型温度計測点における鋳型温度計算値をT(E,t)1とすると、T(E,t)1をΔq≡q−qに関してテーラー展開すると以下のようになる。
T(E,t)1=T(E,t)0+(∂T(E,t)0/∂q
・(q−q) (18)
ここで、感度係数βを次式のように定義する。
β≡∂T(E,t)0/∂q
=(T(E,t)1−T(E,t)0)/εq(19)
ここで、εはqの最適値を探索するために設定する微小値であり、例えば、0.001とする。(18)式と(19)式を(6)式に代入し、qに関して整理すると、
=q+(T(E,t)0−Y(t))/β(20)
を比較し、下記の収束判定式を満足すればqが求める熱流束である。
(q−q)/q<0.001 (21)
【0040】
(21)式を満足しない場合は、q1を基準に上と同様の手順で以下の(22)式に従ってqiの計算を行い、(23)式を満足するまで、計算を繰り返し、熱流束qを決定し、同時に鋳型内表面温度T(0,t)が計算される。
Figure 0004105839
【0041】
ステップ5では、(7)〜(11)式を使って凝固シェル厚みδおよび凝固シェル表面温度TLを求める。その際、(9)式に使用する熱流束値qmは、熱電対計測値から逆問題で求めた熱流束値の鋳造方向内外挿値を使用する。
【0042】
ステップ6では、(12)〜(15)式により凝固シェル内表面熱流束を求める。その際、(13)式のY(t)は各熱電対位置におけるステップS5で求めた鋳片表面温度を使用し、(14)式のqmはステップS4で逆問題を解いて求めた鋳型内面熱流束値を使用する。
【0043】
ステップ7で上記凝固シェル内表面熱流束により溶融金属流動に起因する対流熱伝達量を(17)式より求める。
【0044】
以上説明した発明の実施の形態では鋳片がスラブであったが、本発明はこれに限られるものではない。例えば、鋳片がビレット、厚板材、丸棒材などであってもよく、また水平連続鋳造にも適用することができる。
【0045】
【発明の効果】
本発明方法では、鋳型内面と水冷溝間に配置した鋳型温度計測値から定常状態だけでなく非定常状態にある溶融金属鋳型表面または凝固シェル表面の熱流束を求め、鋳型表面温度その他を推定するので、溶融金属鋳型内の凝固状態を明確に検知することができる。この結果、オンラインかつ高い精度で鋳型内鋳造異常を検出でき、健全な凝固状態が得られるような鋳造操業方法を管理することが可能となる。また、鋳型表面温度を得るために、熱電対などの温度計測手段の先端を鋳型表面に露出する必要はない。
【図面の簡単な説明】
【図1】本発明方法を実施する際の装置構成図である。
【図2】(a)はブレイクアウトが発生した鋳片の熱電対温度変化の経時変化を示し、(b)は同鋳片の熱流束の経時変化を示す線図である。
【図3】(a)は縦割れが発生した鋳片の熱電対温度変化の経時変化を示し、(b)は同鋳片の熱流束の経時変化を示す線図である。
【図4】縦割れが発生した鋳片について、熱流束のウエーブレット解析結果を示す線図である。
【図5】健全な鋳片について、熱流束のウエーブレット解析結果を示す線図である。
【図6】鋳型内面と鋳型水冷溝間の熱移動を表す概念図である。
【図7】溶融金属内の熱移動を表す概念図である。
【図8】本発明に基づく演算フロー図である。
【符号の説明】
1:鋳片
2:溶融金属
3:メニスカス
5:凝固シェル
7:溶融スラグ
11:鋳型
12:鋳型内表面
13:水冷溝
14:流量計
15:冷却水温度計測手段
16:第1鋳型温度計測手段
17:第2鋳型温度計測手段
19:コンピューター[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for online detection of casting abnormalities in continuous casting, particularly breakouts, surface defects, abnormalities in molten metal flow, etc. occurring in a slab in a mold.
[0002]
[Prior art]
Knowing the solidification state of the molten metal in the mold of a continuous casting machine during casting is the on-line detection of slab surface defects caused by non-uniform formation of solidified shells and prediction of operational abnormalities such as breakout and scene vibration. It is a necessary condition for performing the process and is important for continuous casting operation and quality control. Therefore, many methods for detecting abnormality in casting in the mold have been proposed.
[0003]
In order to know the solidification thickness of the molten metal and the temperature profile of the solidified shell, it is necessary to know the heat flux on the inner surface of the mold. Conventionally, the heat flux in the mold of the molten metal is divided into two thermocouples at different positions in the heat removal direction of the mold. The heat flux q is calculated from the temperature difference ΔT obtained from the thermal conductivity λ of the mold material, the distance d between the two thermocouples, and the temperature measured by the thermocouple,
q = (λ / d) · ΔT
There was an attempt to find it by the following formula. However, there is a problem that it is difficult to maintain and manage two thermocouples in a narrow space between the mold inner surface and the water cooling groove. Furthermore, the heat flux derived by this method is based on the premise that the temperature distribution in the mold is in a steady state, and the estimation error for the actual heat flux value increases as the degree of unsteady state increases. There is a problem.
[0004]
Further, in Japanese Patent Application No. 9-273745, “Method for determining in-mold abnormality in continuous casting equipment”, the tip of the thermocouple is exposed on the copper plate surface of the mold, and the temperature on the casting side of the copper plate surface of the mold is measured. Obtain the solidification state and powder lubrication state of the molten metal in the mold, and determine abnormalities during casting. As a result, the yield is improved by minimizing the occurrence of casting interruption (breakout) due to the outflow of molten metal and the occurrence of slab surface defects. In this in-mold abnormality determination method, the heat flux in the slab is not obtained, so the solidification state in the mold and the thickness of the solidified shell cannot be known. For this reason, surface defects, abnormalities in molten metal flow, etc. cannot be detected online. Further, it is necessary to attach a large number of thermocouples to the mold with their tips exposed on the mold surface.
[0005]
[Problems to be solved by the invention]
The present invention estimates the heat flux of the molten metal mold surface not only in the steady state but also in the unsteady state from the measured temperature value of the mold disposed between the inner surface of the mold and the water cooling groove, and based on this, breakout and surface defects with high accuracy are estimated. It is another object of the present invention to provide a method for detecting an in-mold casting abnormality such as a molten metal flow abnormality.
[0006]
[Means for Solving the Problems]
According to the present invention , there is provided a method for detecting abnormality in casting in a mold by measuring a mold temperature with temperature measuring means embedded in a plurality of locations of the mold at intervals in the casting direction, and measuring the mold at each measurement point based on the measured mold temperature. The heat flux on the inner surface is estimated from the numerical solution of the unsteady heat transfer equation using the inverse heat transfer problem method. Then, from the estimated change in the elapsed time of the heat flux, the estimated value of the heat flux is set in advance for each measurement point at or near the elapsed time when an arbitrary point of the in- mold slab passes two measurement points. A breakout or vertical crack is detected when the value falls below the value and in the order of measurement points.
[0007]
The breakout occurs when a portion where the thickness of the slab solidified layer is partially thin due to a foreign matter caught between the mold and the slab or a crack of the slab is broken and the molten metal flows out. When the solidified layer that leads to breakout passes through the mold, the heat transfer from the solidified layer to the mold is hindered by the influence of foreign matters or cracks that cause the solidified layer, resulting in a decrease in heat flux. Therefore, the occurrence of breakout can be detected from the amount of decrease in heat flux at each measurement point obtained by the above method.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
The embodiment of the present invention will be described by taking slab continuous casting as an example. FIG. 1 schematically shows a mold and an in-mold slab (consisting of a molten metal and a solidified shell) in a longitudinal section along the slab width direction.
[0013]
As shown in FIG. 1, a water cooling groove 13 is formed in the mold 11, and the water cooling groove 13 is provided with cooling water temperature measuring means 15 for measuring the cooling water temperature. The amount of cooling water is measured by the flow meter 14. The mold 11 is cooled with cooling water passing through the water-cooling groove 13, and heat is extracted from the in-mold slab 1. The first mold temperature measuring means 16 and the second mold temperature measuring means 17 are embedded between the mold inner surface 12 and the water cooling groove 13 with a space d in the vertical (casting) direction. In order to accurately determine the heat flux, mold temperature distribution, etc., the first mold temperature measuring means 16 is preferably arranged at the molten slag liquid phase portion 7 or at or near the solidification start point, and the second mold temperature measuring means 17. Is placed in the solidified shell 5 portion. The distance d between the temperature measuring means 16 and 17 is set to an interval suitable for detecting a casting abnormality based on the operation results in accordance with the casting conditions, the slab size and the like. In FIG. 1, two mold temperature measuring means are arranged in the vertical direction. However, for example, 3 to 5 mold temperature measuring means may be arranged in the vertical direction as needed. The distribution of the heat flux and the mold surface temperature in the casting direction can be obtained with higher accuracy as the number of mold temperature measuring means (temperature measurement points) is increased. Moreover, you may make it arrange | position 2-6 sets of mold temperature measuring means 16 and 17 which became the upper and lower pairs according to the width | variety of the slab 1, for example in the slab width direction. In addition, regarding the direction perpendicular to the casting direction, only one temperature measuring means may be used. As the cooling water temperature measuring means 15 and the mold temperature measuring means 16 and 17, for example, a thermocouple, a thermistor or the like is used. The temperature measurement value and the flow rate measurement value are transmitted to the computer 19. The computer 19 is preliminarily inputted with data and a calculation program necessary for calculation such as casting conditions, heat conductivity of the mold material, distance of the temperature measurement point from the inner surface of the mold and other heat fluxes, temperature distribution, convection heat transfer amount and the like. .
[0014]
In the present invention , the mold temperature is measured by temperature measuring means 16 and 17 embedded in a plurality of locations of the mold 11 at intervals d in the casting direction, and the heat flow on the mold inner surface 12 at each measurement point based on the measured mold temperature. Each bundle is estimated using the inverse heat transfer method. The heat flux estimation method will be described later together with estimation of temperature distribution and the like.
[0015]
Breaks when the estimated value of heat flux falls below the preset limit value for each measurement point and in the order of measurement points at or near the elapsed time when any point of the in-mold slab 1 passes through two measurement points Detect out. The elapsed time or the time τ nearby is expressed by the following equation.
d / v c ≦ τ ≦ (1 + α) d / v c
Here, d is the interval between the upper and lower temperature measurement points, and vc is the casting speed. α is a margin coefficient and is about 0.01 to 0.1. The margin coefficient α is a coefficient that takes into account the delay time when the movement of the foreign matter biting portion of the cast in the mold is delayed from the first measurement point to the second measurement point. The limit value is set based on the operation results according to casting conditions, slab dimensions, and the like.
[0016]
FIG. 2A shows the relationship between the elapsed casting time and the mold temperature measured by the thermocouple, and FIG. 2B shows the relationship between the elapsed casting time and the heat flux estimated from the measured mold temperature. The first temperature measurement point is 180 mm from the upper surface of the mold, and the second temperature measurement point is 340 mm. From these figures, it can be seen that the change in heat flux is finer and sharper than the change in mold temperature and is clear. Therefore, detection of breakout due to a change in heat flux can detect a smaller breakout with higher reliability than change in mold temperature.
[0017]
In FIG. 2 (b), when the heat flux estimated value at the first measurement point falls below the limit value a, and then the heat flux estimated value at the first measurement point falls below the limit value b within the elapsed time, Determine that a breakout has occurred. In addition, as shown by a portion surrounded by a circle in FIG. 2B, foreign object biting can also be detected.
[0018]
In the reference form , surface defects such as vertical cracks are detected based on the heat flux. The crack of the slab can be regarded as having a small degree of breakout. Therefore, by changing the limit values a and b of the breakout determination described above, a large crack can be detected. However, as the crack size decreases, the determination becomes difficult due to the influence of a disturbance or the like.
[0019]
FIG. 3A shows the relationship between the elapsed casting time and the mold temperature measured by a thermocouple when vertical cracking occurs. FIG. 3B shows the relationship between the casting elapsed time and the heat flux estimated from the mold measurement temperature in the same case as above. Due to the heat transfer delay due to the heat transfer resistance from the temperature measuring means to the mold inner surface, it can be detected only when the heat transfer change on the mold inner surface is dull as shown in FIG. Similarly to FIG. 2, in FIG. 3B, it can be seen that the change in the heat flux is finer and sharper than the change in the mold temperature and is clear. However, if the crack becomes small as described above, it is difficult to detect the small crack as shown in FIG.
[0020]
In the reference mode , small cracks are detected by performing wavelet analysis on the temporal change of the heat flux estimation value shown in FIG. 4 (a) to 4 (d) and FIGS. 5 (a) to 5 (d) show the fluctuation results of the heat flux period of 8 seconds, 16 seconds, 32 seconds and 64 seconds, respectively, by wavelet analysis. 4 shows a case where there is a vertical crack in the slab, and FIG. 5 shows a case where the slab is healthy. The vertical crack maintenance rate of the slab, that is, the occurrence rate of vertical cracks is shown below FIG. From these wavelet analysis results, it can be seen that the fluctuation of the heat flux fluctuation in the period between 8 seconds and 32 seconds is larger in the longitudinal crack occurrence slab than in the case of the sound slab. The magnitude (amplitude) and frequency of these fluctuations correspond well to the extent of the vertical crack maintenance rate, and vertical cracks can be detected by managing the heat flux fluctuations in these periodic bands. The size of the vertical crack can be determined by the above-mentioned amplitude, and the position in the slab length direction can be determined by the elapsed casting time. Longitudinal cracking slabs have the same up and down heat flux behavior in the 64-second period, and are considered to represent the slab's lifting behavior from the mold. Yes.
[0021]
In FIG. 4, there are two measurement points, the upper thermocouple position and the lower thermocouple position. Although surface defects such as vertical cracks can be detected based on the heat flux fluctuation amount measured at one location, the accuracy of defect detection is higher when measured at two locations. In the case of measurement at two places, the presence / absence of a defect, the size, and the position in the slab length direction are determined based on the one with the larger amplitude of the heat flux fluctuation amount.
[0023]
As described above, in the present invention and the reference embodiment , the heat flux on the inner surface of the mold is estimated from the mold temperature measured by the temperature measuring means embedded between the inner surface of the mold and the water cooling groove, and a breakout or a surface defect is detected. . Hereinafter, a method for obtaining the heat flux and the convective heat transfer amount based on the mold temperature measurement value will be described.
[0024]
The heat flux on the inner surface of the mold is applied to the non-stationary heat transfer equation by applying James. V. BECK's nonlinear inverse heat transfer method [Int. J. Mass s Transfer, vol. 13, pp703-716 (1970)]. From this numerical solution, the heat flux that can best explain the one-point mold temperature measurement value embedded between the mold surface and the water cooling groove is sequentially obtained in time series. In addition, the mold inner surface temperature obtained as a solution of the heat flux and the unsteady heat transfer difference equation is determined simultaneously.
[0025]
FIG. 6 is a conceptual diagram showing heat transfer between the mold inner surface 12 and the mold water cooling groove 13. The heat flux flowing from the molten metal 2 into the mold 11 passes through the mold 11 and is removed by the cooling water w flowing through the mold water cooling groove 13. In order to detect the heat flux, a thermocouple 16 is installed at a position of a vertical distance E from the mold inner surface 12 to the mold water cooling groove.
[0026]
In FIG. 6, considering only the one-dimensional heat transfer in the mold thickness direction, an equation governing the heat transfer from the mold inner surface to the mold water cooling groove is expressed by the following formula.
ρc p ∂T / ∂t = −∂ (λ∂T / ∂x) / ∂x (1)
T (E, t) = Y (t) (2)
λ∂T (F, t) / ∂x = hw (T (F, t) −Tw) (3)
T (x, 0) = T0 (x) (4)
Here, the density of ρ is the template material, c p is the specific heat of the mold material, x is the vertical distance at an arbitrary position from the mold inner surface to the water cooling groove, the vertical distance E from the mold inner surface to mold thermocouple installation point , Y indicates the measured value. F is the vertical distance from the mold inner surface 12 to the mold water cooling groove 13, and hw and Tw are the overall heat transfer coefficient and water temperature for water side cooling, respectively. T0 (x) represents the initial temperature distribution in the vertical direction between the mold inner surface 12 and the mold water cooling groove 13, and is set to room temperature immediately before the start of casting.
[0027]
The square error between the mold temperature T (E, t) and the measured temperature Y (t) at the thermocouple measurement point calculated from the equations (1), (3), and (4) is defined by the following equation (5). Then, the heat flux q (t, 0) ≡λ∂T / ∂xx = 0 where this is minimized is determined from the equation (6).
F (q) = (T (E, t) −Y (t)) 2 (5)
∂F (q) / ∂q = 0 (6)
[0028]
In the above description, the heat flux is obtained for the upper temperature measurement point (the position of the temperature measurement means 16) in FIG. 6, but there are three or more lower temperature measurement points (the position of the temperature 17 in FIG. 1) or measurement points. Even in this case, the heat flux at the measurement point can be obtained in the same manner. The heat flux distribution in the casting direction is obtained by interpolating with the obtained heat flux. The heat flux is a function of the casting direction position and time, and is simply expressed as q m below.
[0029]
Next, the solidified shell thickness, the solidified shell temperature distribution, and the solidified shell surface temperature are determined based on the heat flux.
[0030]
FIG. 7 is a conceptual diagram showing heat transfer in the molten metal. When the molten metal 2 in the molten metal pool is drawn downward from the meniscus 3 at a speed corresponding to the casting speed, it is cooled by the heat flux by the mold 11 to form a solidified shell 5. The x-dimensional one-dimensional unsteady heat transfer calculation of the molten metal 2 is performed using the molten metal temperature in the meniscus 3 as an initial condition and the mold surface heat flux obtained above as a boundary condition. For convenience of calculation, the x direction is opposite to that in FIG. Here, since the thermal inertia of the powder layer is small, it is assumed that the heat transfer in the powder layer between the solidified shell and the mold surface is in a quasi-steady state, and the mold surface heat flux is equal to the solid shell surface heat flux.
C s ρ s ∂T / ∂t meni = ∂ (−λ s ∂T / ∂x) / ∂x (7)
T = T0 where t meni = 0 (8)
−λ s ∂T / ∂x = q m where x = 0 (9)
T = TL where x = δ (10)
−λ s ∂T / ∂x = ρ s L (dδ / dt) where x = 0 (11)
Where t meni is the elapsed time from the meniscus, x is the distance from the mold surface at any position within the solidified shell, δ is the solidified shell thickness, L is the latent heat of solidification, λ s is the thermal conductivity of the solidified shell, and C s is The specific heat of the solidified shell, TL, indicates the solidification temperature.
[0031]
By solving the equations (7) to (11), the temperature distribution in the solidified shell is obtained simultaneously with the thickness of the solidified shell, and the solidified shell surface temperature at an arbitrary position in the casting direction can be determined from the meniscus.
[0032]
Next, a method of estimating the solidified shell surface heat flux and determining the heat flux due to thermal convection (molten metal flow) will be described. As before, we use JVBECK's nonlinear inverse heat transfer method.
[0033]
Considering only one-dimensional heat transfer in the solidified shell thickness direction as shown in FIG. 7, the governing equation can be expressed by the following equation.
ρ s C s ∂T / ∂t = −∂ (λ s ∂T / ∂x) / ∂x (12)
T (0, t) = Y (t) (13)
λ s ∂T (0, t) / ∂t = q m (14)
T (x, 0) = Ti (x) (15)
Here, t represents an arbitrary time and is different from t meni indicating the elapsed time from the meniscus.
[0034]
Assuming a certain solidified shell thickness, the above equations (12) to (15) are solved to obtain the assumed heat flux and temperature on the inner surface of the solidified shell. By setting the solidified shell thickness to an appropriate value, the solidified shell inner surface temperature and the molten metal solidified temperature obtained by calculation can be made to coincide with each other, and the heat flux at this time is the heat flux q on the solidified shell inner surface. m . The heat flux q m is composed of the heat flux caused by the thermal convection of the molten metal, the heat flux that is transferred to the solidified shell by heat conduction, and the amount of heat used as the latent heat of solidification of the molten metal. expressed.
Figure 0004105839
Here, α is a heat transfer coefficient by molten metal convection, Tx is a solidified shell temperature at a distance Δx from the inner surface of the solidified shell, and Tb is a bulk temperature of the molten metal.
From equation (16)
Figure 0004105839
Is the heat flux due to thermal convection.
[0035]
The calculation for obtaining the heat flux and the like is executed by the computer 19 shown in FIG. 1 in accordance with the instructions of the flowchart shown in FIG.
[0036]
In step 1, time t is set to zero, and in step 2, the minute time interval Δt is added to time t to update the time. In step 3, the measured value of the thermocouple installed in the casting direction in the casting direction is read into the computer 19, and in step 4, based on the measured value of the thermocouple read in step 3, the heat flux on the mold surface and the temperature inside the mold Calculate T ms .
[0037]
Specifically, equation (1) is discretized and solved using equation (4) as an initial condition and equations (2) and (3) as boundary conditions. The square error between the mold temperature T (E, t) and the measured temperature Y (t) at the thermocouple measurement point calculated from the equations (1) to (4) is calculated by the following equation (5).
[0038]
As shown in the above equation (6), the assumed heat flux value q 0 is corrected according to the following procedure so that the partial differential coefficient related to the heat flux q of the square error F (q) approaches zero.
[0039]
The mold temperature calculated at the mold temperature measurement point calculated using the assumed heat flux q 0 as the boundary condition is T (E, t) 0, and the mold at the mold temperature measurement point calculated using the corrected heat flux q 1 as the boundary condition. When the temperature calculated value T (E, t) 1 and, T (E, t) become 1 as follows to Taylor expansion with respect Δq≡q 1 -q 0.
T (E, t) 1 = T (E, t) 0+ (∂T (E, t) 0 / ∂q 0)
・ (Q 1 −q 0 ) (18)
Here, the sensitivity coefficient β 0 is defined as follows:
β 0 ≡∂T (E, t) 0 / ∂q 0
= (T (E, t) 1-T (E, t) 0) / εq 0 (19)
Here, ε is a minute value set to search for the optimum value of q, and is set to 0.001, for example. Substituting Equation (18) and Equation (19) into Equation (6) and rearranging with respect to q 1 ,
q 1 = q 0 + (T (E, t) 0−Y (t)) / β 0 (20)
When q 1 is compared with q 0 and the following convergence determination formula is satisfied, q 1 is the heat flux obtained.
(Q 1 -q 0 ) / q 0 <0.001 (21)
[0040]
If the equation (21) is not satisfied, q i is calculated according to the following equation (22) in the same procedure as above with reference to q 1 , and the calculation is repeated until the equation (23) is satisfied. q is determined, and at the same time, the mold inner surface temperature T (0, t) is calculated.
Figure 0004105839
[0041]
In step 5, the solidified shell thickness δ and the solidified shell surface temperature TL are obtained using the equations (7) to (11). At that time, the heat flux value q m used in the equation (9) uses a value in the casting direction extrapolated value of the heat flux value obtained from the thermocouple measurement value by an inverse problem.
[0042]
In step 6, the solidified shell inner surface heat flux is obtained by the equations (12) to (15). At that time, Y (t) in equation (13) uses the slab surface temperature obtained in step S5 at each thermocouple position, and q m in equation (14) represents the mold obtained by solving the inverse problem in step S4. Use internal heat flux values.
[0043]
In step 7, the amount of convective heat transfer caused by the molten metal flow is determined from the equation (17) by the surface heat flux in the solidified shell.
[0044]
In the embodiment of the invention described above, the slab is a slab, but the present invention is not limited to this. For example, the slab may be a billet, a thick plate material, a round bar, or the like, and can also be applied to horizontal continuous casting.
[0045]
【The invention's effect】
In the method of the present invention, the heat flux of the molten metal mold surface or solidified shell surface not only in the steady state but also in the unsteady state is obtained from the mold temperature measurement value arranged between the mold inner surface and the water cooling groove, and the mold surface temperature and the like are estimated. Therefore, the solidification state in the molten metal mold can be clearly detected. As a result, it is possible to detect a casting abnormality in the mold with high accuracy on-line and to manage a casting operation method that can obtain a sound solidified state. Further, it is not necessary to expose the tip of a temperature measuring means such as a thermocouple to the mold surface in order to obtain the mold surface temperature.
[Brief description of the drawings]
FIG. 1 is an apparatus configuration diagram when carrying out a method of the present invention.
FIG. 2 (a) shows a change with time of thermocouple temperature change of a slab where breakout occurred, and FIG. 2 (b) is a diagram showing a change with time of heat flux of the slab.
FIG. 3 (a) shows a change with time of thermocouple temperature change of a slab where vertical cracking occurred, and FIG. 3 (b) is a diagram showing a change with time of heat flux of the slab.
FIG. 4 is a diagram showing the results of wavelet analysis of heat flux for a slab in which vertical cracks have occurred.
FIG. 5 is a diagram showing the results of wavelet analysis of heat flux for a healthy slab.
FIG. 6 is a conceptual diagram showing heat transfer between a mold inner surface and a mold water cooling groove.
FIG. 7 is a conceptual diagram showing heat transfer in molten metal.
FIG. 8 is a calculation flowchart according to the present invention.
[Explanation of symbols]
1: cast slab 2: molten metal 3: meniscus 5: solidified shell 7: molten slag 11: mold 12: mold inner surface 13: water cooling groove 14: flow meter 15: cooling water temperature measuring means 16: first mold temperature measuring means 17: Second mold temperature measuring means 19: Computer

Claims (1)

鋳型に埋設した複数の温度計測手段で鋳型温度を計測し、鋳型温度計測値に基づき鋳型内鋳造異常を検出する方法において、鋳造方向に間隔をおいて鋳型の複数箇所に埋設した温度計測手段で鋳型温度を計測し、鋳型温度計測値に基づいて各計測点における鋳型内面での熱流束を、伝熱逆問題手法を用いて非定常伝熱方程式の数値解よりそれぞれ推定し、前記推定した熱流束の経過時間変化から、鋳型内鋳片の任意の点が2箇所の計測点を通過する経過時間またはその近くで熱流束推定値がそれぞれの計測点についてあらかじめ設定した限界値以下にかつ計測点順に低下したことによりブレークアウト又は縦割れを検出することを特徴とする連続鋳造における鋳型内鋳造異常検出方法。In the method of measuring the mold temperature with a plurality of temperature measuring means embedded in the mold and detecting the casting abnormality in the mold based on the mold temperature measurement value, the temperature measuring means embedded at a plurality of locations in the mold at intervals in the casting direction. the mold temperature is measured, the heat flux in a mold inner surface at each measurement point based on the mold temperature measured value, estimated respectively from numerical solutions of unsteady heat transfer equation using the heat transfer inverse problem techniques, heat flow and the estimated From the change in the elapsed time of the bundle, the estimated heat flux is below the preset limit value for each measurement point at or near the elapsed time when any point of the slab in the mold passes the two measurement points, and the measurement point A method for detecting an abnormality in casting in a mold in continuous casting, wherein breakout or longitudinal crack is detected by decreasing in order.
JP2000051521A 2000-02-28 2000-02-28 In-mold casting abnormality detection method in continuous casting Expired - Fee Related JP4105839B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000051521A JP4105839B2 (en) 2000-02-28 2000-02-28 In-mold casting abnormality detection method in continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000051521A JP4105839B2 (en) 2000-02-28 2000-02-28 In-mold casting abnormality detection method in continuous casting

Publications (2)

Publication Number Publication Date
JP2001239353A JP2001239353A (en) 2001-09-04
JP4105839B2 true JP4105839B2 (en) 2008-06-25

Family

ID=18573166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000051521A Expired - Fee Related JP4105839B2 (en) 2000-02-28 2000-02-28 In-mold casting abnormality detection method in continuous casting

Country Status (1)

Country Link
JP (1) JP4105839B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4041279B2 (en) * 2000-11-10 2008-01-30 新日本製鐵株式会社 In-mold slab state detection device, method, and computer-readable storage medium
JP4074443B2 (en) * 2001-05-18 2008-04-09 新日本製鐵株式会社 In-mold slab condition evaluation apparatus, method, computer program, and computer-readable storage medium
JP3978090B2 (en) * 2002-06-21 2007-09-19 新日本製鐵株式会社 Hot water surface position detection method, computer program, and computer-readable storage medium
JP4579820B2 (en) * 2005-12-19 2010-11-10 新日本製鐵株式会社 Apparatus and method for determining operating state of mold or mold operating surface, method for operating mold or mold, computer program, and computer-readable recording medium
JP5092631B2 (en) * 2007-09-06 2012-12-05 Jfeスチール株式会社 Breakout detection method and apparatus in continuous casting, steel continuous casting method and breakout prevention apparatus using the apparatus
JP5412872B2 (en) * 2008-02-28 2014-02-12 Jfeスチール株式会社 Breakout detection method and apparatus in continuous casting, steel continuous casting method and breakout prevention apparatus using the apparatus
CN106413942B (en) * 2014-01-31 2020-03-10 日本制铁株式会社 Method, device and program for determining casting state of continuous casting
BR112017006891A2 (en) * 2014-10-15 2017-12-12 Nippon Steel & Sumitomo Metal Corp apparatus, method and program for detecting the surface level of cast metal in continuous casting
JP6428419B2 (en) * 2015-03-20 2018-11-28 新日鐵住金株式会社 Method, apparatus and program for controlling flow rate of molten steel in continuous casting mold
JP6428418B2 (en) * 2015-03-20 2018-11-28 新日鐵住金株式会社 Drift detection method and drift control method in continuous casting mold, molten metal level fluctuation detection method and molten metal level fluctuation control method, drift current detection device, molten metal level fluctuation detection device, and program
JP6607215B2 (en) * 2016-03-02 2019-11-20 Jfeスチール株式会社 Flow state estimation method for molten steel, flow state estimation device, on-line display device for flow state of molten steel, and continuous casting method for steel
CN107096899B (en) * 2017-05-17 2018-09-11 安徽工业大学 A kind of crystallizer bleedout prediction electric thermo system that logic-based judges

Also Published As

Publication number Publication date
JP2001239353A (en) 2001-09-04

Similar Documents

Publication Publication Date Title
JP4105839B2 (en) In-mold casting abnormality detection method in continuous casting
JP4579820B2 (en) Apparatus and method for determining operating state of mold or mold operating surface, method for operating mold or mold, computer program, and computer-readable recording medium
JP5387508B2 (en) Continuous casting method, continuous casting control device and program
JP2020011255A (en) Casting state determination device, casting state determination method, and program
Bakken et al. Heat transfer measurements during DC casting of aluminium part i: Measurement technique
JP3230513B2 (en) Method of estimating molten steel flow velocity in continuous casting mold, quality control method in continuous casting of steel, and continuous casting method of steel
JPS6353903B2 (en)
JP4112783B2 (en) Breakout detection method in continuous casting equipment
JP3598078B2 (en) A method for estimating and visualizing a flow velocity vector distribution in a continuous casting mold, and an apparatus therefor.
JPS6353904B2 (en)
JP2000317594A (en) Solidified shell thickness within molten metal casting mold and method for predicting powder inflow thickness
JP6859919B2 (en) Breakout prediction method
JP2020157333A (en) Learning model creation device, slab quality estimation device, learning model creation method, slab quality estimation method, and program
JP3537625B2 (en) Method and apparatus for measuring solidified shell thickness in continuous casting
JP2000317595A (en) Method for predicting surface flaw of continuously cast slab
JP5387507B2 (en) Continuous casting method, continuous casting control device and program
JPH01210160A (en) Method for predicting longitudinal crack in continuous casting
JP3607882B2 (en) Solidified shell thickness, molten steel flow velocity, slab quality sensing method and apparatus throughout the continuous casting mold.
JP5408040B2 (en) Continuous casting method, continuous casting control device and program
JP2000263203A (en) Method for predicting longitudinal crack on continuously cast slab
JP2005007460A (en) Method for detecting surface defect on continuously cast steel billet
JP4828366B2 (en) Longitudinal detection method and continuous casting method based on mold heat flux
JP4501892B2 (en) Method and apparatus for estimating molten metal temperature in continuous casting mold
JP2004291060A (en) Method for detecting transverse distribution of molten steel flow rate in continuous casting mold
JP7135728B2 (en) Slab Quality Estimating Method, Steel Manufacturing Method, Slab Quality Estimating Device, and Program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070724

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070925

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071228

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080325

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080328

R151 Written notification of patent or utility model registration

Ref document number: 4105839

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120404

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140404

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees