JP3607882B2 - Solidified shell thickness, molten steel flow velocity, slab quality sensing method and apparatus throughout the continuous casting mold. - Google Patents

Solidified shell thickness, molten steel flow velocity, slab quality sensing method and apparatus throughout the continuous casting mold. Download PDF

Info

Publication number
JP3607882B2
JP3607882B2 JP2001183765A JP2001183765A JP3607882B2 JP 3607882 B2 JP3607882 B2 JP 3607882B2 JP 2001183765 A JP2001183765 A JP 2001183765A JP 2001183765 A JP2001183765 A JP 2001183765A JP 3607882 B2 JP3607882 B2 JP 3607882B2
Authority
JP
Japan
Prior art keywords
flow velocity
mold
molten steel
vortex
distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001183765A
Other languages
Japanese (ja)
Other versions
JP2002096147A (en
Inventor
義博 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2001183765A priority Critical patent/JP3607882B2/en
Publication of JP2002096147A publication Critical patent/JP2002096147A/en
Application granted granted Critical
Publication of JP3607882B2 publication Critical patent/JP3607882B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Continuous Casting (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、連続鋳造設備における流動凝固シェル厚及び品質のオンライン可視化センシング方法,並びにその装置に関し、詳細には鋳片の品質を判定する連続鋳造設備における鋳型内全域の凝固シェル厚センシング方法,流動凝固シェル厚品質のオンライン可視化センシング方法及びその装置に関する。
【0002】
【従来の技術】
従来より、連続鋳造におけるシェル厚測定方法が提案されている。
この連続鋳造におけるシェル厚測定方法に関する技術は、特開昭63−30162号公報(以下、「先行技術1」という)に信頼性の高いブレークアウト予知を行うため、時系列的に鋳型温度をパターン化し、推移パターンが予め設定したパターンと一致したときにブレークアウトの発生を予知する発明が開示され、特開平1−262050号公報(以下、「先行技術2」という)に溶鋼の偏流の検知を行なうため、鋳型長辺と短辺の左右対称位置の温度差あるいは熱流量差および偏差をもとに溶鋼の偏流を検知する発明が開示されている。
図2は、従来の連続鋳造におけるシェル厚測定方法の図である。 図3は、連続鋳造鋳型における鋳型温度計測方法の図である。図3(a)は連続鋳造の縦断面図で図3(b)の矢視B−B、図3(b)は連続鋳造の横断面図で図3(a)の矢視A−Aである。
【0003】
【発明が解決しようとする課題】
連続鋳造設備における鋳型において、連続鋳造を行う際、浸漬ノズル4から溶鋼2が連続鋳造鋳型1に供給され、溶鋼2は冷却ボックス7が裏に設置された銅製の連続鋳造鋳型1の表面から抜熱されて凝固し、凝固シェル3を形成する。この凝固シェル3はロール6により連続鋳造鋳型1の下方から引き抜かれる。この凝固シェル3の厚さの分布、介在物の分布、気泡の分布は鋳込まれた鋳片の品質に影響する。
このため従来、鋳片品質のモニターのため、鋳型1の冷却銅板内部に熱電対5を設置し、温度を時系列でモニターする技術開発が行われている。
しかしながら、先行技術2に開示された偏流検知方法では流速分布は検知できなかった。また、図2に記載の先行技術1に開示された連続鋳造におけるシェル厚測定方法にあっては、この温度モニターは、熱電対設置位置においてのみ可能であり、熱電対を設置していない点でのモニターは困難であった。
【0004】
すなわち、従来の流動センシング方法では、鋳造方向をX方向、鋳造直角方向をY方向としたときに、熱電対5の設置位置(Xi,Yi)とその点の温度Tiの関数として次式(1)により流速Uの絶対値(スカラー値)|U|が得られた。
【式1】

Figure 0003607882
【0005】
詳しくは、大中逸雄著「コンピュータ伝熱・凝固解析入門」(丸善1985年)336−337頁の記載から容易に得られるように、熱電対温度Ti(℃)、流速の絶対値|U(Xi,Yi)|(メートル毎秒)、熱伝達率h(ワット毎平方メートル毎ケルビン)、冷却水温度Tw(℃)、抜熱量q(ワット毎平方メートル)、代表長さd(メートル)、動粘性係数ν(平方メートル毎秒)、熱伝導率λ(ワット毎メートル毎ケルビン)、ヌッセルト数Nu[−]、レイノルズ数Re[−]、プランドル数Pr[−]には次式(2)の関係があり、式変形で式(1)が得られる。
【式2】
Figure 0003607882
【0006】
これらの式を用いる従来法では熱電対の設置位置5以外では流速Uの絶対値が得られず、また熱電対の設置位置5においても流速の方向を示す流速ベクトルは得られなかった。
また計測点を増加させることは費用がかかり、均一冷却にも影響があるため精度を向上させることは困難であるという問題があった。
本発明は、上記課題に鑑み、連続鋳造設備において、安価で、均一冷却に悪影響を及ぼさないように、既設の熱電対により鋳型内全域の凝固シェル厚分布及び気泡・介在物の拡散分布の推定ができる方法及び装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明者は、連続鋳造設備において、安価で均一冷却に悪影響を及ぼさない装置により鋳型内全域の時系列流動分布推定ができるシェル厚及び気泡・介在物推定方法について鋭意検討を重ねた結果、鋳型に設置した温度計測器から得られた時系列データを用いて、各計測時刻について2点以上の温度計測器設置点近傍の溶鋼流速を計算し、次に各計測点での各当該流速を生じさせる渦としてその渦中心、渦度及び半径を求め、次にその渦が鋳型内全域に形成する流速ベクトル分布を計算し、当該流速ベクトル分布を用いて鋳型内全域の凝固シェル厚分布及び気泡・介在物分布を推定することにより、安価で、均一冷却に悪影響を及ぼさないで鋳型内全域の時系列流動分布推定ができることを見いだした。
【0008】
本発明は以上の知見に基づいてなされたものであって、その要旨とするところは、
(1) 連続鋳造鋳型内長辺に設置した2以上の温度計測器から得られた時系列データを用いて、各計測時刻について温度計測器設置点近傍の溶鋼流速を計算し、次に各計測点での各当該流速を生じさせる渦としてその渦中心、渦度及び半径を求め、次にその渦が鋳型内全域に形成する流速ベクトル分布を計算し、当該流速ベクトル分布を用いて連続鋳造鋳型内全域の凝固シェル厚分布を推定する方法、また、
(2) 連続鋳造鋳型内短辺に設置した2以上の温度計測器から得られた時系列データを用いて、各計測時刻について温度計測器設置点近傍の溶鋼流速を計算し、次に各計測点での各当該流速を生じさせる渦としてその渦中心、渦度及び半径を求め、次にその渦が鋳型内全域に形成する流速ベクトル分布を計算し、当該流速ベクトル分布を用いて連続鋳造鋳型内全域の凝固シェル厚分布を推定する方法、また、
(3) 連続鋳造鋳型内長辺に設置した2以上の温度計測器から得られた時系列データを用いて、各計測時刻について温度計測器設置点近傍の溶鋼流速を計算し、次に各計測点での各当該流速を生じさせる渦としてその渦中心、渦度及び半径を求め、次にその渦が鋳型内全域に形成する流速ベクトル分布を計算し、前記流速ベクトル分布を用いて、各計測時刻について浸漬ノズルからの溶鋼吐出流速を計算し、次に溶鋼のモールド内下降流速を推定することを特徴とする連続鋳造鋳型内全域の溶鋼流速センシング方法、また、
(4) 前記(1)〜(3)の何れか1項に記載の方法で得られた鋳型内全域の流速ベクトル分布を用いて気泡および/又は介在物の拡散分布を計算し、可視化表示する方法、
(5) 連続鋳造鋳型内に設置した2以上の温度計測器と、前記温度計測器から得られた時系列データを用いて温度計測器設置点近傍の溶鋼流速を計算する溶鋼流速演算手段と、各温度計測点での前記溶鋼流速を生じさせる渦としてその渦中心、渦度及び半径を計算する渦演算手段と、前記渦が鋳型内全域に形成する流速ベクトル分布を計算する流速ベクトル演算手段と、前記流速ベクトル分布から鋳型内全域の凝固シェル厚分布を計算する凝固シェル厚演算手段と、出力手段を有することを特徴とする凝固シェル厚センシング装置。
(6) 前記(5)記載の温度計測器、溶鋼流速演算手段、渦演算手段,流速ベクトル演算手段及び出力手段に加え、流速ベクトル分布から気泡及び/又は介在物の拡散分布を計算する気泡介在物拡散演算手段を有することを特徴とする鋳片品質オンライン可視化センシング装置。
(7)連続鋳造鋳型内に設置した2以上の温度計測器と、前記温度計測器から得られた時系列データを用いて温度計測器設置点近傍の溶鋼流速を計算する溶鋼流速演算手段と、各温度計測点での前記溶鋼流速を生じさせる渦としてその渦中心、渦度及び半径を計算する渦演算手段と、前記渦が鋳型内全域に形成する流速ベクトル分布を計算する流速ベクトル演算手段と、前記流速ベクトル分布から溶鋼の鋳型内下降流速を推定する下降流速演算手段と、出力手段を有することを特徴とする溶鋼流速センシング装置。
にある。
【0009】
【発明の実施の形態】
まず、前記(1)に係る発明のうち、連続鋳造設備において鋳型内長辺に設置した2以上の温度計測器から得られた時系列データを用いて、各計測時間で2点以上の温度計測器設置点近傍の溶鋼流速を計算し、次に各計測点での各当該流速を生じさせる渦を求め、次にその渦が鋳型内全域に形成する流速ベクトル分布を計算する方法について図面を見ながら説明する。
図1は、本発明の鋳型内全域の凝固シェル厚センシング方法の流れ図である。図4は、本発明の鋳型長辺に熱電対を設置した場合の鋳型内全域の凝固シェル厚センシング方法の説明図である。
本発明においては、iを熱電対番号とし、半径R(メートル)、渦度Ω(/秒)の渦モデル9が渦中心(Xv,Yv)にあると考え、その渦モデル9の熱電対5の設置位置(Xi,Yi)に誘起する流速ベクトル10の絶対値が、熱電対からの換算流速絶対値(スカラー値)8と等しくなるようにすることで、渦中心(Xv,Yv)、半径R(メートル)、渦度Ω(/秒)を同定し、求められた渦モデル9によって鋳型1内のすべての点に誘起する流速ベクトルを求めることができる。
【0010】
具体的には、各熱電対5の設置位置(Xi,Yi)の流速U(メートル/秒)の絶対値は各点の温度Tiの関数として式(1)で表わされる。
図4(a)はこの分布をイメージにしたものである。図4(a)に示すように、従来の方法では熱電対の設置位置5以外では流速分布が表示されることはない。あるいは図2に従って熱電対データから各点でのシェル厚分布を計算するが、このときも、熱電対設置位置のみのデータのみ得られる。
本発明においては、半径R(メートル)、渦度Ω(/秒)の渦モデル9が渦中心(Xv,Yv)にあると考え、その渦モデル9の熱電対5の設置位置(Xi,Yi)に誘起する流速ベクトル10即ちU(Xi,Yi)=(ui,vi)は、次式(3)で表わされる。
【式3】
Figure 0003607882
具体的には、特開平7−323356号公報記載の式を用いて、渦の鏡像の番号jの総和をΣとした次式(4)を、整理することによって式(3)が得られる。
【式4】
Figure 0003607882
(4)式でjは壁とメニスカスを対称軸としたときの渦の鏡像の番号で、J=1が実像でJ=2〜4が鏡像であり、(Xvj、Yvj)はj番目の像の中心座標(±Xv,±Yv)を示す。また、各渦中心から流速を求める点へのベクトルがy軸となす角をθそのベクトルの絶対値をrとした。
ここで、流速Uの絶対値と流速ベクトル10の成分ui,viが次式(5)を満たすようにすると、変数Xv,Yv,R,Ω4つに対し、熱電対5の設置位置(Xi,Yi)につき1個の方程式が立てられ、原理的には熱電対5の設置位置(Xi,Yi)を4点とることにより、変数Xv,Yv,R,Ωが求まる。
【式5】
Figure 0003607882
これにより渦モデル9の渦中心(Xv,Yv)を同定することができる。
【0011】
つぎに求められた渦モデル9が鋳型1内の任意の点(x,y)に誘起する流速ベクトル(u,v)は、式(4)を用いて次式(6)で求めることができる。
【式6】
Figure 0003607882
この方法において、R,Ωは鋳型内の幾何学的な仮定から別に求まる場合が有り、その場合は、熱電対5の設置位置(Xi,Yi)は2点で可能である。また熱電対5の設置位置(Xi,Yi)が5点以上の場合は、誤差が最小となるように各点での方程式(3)を解くことで渦モデル9の渦中心(Xv,Yv)を同定することができる。
【0012】
次に、前記(2)に係る発明のうち、連続鋳造設備において鋳型内短辺に設置した2以上の温度計測器から得られた時系列データを用いて、各計測時間で2点以上の温度計測器設置点近傍の溶鋼流速を計算し、次に各計測点での各当該流速を生じさせる渦を求め、次にその渦が鋳型内全域に形成する流速ベクトル分布を計算する方法について図面を見ながら説明する。
図8は本発明の鋳型短辺に熱電対を設置した場合の鋳型内全域の凝固シェル厚センシング方法の説明図である。
【0013】
本発明においては、iを熱電対番号とし、半径R(メートル)、渦度Ω(/秒)の渦モデル9が渦中心(Xv,Yv)にあると考え、鋳型長辺幅をWとし、座標の原点をメニスカスの中央に取った場合、当該渦モデル9の熱電対5の設置位置(Xi,±W/2)に誘起する流速ベクトル10の絶対値が、熱電対からの換算流速絶対値(スカラー値)8と等しくなるようにすることで、渦モデル9が渦中心(Xv,Yv)を同定し、求められた渦モデル9が鋳型1内のすべての点に誘起する流速ベクトルを求めることができる。
具体的には、各熱電対5の設置位置(Xi,±W/2)の流速U(メートル/秒)の絶対値は各点の温度Tiの関数として式(1)で表わされる。
従来の方法では熱電対の設置位置5以外では流速分布が表示されることはない。
あるいは図2に従って熱電対データから各点でのシェル厚分布を計算するが、このときも、熱電対設置位置のみのデータのみ得られる。あるいは短辺のみに熱電対が設置されている場合、長辺の流速分布は推定できなかった。本発明においては、半径R(メートル)、渦度Ω(/秒)の渦モデル9が渦中心(X0,Y0)にあると考え、その渦モデル9の熱電対5の設置位置(Xi,±W/2)に誘起する流速ベクトル10即ちU(xi,±W/2)=(ui,vi)は、式(4)に座標(xi,±W/2)を代入することにより次式(12)で表わされる。
【式12】
Figure 0003607882
この式は渦度Ω、渦の半径R、渦の中心座標成分x0、y0を変数とするので、熱電対を短辺の片側に4点以上設置し、それぞれに対して式(12)を作り、連立させて連立方程式を解くことにより求めることができる。つぎに求められた渦モデル9が鋳型1内の任意の点(x,y)に誘起する流速ベクトル(u,v)は、式(4)を用いた式(6)にて求めることができる。
【0014】
上記の何れかの方法で得られた鋳型内全域の流速ベクトル分布を用いて、各計測時間で浸漬ノズルからの溶鋼吐出流速を計算し、次に溶鋼のモールド内下降流速を推定する前記(3)の発明に係る方法について図8を見ながら説明する。
上記の方法で浸漬ノズルからの溶鋼吐出流11より上の流速ベクトル分布を予測することができ、それらを誘引する、浸漬ノズルからの溶鋼吐出流11の流速U0とその下流の流速Ujetを実験的な関係式(13)を用いて推定することができる。
【式13】
Figure 0003607882
ここでLは吐出孔からの吐出流に沿った距離(メートル)、Ujet(L)は距離Lでの流速の絶対値(メートル毎秒)、U0は吐出流速(メートル毎秒)、d0はノズルの直径(メートル)、C1とk、k2、k3,L0は実験的に得られた定数である(C1=6.0、k=−1.0、k2=1.0、k3=1.0、L0=5×d0)。
また溶鋼のモールド内下降流12の流速Udown(メートル毎秒)を実験的な関係式(14)を用いて推定することができる。
【式14】
Figure 0003607882
ここでLは吐出孔からの吐出流に沿った距離(メートル)、Udownは流速の絶対値(メートル毎秒)、C2とm,L1は実験的に得られた定数である(C2=5.0、m=−0.5、L1=5×d0)。また、吐出流に垂直な流速分布u(r)は、吐出孔からの距離L(メートル)の位置での半値幅b(L)を用いて式(15)で表される。
【式15】
Figure 0003607882
吐出孔から壁面に衝突するまでの範囲では、式13で求めたUjetを式16に代入してu(r)を求める。
【式16】
Figure 0003607882
壁面に衝突した後の範囲では、式14で求めたUdownを式17に代入してu(r)を求める。
【式17】
Figure 0003607882
ここでrは吐出孔から吐出流中心に沿った距離Lのある位置から垂直方向の距離(メートル)、u(r)は流速の絶対値(メートル毎秒)、C3、C4、C5は実験的に得られた定数である(C3=0.05,C4=0.7、C5=0.7)。
【0015】
以上で鋳型内だけでなく、鋳型の下部の全域の流速分布も予測することができる。つまり、鋳型の下部の任意の点(x、y)に対し、吐出孔から吐出流中心に沿った距離Lとその位置Lから垂直方向の距離rに(x、y)があるように、かつ、rが最小となるようにLとrを一意に決めることができる。得られたLとrと渦を計算するのに使用したΩとRからU0、Ujet、Udownを求め、最終的に、鋳型の下部の任意の点(x、y)での流速u(r)が得られ、吐出流中心に沿った距離Lの線に沿ってu(r)の単位ベクトルを設定することで流速ベクトルを求めることができる。
更に下降流速を求めた後、鋳型の下部の任意の点(x、y)での流速u(r)をシェル厚分布、介在物分布の式に代入する。
次に、鋳型内の全域の流速ベクトル分布を用いて、論文“Yamada, Y. and Suzuki, N. : Numerical Simulation and Visualization for Fluid Motion with Solidification in Continuous Casting, WCCM−III, Makuhari, pp. 1772−1773 (1994)”や日本機械学会第6回計算力学講演会論文集“山田、鈴木「連続鋳造における流動凝固シミュレーション」pp.360−361(1993)”に書かれているように、凝固開始点であるメニスカスから各点での流速絶対値の関数である凝固成長速度を積分することにより、前記(1)又は(2)の発明に係る鋳型内全域の凝固シェル厚分布を計算することができる。
【0016】
具体的には、任意の点(x,y)においてシェル厚抜熱量q(ワット/平方メートル)、溶融金属温度T∞(℃)、溶融金属の凝固温度Tm(℃)、溶融金属の密度ρ(キログラム/立方メートル)、溶融金属の潜熱L(ジュール/キログラム)、凝固速度V(メートル/秒)、鋳造速度Vc(メートル/秒)、鋳込み方向の計算間隔Δx(メートル)、凝固開始点からの鋳造距離方向への総和Σ(−)に対して次式(7)が成立する。抜熱量q、熱伝達率hは(2)式を用いて任意の点(x,y)における流速から見積ることで、凝固速度V(メートル/秒)が計算され、任意の点(x,y)におけるシェル厚分布δ(x,y)を計算することができる。
【式7】
Figure 0003607882
また、全領域の流速分布が与えられているため、介在物の位置をラグランジュ積分することにより介在物移流を推定することができる。
具体的には、日本流体力学会編、「混相流体の力学」(朝倉書店1991)180頁に記載にある式を変形した次式(8)により、時刻tにおける介在物速度Vp(t)(メートル/秒)、抵抗係数Cd(=24/Re+6/(1+√Re)+0.4:Reはレイノルズ数)、流体との相対速度(u−Vp(t))(メートル/秒)、外力による加速度g(メートル/平方秒)、時間刻みΔ t(秒)に対して介在物の動きXp(t)(メートル)を求めることができる。気泡の動きXp(t)は介在物速度Vp(t)(メートル/秒)の時間積分により求めることができる。
【式8】
Figure 0003607882
【0017】
【実施例】
以下、図1から図5の図面を参照しながら、本発明の実施例について具体的に説明する。図5は本発明の鋳型内全域の凝固シェル厚センシング方法を用いて推定した溶鋼流速ベクトル図である。
連続鋳造設備における内のり幅(長辺)1m、厚さ(短辺)30cm、メニスカス〜鋳型下端までの距離(深さ)60cmの鋳型1において、直径20cm2孔の浸漬ノズル4から溶鋼2が連続鋳造鋳型1に供給され、連続鋳造が行われている。溶鋼2は連続鋳造鋳型1の表面から抜熱され、凝固し凝固シェル3を形成する。この凝固シェル3はロール6により引き抜き速度毎分1mで連続鋳造鋳型1の下方から引き抜かれる。この凝固シェル3の厚さの分布、介在物の分布、気泡の分布は鋳込まれた鋳片の品質に影響する。
このため従来から、鋳片品質のモニターのため、鋳型1の冷却銅板内部に熱電対5を鋳込み面から5cmの深さに両端からそれぞれ10cm,30cm,上端から10cm,30cmの位置に片面8個ずつ設置し、温度を時系列でモニターした。
【0018】
本発明においては、半径R(メートル)、渦度Ω(/秒)の渦モデル9が渦中心(Xv,Yv)にあると考える。 各熱電対5の設置番号i=1〜4として左側の4点について設置位置を次式(9)のように定める。
【式9】
Figure 0003607882
発明の実施の形態の手順に従い、i=1〜4に対し次式(10)を得る。
【式10】
Figure 0003607882
式(10)を変形すると次式(11)を得る。
【式11】
Figure 0003607882
式(11)の4方程式を用いて変数Xv,Yv,R,Ωが求まり、渦モデル9の渦中心(Xv,Yv)が同定される。
【0019】
つぎに求められた渦モデル9が鋳型1内の任意の点(x,y)に誘起する流速ベクトル(u,v)は、式(6)で求めることができる。
この解法で得られた流速ベクトル溶鋼流速ベクトル図を図5に示した。メニスカスから浸漬ノズルの吐出口上端まで0.2mとした。
次に、鋳型内の全域の流速ベクトル分布を用いて鋳型内全域の凝固シェル厚分布、介在物移流をラグランジュ積分により推定した。
凝固シェル厚分布を図6に,介在物分布を図7に示す。
図6において、凝固シェル厚をミリメートル単位で等高線で示した。浸漬ノズル吐出口位置近傍で10mm、メニスカスから0.4mの深さで14mmとほぼ実績に近い値が得られた。
【0020】
また、図7において、表示範囲を図6と同様としたときの介在物分布(介在物分布とは均一に介在物を流入条件として与えた場合の相対的な個数密度割合[−]で、数密度が最大の部分を1とし、0.2刻みで等高線で表示した。
図9に鋳型下部までの鋳型内全域の流速ベクトルの予測計算例を示す。式13から式17までを用いて、流速ベクトルを求めた。
図9(a)は鋳型短辺の中央断面での流速分布を、図9(b)は鋳型長辺の凝固面での流速分布を示す。このように3次元的な流速分布が求まるので広範囲の介在物、気泡の3次元的な挙動を計算することができる。
【0021】
【発明の効果】
本発明により、連続鋳造鋳型内の長辺又は短辺に設置した温度計測器から得られた時系列データを用いて、各計測時刻について2点以上の温度計測器設置点近傍の溶鋼流速を計算し、次に各計測点での各当該流速を生じさせる渦としてその渦中心、渦度及び半径を求め、次にその渦が鋳型内全域に形成する流速ベクトル分布を計算しているため、溶鋼流速ベクトル分布を推定することができ,これにより凝固シェル厚、介在物又は気泡の分布を求めることができる。
【図面の簡単な説明】
【図1】本発明の鋳型内全域の凝固シェル厚センシング方法の流れ説明図である。
【図2】従来の凝固シェル厚センシング方法の流れ説明図である。
【図3】連続鋳造鋳型における鋳型温度計測方法の説明図で、(a)は連続鋳造鋳型短辺中央部断面(図3(b)のB−B断面)、(b)は連続鋳造鋳型長辺断面(図3(a)のA−A断面)である。
【図4】(a)従来の熱電対設置位置における流速分布の計算方法の説明図である。
(b)本発明の鋳型長辺に熱電対を設置した場合の鋳型内全域の流速ベクトル分布計算方法の説明図である。
【図5】本発明の鋳型内全域の凝固シェル厚センシング方法を用いて推定した溶鋼流速ベクトル図である。
【図6】本発明による凝固シェル厚分布の推定例である。
【図7】本発明による介在物分布の推定例である。
【図8】本発明の鋳型短辺に熱電対を設置した場合の鋳型内全域の流速ベクトル分布計算方法の説明図である。
【図9】(a)本発明の鋳型短辺の中央断面での流速分布を示す実施例である。
(b)本発明の鋳型長辺の凝固面での流速分布を示す実施例である。
【符号の簡単な説明】
1 連続鋳造鋳型
2 溶鋼
3 凝固シェル
4 浸漬ノズル
5 熱電対
6 引き抜きロール
7 冷却ボックス
8 熱電対からの換算流速絶対値(スカラー値)
9 渦モデル
10 渦モデルの誘起流速ベクトル
11 浸漬ノズルからの溶鋼吐出流
12 溶鋼のモールド内下降流[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an on-line visualization sensing method for fluidized solidified shell thickness and quality in a continuous casting facility, and an apparatus therefor, and more particularly, to a solidified shell thickness sensing method for a whole area in a mold in a continuous casting facility for determining the quality of a cast piece, The present invention relates to an on-line visualization sensing method and apparatus for solidified shell thickness quality.
[0002]
[Prior art]
Conventionally, a shell thickness measuring method in continuous casting has been proposed.
The technique relating to the shell thickness measurement method in continuous casting is disclosed in Japanese Patent Laid-Open No. 63-30162 (hereinafter referred to as “Prior Art 1”), in order to perform reliable breakout prediction, patterning the mold temperature in time series. An invention is disclosed in which the occurrence of a breakout is predicted when the transition pattern matches a preset pattern. Japanese Patent Application Laid-Open No. 1-262050 (hereinafter referred to as “prior art 2”) detects the drift of molten steel. For this purpose, an invention is disclosed in which a drift of molten steel is detected based on a temperature difference or a heat flow difference and a deviation between left and right positions of the mold long side and the short side.
FIG. 2 is a diagram of a shell thickness measuring method in conventional continuous casting. FIG. 3 is a diagram of a mold temperature measuring method in a continuous casting mold. 3 (a) is a longitudinal sectional view of continuous casting, as seen from the arrow BB in FIG. 3 (b), and FIG. 3 (b) is a transverse sectional view of continuous casting, as seen from the arrow AA in FIG. 3 (a). is there.
[0003]
[Problems to be solved by the invention]
When continuous casting is performed in a mold in a continuous casting facility, molten steel 2 is supplied from the immersion nozzle 4 to the continuous casting mold 1, and the molten steel 2 is extracted from the surface of the continuous casting mold 1 made of copper with the cooling box 7 installed on the back. It is heated and solidified to form a solidified shell 3. The solidified shell 3 is pulled out from below the continuous casting mold 1 by a roll 6. The thickness distribution, inclusion distribution, and bubble distribution of the solidified shell 3 affect the quality of the cast slab.
For this reason, in order to monitor the quality of the slab, conventionally, a technology has been developed in which a thermocouple 5 is installed inside the cooling copper plate of the mold 1 and the temperature is monitored in time series.
However, the flow velocity distribution cannot be detected by the drift detection method disclosed in Prior Art 2. Further, in the shell thickness measuring method in continuous casting disclosed in Prior Art 1 shown in FIG. 2, this temperature monitor can be performed only at the thermocouple installation position, and no thermocouple is installed. Monitoring was difficult.
[0004]
That is, in the conventional flow sensing method, when the casting direction is the X direction and the casting perpendicular direction is the Y direction, the following equation (1) is obtained as a function of the installation position (Xi, Yi) of the thermocouple 5 and the temperature Ti at that point. ) Obtained the absolute value (scalar value) | U | of the flow velocity U.
[Formula 1]
Figure 0003607882
[0005]
For details, as can be easily obtained from the description of “Introduction to Computer Heat Transfer and Solidification Analysis” written by Itsuo Ohnaka (Maruzen 1985), pages 336 to 337, the thermocouple temperature Ti (° C.) and the absolute value of the flow velocity | U ( Xi, Yi) | (meter per second), heat transfer coefficient h (watt per square meter per kelvin), cooling water temperature Tw (° C.), heat removal q (watt per square meter), representative length d (meter), kinematic viscosity coefficient ν (square meter per second), thermal conductivity λ (watt per meter Kelvin), Nusselt number Nu [−], Reynolds number Re [−], and Plandle number Pr [−] have the following relationship (2). Formula (1) is obtained by formula modification.
[Formula 2]
Figure 0003607882
[0006]
In the conventional method using these equations, the absolute value of the flow velocity U cannot be obtained except at the thermocouple installation position 5, and the flow velocity vector indicating the direction of the flow velocity cannot be obtained even at the thermocouple installation position 5.
In addition, increasing the number of measurement points is expensive, and there is a problem that it is difficult to improve accuracy because it affects uniform cooling.
In view of the above-mentioned problems, the present invention is an estimation of the solidified shell thickness distribution and the diffusion distribution of bubbles and inclusions in the entire area of the mold by using existing thermocouples so as not to adversely affect uniform cooling in a continuous casting facility. It is an object of the present invention to provide a method and apparatus capable of performing the above.
[0007]
[Means for Solving the Problems]
As a result of earnestly examining the shell thickness and bubble / inclusion estimation method capable of estimating the time-series flow distribution in the entire area of the mold by an inexpensive apparatus that does not adversely affect uniform cooling in a continuous casting facility, Using the time-series data obtained from the temperature measuring instrument installed in, calculate the molten steel flow velocity in the vicinity of two or more temperature measuring instrument installation points for each measurement time , and then generate each flow velocity at each measurement point. Obtain the vortex center, vorticity, and radius as the vortex to be generated, and then calculate the flow velocity vector distribution formed by the vortex over the entire area of the mold. By estimating the inclusion distribution, we found that it is cheap and can estimate the time-series flow distribution throughout the mold without adversely affecting uniform cooling.
[0008]
The present invention has been made based on the above knowledge, and the gist thereof is as follows.
(1) Using the time series data obtained from two or more temperature measuring instruments installed on the long side of the continuous casting mold, calculate the molten steel flow velocity near the temperature measuring instrument installation point at each measurement time , and then measure each The vortex center, vorticity, and radius are obtained as the vortex that generates each flow velocity at the point, then the flow velocity vector distribution formed by the vortex over the entire area of the mold is calculated, and the continuous casting mold is calculated using the flow velocity vector distribution. A method for estimating the thickness distribution of the solidified shell in the entire area, and
(2) Using the time series data obtained from two or more temperature measuring instruments installed on the short side of the continuous casting mold, calculate the molten steel flow velocity near the temperature measuring instrument installation point for each measurement time , and then measure each The vortex center, vorticity, and radius are obtained as the vortex that generates each flow velocity at the point, then the flow velocity vector distribution formed by the vortex over the entire area of the mold is calculated, and the continuous casting mold is calculated using the flow velocity vector distribution. A method for estimating the thickness distribution of the solidified shell in the entire area, and
(3) Using the time series data obtained from two or more temperature measuring instruments installed on the long side of the continuous casting mold, calculate the molten steel flow velocity near the temperature measuring instrument installation point at each measurement time , and then measure each The vortex center, vorticity, and radius are obtained as vortices that generate each flow velocity at a point, and then the flow velocity vector distribution that the vortex forms throughout the mold is calculated, and each measurement is performed using the flow velocity vector distribution. Calculate the molten steel discharge flow rate from the immersion nozzle with respect to the time , and then estimate the descending flow velocity of the molten steel in the mold, and the molten steel flow velocity sensing method throughout the continuous casting mold,
(4) Using the flow velocity vector distribution in the entire mold area obtained by the method according to any one of (1) to (3) above, the diffusion distribution of bubbles and / or inclusions is calculated and displayed visually. Method,
(5) Two or more temperature measuring instruments installed in the continuous casting mold, and a molten steel flow rate calculating means for calculating a molten steel flow velocity in the vicinity of the temperature measuring instrument using the time series data obtained from the temperature measuring instrument, Vortex calculation means for calculating the vortex center, vorticity, and radius as vortices that generate the molten steel flow velocity at each temperature measurement point ; and flow velocity vector calculation means for calculating the flow velocity vector distribution formed by the vortex over the entire area of the mold. A solidified shell thickness sensing device comprising solidified shell thickness calculating means for calculating a solidified shell thickness distribution in the entire area of the mold from the flow velocity vector distribution, and an output means.
(6) In addition to the temperature measuring device, molten steel flow velocity calculation means, vortex calculation means, flow velocity vector calculation means, and output means described in (5) above, bubble inclusion that calculates the diffusion distribution of bubbles and / or inclusions from the flow velocity vector distribution A slab quality online visualization sensing device characterized by having an object diffusion calculation means.
(7) Two or more temperature measuring devices installed in the continuous casting mold, and a molten steel flow rate calculating means for calculating a molten steel flow velocity near the temperature measuring device installation point using time series data obtained from the temperature measuring device, Vortex calculation means for calculating the vortex center, vorticity, and radius as vortices that generate the molten steel flow velocity at each temperature measurement point ; and flow velocity vector calculation means for calculating the flow velocity vector distribution formed by the vortex over the entire area of the mold. A molten steel flow rate sensing device comprising a descending flow rate calculating means for estimating a descending flow velocity of molten steel in the mold from the flow velocity vector distribution, and an output means.
It is in.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
First, in the invention according to (1), two or more temperature measurements are made at each measurement time using time series data obtained from two or more temperature measuring instruments installed on the long side of the mold in a continuous casting facility. Calculate the molten steel flow velocity in the vicinity of the vessel installation point, then find the vortex that generates each flow velocity at each measurement point, and then calculate the flow velocity vector distribution that the vortex forms throughout the mold. While explaining.
FIG. 1 is a flowchart of a method for sensing a solidified shell thickness over the entire area of a mold according to the present invention. FIG. 4 is an explanatory diagram of a solidification shell thickness sensing method for the entire area in the mold when a thermocouple is installed on the long side of the mold of the present invention.
In the present invention, i is a thermocouple number, and a vortex model 9 having a radius R (meter) and a vorticity Ω (/ second) is considered to be at the vortex center (Xv, Yv). By making the absolute value of the flow velocity vector 10 induced at the installation position (Xi, Yi) equal to the converted flow velocity absolute value (scalar value) 8 from the thermocouple, the vortex center (Xv, Yv), radius R (m), vorticity Ω identified (/ sec), the flow velocity vector induced by eddy model 9 obtained in all points of the mold 1 can be obtained.
[0010]
Specifically, the absolute value of the flow velocity U (meter / second) at the installation position (Xi, Yi) of each thermocouple 5 is expressed by equation (1) as a function of the temperature Ti at each point.
FIG. 4A shows this distribution as an image. As shown in FIG. 4A, the flow velocity distribution is not displayed except for the thermocouple installation position 5 in the conventional method. Alternatively, the shell thickness distribution at each point is calculated from the thermocouple data according to FIG. 2, but at this time, only the data of only the thermocouple installation position is obtained.
In the present invention, the vortex model 9 having a radius R (meter) and a vorticity Ω (/ second) is considered to be at the vortex center (Xv, Yv), and the position (Xi, Yi) of the thermocouple 5 of the vortex model 9 is considered. ) Induced flow velocity vector 10, that is, U (Xi, Yi) = (ui, vi) is expressed by the following equation (3).
[Formula 3]
Figure 0003607882
Specifically, Formula (3) is obtained by rearranging the following Formula (4) where Σ is the sum of the mirror image numbers j of the vortex using the formula described in JP-A-7-323356.
[Formula 4]
Figure 0003607882
In Equation (4), j is the mirror image number of the vortex when the wall and meniscus are the symmetry axes, J = 1 is a real image, J = 2 to 4 are mirror images, and (X vj , Y vj ) is the jth The center coordinates (± Xv, ± Yv) of the image are shown. Further, the angle between the vector from the center of each vortex to the point at which the flow velocity is obtained and the y axis is θ j and the absolute value of the vector is r j .
Here, when the absolute value of the flow velocity U and the components ui, vi of the flow velocity vector 10 satisfy the following expression (5), the installation position (Xi, V) of the four variables Xv, Yv, R, Ω is set. One equation is established for Yi), and in principle, the variables Xv, Yv, R, and Ω are obtained by setting the installation positions (Xi, Yi) of the thermocouple 5 to four points.
[Formula 5]
Figure 0003607882
Thereby, the vortex center (Xv, Yv) of the vortex model 9 can be identified.
[0011]
Next, the flow velocity vector (u, v) induced by the vortex model 9 obtained at an arbitrary point (x, y) in the mold 1 can be obtained by the following equation (6) using the equation (4). .
[Formula 6]
Figure 0003607882
In this method, R and Ω may be obtained separately from geometric assumptions in the mold, and in that case, the installation position (Xi, Yi) of the thermocouple 5 is possible at two points. When the installation position (Xi, Yi) of the thermocouple 5 is 5 or more, the vortex center (Xv, Yv) of the vortex model 9 is solved by solving the equation (3) at each point so that the error is minimized. Can be identified.
[0012]
Next, in the invention according to (2), two or more temperatures are measured at each measurement time using time series data obtained from two or more temperature measuring instruments installed on the short side in the mold in the continuous casting facility. Calculate the molten steel flow velocity in the vicinity of the measuring instrument installation point, then find the vortex that generates each flow velocity at each measurement point, and then calculate the flow velocity vector distribution that the vortex forms throughout the mold. Explain while watching.
FIG. 8 is an explanatory diagram of a solidification shell thickness sensing method for the entire area in the mold when a thermocouple is installed on the short side of the mold of the present invention.
[0013]
In the present invention, i is a thermocouple number, a vortex model 9 having a radius R (meter) and a vorticity Ω (/ second) is assumed to be at the vortex center (Xv, Yv), and the mold long side width is W. When the origin of the coordinates is taken at the center of the meniscus, the absolute value of the flow velocity vector 10 induced at the installation position (Xi, ± W / 2) of the thermocouple 5 of the vortex model 9 is the absolute value of the converted flow velocity from the thermocouple. By making it equal to (scalar value) 8, the vortex model 9 identifies the vortex center (Xv, Yv), and the flow velocity vector induced by the obtained vortex model 9 at all points in the mold 1 is obtained. be able to.
Specifically, the absolute value of the flow velocity U (meter / second) at the installation position (Xi, ± W / 2) of each thermocouple 5 is expressed by equation (1) as a function of the temperature Ti at each point.
In the conventional method, the flow velocity distribution is not displayed except for the installation position 5 of the thermocouple.
Alternatively, the shell thickness distribution at each point is calculated from the thermocouple data according to FIG. 2, but at this time, only the data of only the thermocouple installation position is obtained. Or when the thermocouple was installed only in the short side, the flow velocity distribution of the long side could not be estimated. In the present invention, the vortex model 9 having a radius R (meter) and a vorticity Ω (/ second) is considered to be at the vortex center (X0, Y0), and the position (Xi, ±) of the thermocouple 5 of the vortex model 9 is considered. The flow velocity vector 10 induced in W / 2), that is, U (xi, ± W / 2) = (ui, vi) is obtained by substituting the coordinates (xi, ± W / 2) into the equation (4) as follows: 12).
[Formula 12]
Figure 0003607882
This equation uses vorticity Ω, vortex radius R, and vortex center coordinate components x0, y0 as variables, so install four or more thermocouples on one side of the short side, and create equation (12) for each. , And can be obtained by solving simultaneous equations. Next, the flow velocity vector (u, v) induced by the vortex model 9 obtained at an arbitrary point (x, y) in the mold 1 can be obtained by Expression (6) using Expression (4). .
[0014]
Using the flow velocity vector distribution in the entire mold area obtained by any of the above methods, the molten steel discharge flow velocity from the immersion nozzle is calculated at each measurement time, and then the molten steel descent velocity in the mold is estimated (3 ) Will be described with reference to FIG.
The flow velocity vector distribution above the molten steel discharge flow 11 from the immersion nozzle can be predicted by the above method, and the flow velocity U0 of the molten steel discharge flow 11 from the immersion nozzle and the downstream flow velocity Ujet are experimentally induced. It can be estimated using the following relational expression (13).
[Formula 13]
Figure 0003607882
Here, L is the distance (meter) along the discharge flow from the discharge hole, Ujet (L) is the absolute value of the flow velocity at the distance L (meter per second), U0 is the discharge flow velocity (meter per second), and d0 is the nozzle diameter. (Meter), C1 and k, k2, k3, L0 are experimentally obtained constants (C1 = 6.0, k = −1.0, k2 = 1.0, k3 = 1.0, L0). = 5 × d0).
Further, the flow velocity Udown (meter per second) of the molten steel descending flow 12 can be estimated using the experimental relational expression (14).
[Formula 14]
Figure 0003607882
Here, L is the distance (meter) along the discharge flow from the discharge hole, Udown is the absolute value of the flow velocity (meter per second), and C2, m, and L1 are experimentally obtained constants (C2 = 5.0). M = −0.5, L1 = 5 × d0). Further, the flow velocity distribution u (r) perpendicular to the discharge flow is expressed by Expression (15) using the half width b (L) at the position of the distance L (meter) from the discharge hole.
[Formula 15]
Figure 0003607882
In the range from the discharge hole to the collision with the wall surface, u (r) is obtained by substituting Ujet obtained by Equation 13 into Equation 16.
[Formula 16]
Figure 0003607882
In the range after colliding with the wall surface, U (r) is obtained by substituting Udown obtained by Equation 14 into Equation 17.
[Formula 17]
Figure 0003607882
Here, r is a distance (meter) in the vertical direction from a position having a distance L along the discharge flow center from the discharge hole, u (r) is an absolute value of the flow velocity (meter per second), and C3, C4, and C5 are experimentally measured. The obtained constants (C3 = 0.05, C4 = 0.7, C5 = 0.7).
[0015]
Thus, the flow velocity distribution not only in the mold but also in the entire area below the mold can be predicted. That is, with respect to an arbitrary point (x, y) at the bottom of the mold, there is a distance L along the discharge flow center from the discharge hole and a distance r in the vertical direction from the position L (x, y), and , R can be uniquely determined so that r is minimized. U0, Ujet, Udown are obtained from Ω and R used to calculate the obtained L, r, and vortex, and finally the flow velocity u (r) at an arbitrary point (x, y) at the bottom of the mold Is obtained, and a flow velocity vector can be obtained by setting a unit vector of u (r) along a line of a distance L along the discharge flow center.
Further, after obtaining the descending flow velocity, the flow velocity u (r) at an arbitrary point (x, y) at the lower part of the mold is substituted into the shell thickness distribution and inclusion distribution expressions.
Next, using the flow velocity vector distribution in the entire area of the mold, the paper “Yamada, Y. and Suzuki, N .: Numerical Simulation and Visualization for Fluid Motion with Solid Custody in Citizen. 1773 (1994) ”and the 6th Annual Meeting of the Japan Society of Mechanical Engineers,“ Yamada, Suzuki “Flow Solidification Simulation in Continuous Casting” pp. 360-361 (1993) ", by integrating the solidification growth rate, which is a function of the absolute velocity value at each point, from the meniscus as the solidification start point, the above (1) or (2) It is possible to calculate the solidified shell thickness distribution over the entire area of the mold according to the invention.
[0016]
Specifically, at any point (x, y), the shell heat removal q (watts / square meter), the molten metal temperature T∞ (° C.), the solidification temperature Tm (° C.) of the molten metal, and the density ρ ( Kilogram / cubic meter), latent heat L of molten metal (joule / kilogram), solidification speed V (meter / second), casting speed Vc (meter / second), calculation interval Δx (meter) in casting direction, casting from solidification start point The following equation (7) is established for the sum Σ (−) in the distance direction. The amount of heat removal q and the heat transfer coefficient h are estimated from the flow velocity at an arbitrary point (x, y) using the equation (2), and the solidification velocity V (meter / second) is calculated, and the arbitrary point (x, y The shell thickness distribution δ (x, y) at) can be calculated.
[Formula 7]
Figure 0003607882
In addition, since the flow velocity distribution of the entire region is given, inclusion advection can be estimated by Lagrangian integration of the inclusion position.
Specifically, the inclusion velocity Vp (t) at time t is expressed by the following equation (8), which is a modification of the equation described in the page of the Fluid Dynamics Society of Japan, “Dynamics of Multiphase Fluids” (Asakura Shoten 1991), page 180. Meter / second), resistance coefficient Cd (= 24 / Re + 6 / (1 + √Re) +0.4: Re is Reynolds number), relative velocity with fluid (u−Vp (t)) (meter / second), depending on external force The movement Xp (t) (meter) of the inclusion can be obtained with respect to the acceleration g (meter / square second) and the time step Δt (second). The bubble movement Xp (t) can be obtained by time integration of the inclusion velocity Vp (t) (meter / second).
[Formula 8]
Figure 0003607882
[0017]
【Example】
Hereinafter, embodiments of the present invention will be specifically described with reference to FIGS. 1 to 5. FIG. 5 is a molten steel flow velocity vector diagram estimated using the solidification shell thickness sensing method for the entire area in the mold of the present invention.
In a casting mold 1 having an inner width (long side) of 1 m, a thickness (short side) of 30 cm, and a distance (depth) from the meniscus to the lower end of the mold of 60 cm in continuous casting equipment, the molten steel 2 is continuously cast from an immersion nozzle 4 having a diameter of 20 cm 2 holes. It is supplied to the mold 1 and continuous casting is performed. The molten steel 2 is extracted from the surface of the continuous casting mold 1 and solidifies to form a solidified shell 3. The solidified shell 3 is drawn from below the continuous casting mold 1 by a roll 6 at a drawing speed of 1 m / min. The thickness distribution, inclusion distribution, and bubble distribution of the solidified shell 3 affect the quality of the cast slab.
For this reason, in order to monitor the quality of the slab, conventionally, 8 thermocouples 5 are placed inside the cooling copper plate of the mold 1 at a depth of 5 cm from the casting surface, 10 cm and 30 cm from both ends, and 10 cm and 30 cm from the top, respectively. Each was installed and the temperature was monitored over time.
[0018]
In the present invention, the vortex model 9 having a radius R (meter) and a vorticity Ω (/ second) is considered to be at the vortex center (Xv, Yv). As the installation numbers i = 1 to 4 of the thermocouples 5, the installation positions of the left four points are determined as in the following equation (9).
[Formula 9]
Figure 0003607882
The following formula (10) is obtained for i = 1 to 4 according to the procedure of the embodiment of the invention.
[Formula 10]
Figure 0003607882
When the equation (10) is transformed, the following equation (11) is obtained.
[Formula 11]
Figure 0003607882
Variables Xv, Yv, R, and Ω are obtained using the four equations of Expression (11), and the vortex center (Xv, Yv) of the vortex model 9 is identified.
[0019]
Next, the flow velocity vector (u, v) induced by the vortex model 9 obtained at an arbitrary point (x, y) in the mold 1 can be obtained by Expression (6).
The flow velocity vector molten steel flow velocity vector diagram obtained by this solution is shown in FIG. The distance from the meniscus to the upper end of the discharge nozzle was 0.2 m.
Next, the solidified shell thickness distribution and inclusion advection over the entire area of the mold were estimated by Lagrange integration using the flow velocity vector distribution over the entire area of the mold.
The solidified shell thickness distribution is shown in FIG. 6, and the inclusion distribution is shown in FIG.
In FIG. 6, the thickness of the solidified shell is indicated by contour lines in millimeters. 10 mm in the vicinity of the submerged nozzle discharge port position and 14 mm at a depth of 0.4 m from the meniscus, a value almost similar to the actual result was obtained.
[0020]
Further, in FIG. 7, the inclusion distribution when the display range is the same as in FIG. 6 (the inclusion distribution is a relative number density ratio [−] when inclusions are uniformly given as an inflow condition, The portion with the highest density was set to 1, and displayed with contour lines in increments of 0.2.
FIG. 9 shows an example of prediction calculation of the flow velocity vector in the entire mold area up to the lower part of the mold. A flow velocity vector was obtained using Equations 13 to 17.
FIG. 9A shows the flow velocity distribution in the central section of the mold short side, and FIG. 9B shows the flow velocity distribution in the solidified surface of the mold long side. Thus, since the three-dimensional flow velocity distribution is obtained, the three-dimensional behavior of a wide range of inclusions and bubbles can be calculated.
[0021]
【The invention's effect】
According to the present invention, using the time series data obtained from the temperature measuring instrument installed on the long side or the short side in the continuous casting mold, the molten steel flow velocity in the vicinity of two or more temperature measuring instrument installation points is calculated for each measurement time. Next , the vortex center, vorticity, and radius are obtained as the vortex that generates each flow velocity at each measurement point, and then the flow velocity vector distribution that the vortex forms throughout the mold is calculated. The velocity vector distribution can be estimated, whereby the solidified shell thickness, inclusions or bubble distribution can be determined.
[Brief description of the drawings]
FIG. 1 is a flow explanatory diagram of a solidified shell thickness sensing method for the entire area in a mold according to the present invention.
FIG. 2 is a flow explanatory diagram of a conventional solidified shell thickness sensing method.
FIGS. 3A and 3B are explanatory diagrams of a mold temperature measuring method in a continuous casting mold, where FIG. 3A is a cross section of the central portion of the short side of the continuous casting mold (BB cross section in FIG. 3B), and FIG. It is a side cross section (AA cross section of Fig.3 (a)).
FIG. 4A is an explanatory diagram of a conventional method for calculating a flow velocity distribution at a thermocouple installation position.
(B) It is explanatory drawing of the flow velocity vector distribution calculation method of the whole region in a casting_mold | template at the time of installing a thermocouple in the casting_mold | template long side of this invention.
FIG. 5 is a molten steel flow velocity vector diagram estimated using the solidification shell thickness sensing method for the entire area in the mold of the present invention.
FIG. 6 is an estimation example of a solidified shell thickness distribution according to the present invention.
FIG. 7 is an example of inclusion distribution estimation according to the present invention.
FIG. 8 is an explanatory diagram of a flow velocity vector distribution calculation method for the entire area in the mold when a thermocouple is installed on the short side of the mold of the present invention.
FIG. 9 (a) is an example showing the flow velocity distribution in the central section of the short side of the mold of the present invention.
(B) It is an Example which shows the flow-velocity distribution in the solidification surface of the casting_mold | template long side of this invention.
[Brief description of symbols]
1 Continuous casting mold 2 Molten steel 3 Solidified shell 4 Immersion nozzle 5 Thermocouple 6 Drawing roll 7 Cooling box 8 Converted flow velocity absolute value from the thermocouple (scalar value)
9 Vortex model 10 Vortex model induced velocity vector 11 Molten steel discharge flow from immersion nozzle 12 Downflow of molten steel in mold

Claims (7)

連続鋳造鋳型内長辺に設置した2以上の温度計測器から得られた時系列データを用いて、各計測時刻について温度計測器設置点近傍の溶鋼流速を計算し、次に各計測点での各当該流速を生じさせる渦としてその渦中心、渦度及び半径を求め、次にその渦が鋳型内全域に形成する流速ベクトル分布を計算し、当該流速ベクトル分布を用いて鋳型内全域の凝固シェル厚分布を推定することを特徴とする連続鋳造鋳型内全域の凝固シェル厚センシング方法。Using the time series data obtained from two or more temperature measuring instruments installed in the long side of the continuous casting mold, the molten steel flow velocity near the temperature measuring instrument installation point is calculated for each measurement time , and then at each measurement point The vortex center, vorticity, and radius are obtained as vortices that generate each flow velocity, and then the flow velocity vector distribution that the vortex forms in the entire area of the mold is calculated. A method for sensing the thickness of a solidified shell throughout the continuous casting mold, wherein the thickness distribution is estimated. 連続鋳造鋳型内短辺に設置した2以上の温度計測器から得られた時系列データを用いて、各計測時刻について温度計測器設置点近傍の溶鋼流速を計算し、次に各計測点での各当該流速を生じさせる渦としてその渦中心、渦度及び半径を求め、次にその渦が鋳型内全域に形成する流速ベクトル分布を計算し、当該流速ベクトル分布を用いて鋳型内全域の凝固シェル厚分布を推定することを特徴とする連続鋳造鋳型内全域の凝固シェル厚センシング方法。Using the time-series data obtained from two or more temperature measuring instruments installed on the short side of the continuous casting mold, the molten steel flow velocity near the temperature measuring instrument installation point is calculated for each measurement time , and then at each measurement point The vortex center, vorticity, and radius are obtained as vortices that generate each flow velocity, and then the flow velocity vector distribution that the vortex forms in the entire area of the mold is calculated. A method for sensing the thickness of a solidified shell throughout the continuous casting mold, wherein the thickness distribution is estimated. 連続鋳造鋳型内に設置した2以上の温度計測器から得られた時系列データを用いて、各計測時刻について温度計測器設置点近傍の溶鋼流速を計算し、次に各計測点での各当該流速を生じさせる渦としてその渦中心、渦度及び半径を求め、次にその渦が鋳型内全域に形成する流速ベクトル分布を計算し、当該流速ベクトル分布を用いて、各計測時刻について浸漬ノズルからの溶鋼吐出流速を計算し、次に溶鋼の鋳型内下降流速を推定することを特徴とする連続鋳造鋳型内全域の溶鋼流速センシング方法。Using the time series data obtained from two or more temperature measuring instruments installed in the continuous casting mold, the molten steel flow velocity near the temperature measuring instrument installation point is calculated for each measurement time, The vortex center, vorticity, and radius are obtained as the vortex that generates the flow velocity, and then the flow velocity vector distribution that the vortex forms in the entire area of the mold is calculated, and from the immersion nozzle at each measurement time using the flow velocity vector distribution. A method for sensing the molten steel flow velocity in the entire area of the continuous casting mold, wherein the molten steel discharge flow velocity is calculated and then the descending flow velocity of the molten steel in the mold is estimated. 請求項1〜3の何れか1項に記載の方法で得られた鋳型内全域の流速ベクトル分布を用いて気泡および/又は介在物の拡散分布を計算し、可視化表示することを特徴とする連続鋳型内全域の鋳片品質オンライン可視化センシング方法。A continuous distribution characterized by calculating and visualizing and displaying the diffusion distribution of bubbles and / or inclusions using the flow velocity vector distribution in the entire area of the mold obtained by the method according to any one of claims 1 to 3. Online visual sensing method for slab quality throughout the mold. 連続鋳造鋳型内に設置した2以上の温度計測器と、
前記温度計測器から得られた時系列データを用いて温度計測器設置点近傍の溶鋼流速を計算する溶鋼流速演算手段と、
各温度計測点での前記溶鋼流速を生じさせる渦としてその渦中心、渦度及び半径を計算する渦演算手段と、
前記渦が鋳型内全域に形成する流速ベクトル分布を計算する流速ベクトル演算手段と、
前記流速ベクトル分布から鋳型内全域の凝固シェル厚分布を計算する凝固シェル厚演算手段と、出力手段を有することを特徴とする凝固シェル厚センシング装置。
Two or more temperature measuring instruments installed in a continuous casting mold,
A molten steel flow rate calculating means for calculating a molten steel flow velocity in the vicinity of the temperature measuring instrument installation point using time series data obtained from the temperature measuring instrument,
Vortex calculation means for calculating the vortex center, vorticity and radius as a vortex causing the molten steel flow velocity at each temperature measurement point;
A flow velocity vector calculating means for calculating a flow velocity vector distribution formed by the vortex over the entire area of the mold;
A solidified shell thickness sensing device comprising solidified shell thickness calculation means for calculating a solidified shell thickness distribution in the entire mold from the flow velocity vector distribution, and an output means.
請求項5記載の温度計測器、溶鋼流速演算手段、渦演算手段,流速ベクトル演算手段及び出力手段に加え、
流速ベクトル分布から気泡及び/又は介在物の拡散分布を計算する気泡介在物拡散演算手段を有することを特徴とする鋳片品質オンライン可視化センシング装置。
In addition to the temperature measuring device according to claim 5, molten steel flow velocity calculating means, vortex calculating means, flow velocity vector calculating means and output means,
A slab quality online visualization sensing device comprising bubble inclusion diffusion calculation means for calculating a bubble and / or inclusion diffusion distribution from a flow velocity vector distribution.
連続鋳造鋳型内に設置した2以上の温度計測器と、前記温度計測器から得られた時系列データを用いて温度計測器設置点近傍の溶鋼流速を計算する溶鋼流速演算手段と、各温度計測点での前記溶鋼流速を生じさせる渦としてその渦中心、渦度及び半径を計算する渦演算手段と、前記渦が鋳型内全域に形成する流速ベクトル分布を計算する流速ベクトル演算手段と、前記流速ベクトル分布から溶鋼の鋳型内下降流速を推定する下降流速演算手段を有することを特徴とする溶鋼流速センシング装置。Two or more temperature measuring devices installed in a continuous casting mold, a molten steel flow velocity calculating means for calculating a molten steel flow velocity near the temperature measuring device using time series data obtained from the temperature measuring device, and each temperature measurement Vortex calculation means for calculating the vortex center, vorticity, and radius as vortices that generate the molten steel flow velocity at a point, flow velocity vector calculation means for calculating a flow velocity vector distribution formed by the vortex in the entire mold area, and the flow velocity A molten steel flow rate sensing device comprising a descending flow rate calculating means for estimating a descending flow rate of molten steel in a mold from a vector distribution.
JP2001183765A 2000-07-19 2001-06-18 Solidified shell thickness, molten steel flow velocity, slab quality sensing method and apparatus throughout the continuous casting mold. Expired - Fee Related JP3607882B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001183765A JP3607882B2 (en) 2000-07-19 2001-06-18 Solidified shell thickness, molten steel flow velocity, slab quality sensing method and apparatus throughout the continuous casting mold.

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000-219607 2000-07-19
JP2000219607 2000-07-19
JP2001183765A JP3607882B2 (en) 2000-07-19 2001-06-18 Solidified shell thickness, molten steel flow velocity, slab quality sensing method and apparatus throughout the continuous casting mold.

Publications (2)

Publication Number Publication Date
JP2002096147A JP2002096147A (en) 2002-04-02
JP3607882B2 true JP3607882B2 (en) 2005-01-05

Family

ID=26596352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001183765A Expired - Fee Related JP3607882B2 (en) 2000-07-19 2001-06-18 Solidified shell thickness, molten steel flow velocity, slab quality sensing method and apparatus throughout the continuous casting mold.

Country Status (1)

Country Link
JP (1) JP3607882B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6607215B2 (en) * 2016-03-02 2019-11-20 Jfeスチール株式会社 Flow state estimation method for molten steel, flow state estimation device, on-line display device for flow state of molten steel, and continuous casting method for steel
CN105855495B (en) * 2016-04-07 2017-06-16 马鞍山尚元冶金科技有限公司 A kind of determination method of casting blank solidification structure
JP7107160B2 (en) * 2018-10-24 2022-07-27 日本製鉄株式会社 Molten steel flow visualization device, molten steel flow visualization method, and computer program
US11890671B2 (en) 2019-02-19 2024-02-06 Jfe Steel Corporation Control method for continuous casting machine, control device for continuous casting machine, and manufacturing method for casting
WO2020170563A1 (en) * 2019-02-19 2020-08-27 Jfeスチール株式会社 Control method for continuous casting machine, control device for continuous casting machine, and method for manufacturing slab
CN114466716B (en) * 2019-10-03 2023-09-08 杰富意钢铁株式会社 Device for estimating thickness of solidified shell in mold, method for estimating thickness of solidified shell in mold, and method for continuously casting steel

Also Published As

Publication number Publication date
JP2002096147A (en) 2002-04-02

Similar Documents

Publication Publication Date Title
JP6430467B2 (en) Slab quality prediction apparatus and method
Szekely et al. Flow pattern velocity and turbulence energy measurements and predictions in a water model of an argon-stirred ladle
Thomas et al. Comparison of four methods to evaluate fluid velocities in a continuous slab casting mold
Pinheiro et al. Mould heat transfer and continuously cast billet quality with mould flux lubrication Part 1 Mould heat transfer
Chakraborty et al. Estimation of surface heat flux in continuous casting mould with limited measurement of temperature
JP6816794B2 (en) Flow state estimation method of molten steel, flow state estimation device, online display device of flow state of molten steel and continuous casting method of steel
JP5505086B2 (en) Method, apparatus and program for estimating state in mold in continuous casting
JP3607882B2 (en) Solidified shell thickness, molten steel flow velocity, slab quality sensing method and apparatus throughout the continuous casting mold.
JP3598078B2 (en) A method for estimating and visualizing a flow velocity vector distribution in a continuous casting mold, and an apparatus therefor.
JP4105839B2 (en) In-mold casting abnormality detection method in continuous casting
JP3230513B2 (en) Method of estimating molten steel flow velocity in continuous casting mold, quality control method in continuous casting of steel, and continuous casting method of steel
Chakraborty et al. Determination of thermal resistance at mould-strand interface due to shrinkage in billet continuous casting–Development and application of a novel integrated numerical model
WO2016060164A1 (en) Device, method, and program for detecting molten-metal surface level in continuous casting mold
JP5408040B2 (en) Continuous casting method, continuous casting control device and program
Spierings et al. Development and application of fiber Bragg gratings for slab casting
JP2019217510A (en) Device for visualizing the inside of continuous casting mold, method, and program
JP2000317594A (en) Solidified shell thickness within molten metal casting mold and method for predicting powder inflow thickness
JP2018099701A (en) Molten metal surface shape estimation method and molten metal surface shape estimation device
JP2021041453A (en) Continuous casting mold interior visualization device, method, and program
Ma et al. Simulation and application of dynamic heat transfer model for improvement of continuous casting process
Velicka et al. Mach u
JP5418411B2 (en) Continuous casting method, continuous casting control device and program
Pütz et al. Investigations of unsteady and asymmetric flow phenomena in continuous casting moulds by advanced simulation techniques
Louhenkilpi Modelling of heat transfer in continuous casting
JP7073932B2 (en) Solidification completion position detection method for slabs and solidification completion position detection device for slabs

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040928

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041008

R151 Written notification of patent or utility model registration

Ref document number: 3607882

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071015

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081015

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091015

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101015

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101015

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111015

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111015

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121015

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121015

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 9

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees