JP2002096147A - Sensing method and device for solidified shell thickness, molten steel flow rate and steel quality in entire area inside continuous casting mold - Google Patents

Sensing method and device for solidified shell thickness, molten steel flow rate and steel quality in entire area inside continuous casting mold

Info

Publication number
JP2002096147A
JP2002096147A JP2001183765A JP2001183765A JP2002096147A JP 2002096147 A JP2002096147 A JP 2002096147A JP 2001183765 A JP2001183765 A JP 2001183765A JP 2001183765 A JP2001183765 A JP 2001183765A JP 2002096147 A JP2002096147 A JP 2002096147A
Authority
JP
Japan
Prior art keywords
flow velocity
mold
distribution
vortex
molten steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001183765A
Other languages
Japanese (ja)
Other versions
JP3607882B2 (en
Inventor
Yoshihiro Yamada
義博 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2001183765A priority Critical patent/JP3607882B2/en
Publication of JP2002096147A publication Critical patent/JP2002096147A/en
Application granted granted Critical
Publication of JP3607882B2 publication Critical patent/JP3607882B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an estimation method in time series for distribution of a molten steel flow and solidified shell thickness in the entire area inside a mold of a continuous casting machine. SOLUTION: Taking data in time series from thermometers attached to the mold, the molten steel flow rate around 2 or more temperature measuring points is calculated at each measuring time. Then vortex to cause the flow rate at each measuring point is figured out, from which distribution of a flow rate vector in the entire area inside the mold caused by the vortex is calculated. Based on the flow rate vector distribution, the solidified shell thickness distribution in the entire area inside the mold is estimated. The solidified shell thickness sensing method for the entire area inside the mold is in particular featured by the above procedure. The steel quality on-line visual sensing method and its device are also featured by visual display for calculation results of distribution of dispersed blowholes and/or inclusions based on the flow rate vector distribution in the entire area inside the mold.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、連続鋳造設備にお
ける流動凝固シェル厚及び品質のオンライン可視化セン
シング方法,並びにその装置に関し、詳細には鋳片の品
質を判定する連続鋳造設備における鋳型内全域の凝固シ
ェル厚センシング方法,流動凝固シェル厚品質のオンラ
イン可視化センシング方法及びその装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an on-line visualization sensing method and apparatus for the thickness and quality of a fluidized solidified shell in a continuous casting facility, and more particularly, to a method for determining the quality of a slab. The present invention relates to a method for sensing a thickness of a solidified shell, a method for sensing online visualization of a thickness of a flow solidified shell, and an apparatus therefor.

【0002】[0002]

【従来の技術】従来より、連続鋳造におけるシェル厚測
定方法が提案されている。この連続鋳造におけるシェル
厚測定方法に関する技術は、特開昭63−30162号
公報(以下、「先行技術1」という)に信頼性の高いブ
レークアウト予知を行うため、時系列的に鋳型温度をパ
ターン化し、推移パターンが予め設定したパターンと一
致したときにブレークアウトの発生を予知する発明が開
示され、特開平1−262050号公報(以下、「先行
技術2」という)に溶鋼の偏流の検知を行なうため、鋳
型長辺と短辺の左右対称位置の温度差あるいは熱流量差
および偏差をもとに溶鋼の偏流を検知する発明が開示さ
れている。図2は、従来の連続鋳造におけるシェル厚測
定方法の図である。 図3は、連続鋳造鋳型における鋳
型温度計測方法の図である。図3(a)は連続鋳造の縦
断面図で図3(b)の矢視B−B、図3(b)は連続鋳
造の横断面図で図3(a)の矢視A−Aである。
2. Description of the Related Art Conventionally, a shell thickness measuring method in continuous casting has been proposed. Japanese Patent Application Laid-Open No. 63-30162 (hereinafter referred to as "prior art 1") discloses a technique for measuring a shell thickness in continuous casting. An invention that predicts the occurrence of a breakout when the transition pattern matches a preset pattern is disclosed. Japanese Patent Application Laid-Open No. 1-262050 (hereinafter referred to as “prior art 2”) discloses detection of a drift of molten steel. In order to perform the method, there is disclosed an invention in which the drift of molten steel is detected based on a temperature difference or a heat flow difference and a deviation between left and right symmetric positions of a long side and a short side of a mold. FIG. 2 is a diagram of a conventional method for measuring a shell thickness in continuous casting. FIG. 3 is a diagram of a mold temperature measuring method in a continuous casting mold. 3A is a longitudinal sectional view of the continuous casting, taken along the line BB in FIG. 3B, and FIG. 3B is a transverse sectional view of the continuous casting, taken along the line AA in FIG. 3A. is there.

【0003】[0003]

【発明が解決しようとする課題】連続鋳造設備における
鋳型において、連続鋳造を行う際、浸漬ノズル4から溶
鋼2が連続鋳造鋳型1に供給され、溶鋼2は冷却ボック
ス7が裏に設置された銅製の連続鋳造鋳型1の表面から
抜熱されて凝固し、凝固シェル3を形成する。この凝固
シェル3はロール6により連続鋳造鋳型1の下方から引
き抜かれる。この凝固シェル3の厚さの分布、介在物の
分布、気泡の分布は鋳込まれた鋳片の品質に影響する。
このため従来、鋳片品質のモニターのため、鋳型1の冷
却銅板内部に熱電対5を設置し、温度を時系列でモニタ
ーする技術開発が行われている。しかしながら、先行技
術2に開示された偏流検知方法では流速分布は検知でき
なかった。また、図2に記載の先行技術1に開示された
連続鋳造におけるシェル厚測定方法にあっては、この温
度モニターは、熱電対設置位置においてのみ可能であ
り、熱電対を設置していない点でのモニターは困難であ
った。
When performing continuous casting in a mold in a continuous casting facility, molten steel 2 is supplied from an immersion nozzle 4 to the continuous casting mold 1, and the molten steel 2 is made of copper with a cooling box 7 installed on the back. Is removed from the surface of the continuous casting mold 1 and solidified to form a solidified shell 3. The solidified shell 3 is pulled out from below the continuous casting mold 1 by the roll 6. The distribution of the thickness, the distribution of inclusions, and the distribution of bubbles of the solidified shell 3 affect the quality of the cast slab.
For this reason, conventionally, in order to monitor the quality of the slab, a technology for installing a thermocouple 5 inside the cooling copper plate of the mold 1 and monitoring the temperature in time series has been developed. However, the drift detection method disclosed in Prior Art 2 could not detect the flow velocity distribution. Further, in the method of measuring the shell thickness in the continuous casting disclosed in the prior art 1 shown in FIG. 2, this temperature monitor is possible only at the thermocouple installation position, and in that the thermocouple is not installed. Was difficult to monitor.

【0004】すなわち、従来の流動センシング方法で
は、鋳造方向をX方向、鋳造直角方向をY方向としたと
きに、熱電対5の設置位置(Xi,Yi)とその点の温
度Tiの関数として次式(1)により流速Uの絶対値
(スカラー値)|U|が得られた。
That is, in the conventional flow sensing method, when the casting direction is the X direction and the direction perpendicular to the casting is the Y direction, the position (Xi, Yi) of the thermocouple 5 and the temperature Ti at that point are calculated as follows. The absolute value (scalar value) | U | of the flow velocity U was obtained from the equation (1).

【式1】 (Equation 1)

【0005】詳しくは、大中逸雄著「コンピュータ伝熱
・凝固解析入門」(丸善1985年)336−337頁
の記載から容易に得られるように、熱電対温度Ti
(℃)、流速の絶対値|U(Xi,Yi)|(メートル
毎秒)、熱伝達率h(ワット毎平方メートル毎ケルビ
ン)、冷却水温度Tw(℃)、抜熱量q(ワット毎平方
メートル)、代表長さd(メートル)、動粘性係数ν
(平方メートル毎秒)、熱伝導率λ(ワット毎メートル
毎ケルビン)、ヌッセルト数Nu[−]、レイノルズ数
Re[−]、プランドル数Pr[−]には次式(2)の
関係があり、式変形で式(1)が得られる。
More specifically, as can be easily obtained from the description of Itsuo Ohnaka, "Introduction to Computerized Heat Transfer and Solidification Analysis" (Maruzen 1985), pp. 336-337, the thermocouple temperature Ti
(° C.), absolute value of flow rate | U (Xi, Yi) | (meters per second), heat transfer coefficient h (watts per square meter per Kelvin), cooling water temperature Tw (° C.), heat removal q (watts per square meter), Representative length d (meter), kinematic viscosity coefficient ν
(Square meter per second), thermal conductivity λ (watts per meter per kelvin), Nusselt number Nu [−], Reynolds number Re [−], and prandle number Pr [−] have the following formula (2): Equation (1) is obtained by equation transformation.

【式2】 (Equation 2)

【0006】これらの式を用いる従来法では熱電対の設
置位置5以外では流速Uの絶対値が得られず、また熱電
対の設置位置5においても流速の方向を示す流速ベクト
ルは得られなかった。また計測点を増加させることは費
用がかかり、均一冷却にも影響があるため精度を向上さ
せることは困難であるという問題があった。本発明は、
上記課題に鑑み、連続鋳造設備において、安価で、均一
冷却に悪影響を及ぼさないように、既設の熱電対により
鋳型内全域の凝固シェル厚分布及び気泡・介在物の拡散
分布の推定ができる方法及び装置を提供することを目的
とする。
In the conventional method using these equations, the absolute value of the flow velocity U cannot be obtained except at the thermocouple installation position 5, and the flow velocity vector indicating the direction of the flow velocity cannot be obtained even at the thermocouple installation position 5. . In addition, there is a problem that increasing the number of measurement points is costly and has an effect on uniform cooling, so that it is difficult to improve the accuracy. The present invention
In view of the above problems, in a continuous casting facility, inexpensive, a method capable of estimating the solidified shell thickness distribution and the diffusion distribution of bubbles and inclusions throughout the mold by using an existing thermocouple so as not to adversely affect uniform cooling and It is intended to provide a device.

【0007】[0007]

【課題を解決するための手段】本発明者は、連続鋳造設
備において、安価で均一冷却に悪影響を及ぼさない装置
により鋳型内全域の時系列流動分布推定ができるシェル
厚及び気泡・介在物推定方法について鋭意検討を重ねた
結果、鋳型に設置した温度計測器から得られた時系列デ
ータを用いて、各計測時間で2点以上の温度計測器設置
点近傍の溶鋼流速を計算し、次に各計測点での各当該流
速を生じさせる渦を求め、次にその渦が鋳型内全域に形
成する流速ベクトル分布を計算し、当該流速ベクトル分
布を用いて鋳型内全域の凝固シェル厚分布及び気泡・介
在物分布を推定することにより、安価で、均一冷却に悪
影響を及ぼさないで鋳型内全域の時系列流動分布推定が
できることを見いだした。
SUMMARY OF THE INVENTION The present inventor has proposed a method for estimating shell thickness and bubbles / inclusions in a continuous casting facility, which can estimate the time-series flow distribution over the entire area of a mold by using an inexpensive apparatus that does not adversely affect uniform cooling. As a result of intensive investigations, using time-series data obtained from temperature measuring instruments installed in the mold, the molten steel flow velocity near two or more temperature measuring instrument installation points was calculated at each measurement time, and then each The vortex that generates the flow velocity at each measurement point is determined, and then the flow velocity vector distribution that the vortex forms throughout the mold is calculated, and the solidified shell thickness distribution and air bubbles / air bubbles throughout the mold are calculated using the flow velocity vector distribution. It has been found that by estimating the inclusion distribution, it is possible to estimate the time-series flow distribution of the entire region in the mold at low cost without adversely affecting uniform cooling.

【0008】本発明は以上の知見に基づいてなされたも
のであって、その要旨とするところは、(1) 連続鋳
造鋳型内長辺に設置した2以上の温度計測器から得られ
た時系列データを用いて、各計測時間で温度計測器設置
点近傍の溶鋼流速を計算し、次に各計測点での各当該流
速を生じさせる渦を求め、次にその渦が鋳型内全域に形
成する流速ベクトル分布を計算し、当該流速ベクトル分
布を用いて連続鋳造鋳型内全域の凝固シェル厚分布を推
定する方法、また、(2) 連続鋳造鋳型内短辺に設置
した2以上の温度計測器から得られた時系列データを用
いて、各計測時間で温度計測器設置点近傍の溶鋼流速を
計算し、次に各計測点での各当該流速を生じさせる渦を
求め、次にその渦が鋳型内全域に形成する流速ベクトル
分布を計算し、当該流速ベクトル分布を用いて連続鋳造
鋳型内全域の凝固シェル厚分布を推定する方法、また、
(3) 連続鋳造鋳型内長辺に設置した2以上の温度計
測器から得られた時系列データを用いて、各計測時間で
温度計測器設置点近傍の溶鋼流速を計算し、次に各計測
点での各当該流速を生じさせる渦を求め、次にその渦が
鋳型内全域に形成する流速ベクトル分布を計算し、前記
流速ベクトル分布を用いて、各計測時間で浸漬ノズルか
らの溶鋼吐出流速を計算し、次に溶鋼のモールド内下降
流速を推定することを特徴とする連続鋳造鋳型内全域の
溶鋼流速センシング方法、また、(4) 前記(1)〜
(3)の何れか1項に記載の方法で得られた鋳型内全域
の流速ベクトル分布を用いて気泡および/又は介在物の
拡散分布を計算し、可視化表示する方法、(5) 連続
鋳造鋳型内に設置した2以上の温度計測器と、前記温度
計測器から得られた時系列データを用いて温度計測器設
置点近傍の溶鋼流速を計算する溶鋼流速演算手段と、各
温度計測点での前記溶鋼流速を生じさせる渦を計算する
渦演算手段と、前記渦が鋳型内全域に形成する流速ベク
トル分布を計算する流速ベクトル演算手段と、前記流速
ベクトル分布から鋳型内全域の凝固シェル厚分布を計算
する凝固シェル厚演算手段と、出力手段を有することを
特徴とする凝固シェル厚センシング装置。(6) 前記
(5)記載の温度計測器、溶鋼流速演算手段、渦演算手
段,流速ベクトル演算手段及び出力手段に加え、流速ベ
クトル分布から気泡及び/又は介在物の拡散分布を計算
する気泡介在物拡散演算手段を有することを特徴とする
鋳片品質オンライン可視化センシング装置。(7)連続
鋳造鋳型内に設置した2以上の温度計測器と、前記温度
計測器から得られた時系列データを用いて温度計測器設
置点近傍の溶鋼流速を計算する溶鋼流速演算手段と、各
温度計測点での前記溶鋼流速を生じさせる渦を計算する
渦演算手段と、前記渦が鋳型内全域に形成する流速ベク
トル分布を計算する流速ベクトル演算手段と、前記流速
ベクトル分布から溶鋼の鋳型内下降流速を推定する下降
流速演算手段と、出力手段を有することを特徴とする溶
鋼流速センシング装置。にある。
The present invention has been made on the basis of the above findings, and the gist of the invention is as follows: (1) Time series obtained from two or more temperature measuring instruments installed on a long side in a continuous casting mold. Using the data, calculate the flow velocity of the molten steel near the temperature measuring instrument installation point at each measurement time, then find the vortex that causes each flow velocity at each measurement point, and then form the vortex throughout the mold A method of calculating a flow velocity vector distribution and estimating a solidified shell thickness distribution throughout the continuous casting mold using the flow velocity vector distribution; and (2) using two or more temperature measuring instruments installed on a short side in the continuous casting mold. Using the obtained time-series data, calculate the molten steel flow velocity near the temperature measuring instrument installation point at each measurement time, then find the vortex that generates the relevant flow velocity at each measurement point, and then use that vortex as the mold Calculate the flow velocity vector distribution formed in the whole area How to estimate the solidified shell thickness distribution of the continuous casting mold in the entire region using a fast vector distribution also,
(3) Using time-series data obtained from two or more temperature measuring instruments installed on the long side in the continuous casting mold, calculate the molten steel flow velocity near the temperature measuring instrument installation point at each measurement time, and then perform each measurement The vortex that generates each of the flow rates at the point is determined, and then the flow velocity vector distribution formed by the vortex in the entire area within the mold is calculated.Using the flow velocity vector distribution, the molten steel discharge velocity from the immersion nozzle at each measurement time is calculated. And then estimating the descending flow velocity of the molten steel in the mold, a method for sensing the flow velocity of the molten steel in the entire continuous casting mold, and (4) the above (1) to (4).
(3) A method of calculating and visualizing the diffusion distribution of bubbles and / or inclusions using the flow velocity vector distribution in the entire mold obtained by the method according to any one of (3), (5) Continuous casting mold Two or more temperature measuring instruments installed in the inside, molten steel flow velocity calculating means for calculating the molten steel flow velocity near the temperature measuring instrument installation point using time-series data obtained from the temperature measuring instrument, and at each temperature measuring point Vortex calculating means for calculating a vortex that generates the molten steel flow velocity, flow velocity vector calculating means for calculating a flow velocity vector distribution formed by the vortex throughout the mold, and a solidified shell thickness distribution throughout the mold from the flow velocity vector distribution. A solidified shell thickness sensing device, comprising: a calculated solidified shell thickness calculating means; and an output means. (6) In addition to the temperature measuring device, the molten steel flow velocity computing means, the vortex computing means, the flow velocity vector computing means, and the output means according to the above (5), bubble interposition for calculating the diffusion distribution of bubbles and / or inclusions from the flow velocity vector distribution. A slab quality on-line visualization sensing device comprising material diffusion calculation means. (7) two or more temperature measuring instruments installed in the continuous casting mold, and molten steel flow velocity calculating means for calculating the molten steel flow velocity near the temperature measuring instrument installation point using time-series data obtained from the temperature measuring instruments; Vortex calculating means for calculating a vortex that generates the molten steel flow velocity at each temperature measurement point, flow velocity vector calculating means for calculating a flow velocity vector distribution formed by the vortex in the entire region of the mold, and a molten steel mold from the flow velocity vector distribution. A molten steel flow velocity sensing device comprising: a downward flow velocity calculating means for estimating an inward downward flow velocity; and an output means. It is in.

【0009】[0009]

【発明の実施の形態】まず、前記(1)に係る発明のう
ち、連続鋳造設備において鋳型内長辺に設置した2以上
の温度計測器から得られた時系列データを用いて、各計
測時間で2点以上の温度計測器設置点近傍の溶鋼流速を
計算し、次に各計測点での各当該流速を生じさせる渦を
求め、次にその渦が鋳型内全域に形成する流速ベクトル
分布を計算する方法について図面を見ながら説明する。
図1は、本発明の鋳型内全域の凝固シェル厚センシング
方法の流れ図である。図4は、本発明の鋳型長辺に熱電
対を設置した場合の鋳型内全域の凝固シェル厚センシン
グ方法の説明図である。本発明においては、iを熱電対
番号とし、半径R(メートル)、渦度Ω(/秒)の渦モ
デル9が渦中心(Xv,Yv)にあると考え、その渦モ
デル9の熱電対5の設置位置(Xi,Yi)に誘起する
流速ベクトル10の絶対値が、熱電対からの換算流速絶
対値(スカラー値)8と等しくなるようにすることで、
渦モデル9が渦中心(Xv,Yv)を同定し、求められ
た渦モデル9が鋳型1内のすべての点に誘起する流速ベ
クトルを求めることができる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS First, in the invention according to the above (1), each measurement time is measured by using time series data obtained from two or more temperature measuring instruments installed on a long side in a mold in a continuous casting facility. Calculate the molten steel flow velocity near two or more temperature measuring instrument installation points, then find the vortex that generates each flow velocity at each measurement point, and then calculate the flow velocity vector distribution that the vortex forms throughout the mold. The calculation method will be described with reference to the drawings.
FIG. 1 is a flowchart of the method for sensing the thickness of a solidified shell in the entire region of a mold according to the present invention. FIG. 4 is an explanatory diagram of the method for sensing the thickness of the solidified shell over the entire area of the mold when a thermocouple is installed on the long side of the mold according to the present invention. In the present invention, i is a thermocouple number, the vortex model 9 having a radius R (meter) and a vorticity Ω (/ sec) is considered to be at the vortex center (Xv, Yv), and the thermocouple 5 of the vortex model 9 is considered. By making the absolute value of the flow velocity vector 10 induced at the installation position (Xi, Yi) equal to the converted flow velocity absolute value (scalar value) 8 from the thermocouple,
The vortex model 9 identifies the vortex center (Xv, Yv), and the obtained vortex model 9 can determine flow velocity vectors induced at all points in the mold 1.

【0010】具体的には、各熱電対5の設置位置(X
i,Yi)の流速U(メートル/秒)の絶対値は各点の
温度Tiの関数として式(1)で表わされる。図4
(a)はこの分布をイメージにしたものである。図4
(a)に示すように、従来の方法では熱電対の設置位置
5以外では流速分布が表示されることはない。あるいは
図2に従って熱電対データから各点でのシェル厚分布を
計算するが、このときも、熱電対設置位置のみのデータ
のみ得られる。本発明においては、半径R(メート
ル)、渦度Ω(/秒)の渦モデル9が渦中心(Xv,Y
v)にあると考え、その渦モデル9の熱電対5の設置位
置(Xi,Yi)に誘起する流速ベクトル10即ちU
(Xi,Yi)=(ui,vi)は、次式(3)で表わ
される。
[0010] Specifically, the installation position of each thermocouple 5 (X
The absolute value of the flow velocity U (meters / second) of (i, Yi) is expressed by Expression (1) as a function of the temperature Ti at each point. FIG.
(A) is an image of this distribution. FIG.
As shown in (a), in the conventional method, the flow velocity distribution is not displayed except at the installation position 5 of the thermocouple. Alternatively, the shell thickness distribution at each point is calculated from the thermocouple data according to FIG. 2, but also at this time, only the data of the thermocouple installation position alone is obtained. In the present invention, the vortex model 9 having a radius R (meters) and a vorticity Ω (/ sec) has a vortex center (Xv, Y
v), and the flow velocity vector 10 induced at the installation position (Xi, Yi) of the thermocouple 5 of the vortex model 9, that is, U
(Xi, Yi) = (ui, vi) is represented by the following equation (3).

【式3】 具体的には、特開平7−323356号公報記載の式を
用いて、渦の鏡像の番号jの総和をΣとした次式(4)
を、整理することによって式(3)が得られる。
(Equation 3) Specifically, using the equation described in Japanese Patent Application Laid-Open No. 7-323356, the following equation (4) is obtained by summing the sum of the numbers j of the mirror images of the vortex.
Equation (3) is obtained by rearranging

【式4】 (4)式でjは壁とメニスカスを対称軸としたときの渦
の鏡像の番号で、J=1が実像でJ=2〜4が鏡像であ
り、(Xvj、Yvj)はj番目の像の中心座標(±X
v,±Yv)を示す。また、各渦中心から流速を求める
点へのベクトルがy軸となす角をθそのベクトルの絶
対値をrとした。ここで、流速Uの絶対値と流速ベク
トル10の成分ui,viが次式(5)を満たすように
すると、変数Xv,Yv,R,Ω4つに対し、熱電対5
の設置位置(Xi,Yi)につき1個の方程式が立てら
れ、原理的には熱電対5の設置位置(Xi,Yi)を4
点とることにより、変数Xv,Yv,R,Ωが求まる。
(Equation 4) In equation (4), j is the number of the mirror image of the vortex when the wall and the meniscus are symmetric axes, J = 1 is a real image, J = 2 to 4 are mirror images, and (X vj , Y vj ) is the j-th. Center coordinates (± X
v, ± Yv). The angle formed by the vector from the center of each vortex to the point for obtaining the flow velocity with the y-axis was θ j , and the absolute value of the vector was r j . Here, if the absolute value of the flow velocity U and the components ui and vi of the flow velocity vector 10 satisfy the following equation (5), the thermocouples 5 for the variables Xv, Yv, R, and Ω
One equation is established for the installation position (Xi, Yi) of the thermocouple 5. In principle, the installation position (Xi, Yi) of the thermocouple 5 is set to 4
By taking points, variables Xv, Yv, R, and Ω are obtained.

【式5】 これにより渦モデル9の渦中心(Xv,Yv)を同定す
ることができる。
(Equation 5) Thereby, the vortex center (Xv, Yv) of the vortex model 9 can be identified.

【0011】つぎに求められた渦モデル9が鋳型1内の
任意の点(x,y)に誘起する流速ベクトル(u,v)
は、式(4)を用いて次式(6)で求めることができ
る。
Next, a flow velocity vector (u, v) induced at an arbitrary point (x, y) in the mold 1 by the obtained vortex model 9
Can be obtained by the following equation (6) using the equation (4).

【式6】 この方法において、R,Ωは鋳型内の幾何学的な仮定か
ら別に求まる場合が有り、その場合は、熱電対5の設置
位置(Xi,Yi)は2点で可能である。また熱電対5
の設置位置(Xi,Yi)が5点以上の場合は、誤差が
最小となるように各点での方程式(3)を解くことで渦
モデル9の渦中心(Xv,Yv)を同定することができ
る。
(Equation 6) In this method, R and Ω may be separately obtained from geometrical assumptions in the mold. In this case, the installation positions (Xi, Yi) of the thermocouple 5 can be two. Thermocouple 5
When the installation position (Xi, Yi) is 5 or more, the vortex center (Xv, Yv) of the vortex model 9 is identified by solving the equation (3) at each point so that the error is minimized. Can be.

【0012】次に、前記(2)に係る発明のうち、連続
鋳造設備において鋳型内短辺に設置した2以上の温度計
測器から得られた時系列データを用いて、各計測時間で
2点以上の温度計測器設置点近傍の溶鋼流速を計算し、
次に各計測点での各当該流速を生じさせる渦を求め、次
にその渦が鋳型内全域に形成する流速ベクトル分布を計
算する方法について図面を見ながら説明する。図8は本
発明の鋳型短辺に熱電対を設置した場合の鋳型内全域の
凝固シェル厚センシング方法の説明図である。
Next, in the invention according to the above (2), two points are measured at each measurement time using time-series data obtained from two or more temperature measuring instruments installed on the short side of the mold in the continuous casting facility. Calculate the molten steel flow velocity near the above temperature measuring instrument installation point,
Next, a method of obtaining a vortex that generates each flow velocity at each measurement point, and then calculating a flow velocity vector distribution formed by the vortex in the entire region in the mold will be described with reference to the drawings. FIG. 8 is an explanatory diagram of the method for sensing the thickness of the solidified shell over the entire area of the mold when a thermocouple is installed on the short side of the mold according to the present invention.

【0013】本発明においては、iを熱電対番号とし、
半径R(メートル)、渦度Ω(/秒)の渦モデル9が渦
中心(Xv,Yv)にあると考え、鋳型長辺幅をWと
し、座標の原点をメニスカスの中央に取った場合、当該
渦モデル9の熱電対5の設置位置(Xi,±W/2)に
誘起する流速ベクトル10の絶対値が、熱電対からの換
算流速絶対値(スカラー値)8と等しくなるようにする
ことで、渦モデル9が渦中心(Xv,Yv)を同定し、
求められた渦モデル9が鋳型1内のすべての点に誘起す
る流速ベクトルを求めることができる。具体的には、各
熱電対5の設置位置(Xi,±W/2)の流速U(メー
トル/秒)の絶対値は各点の温度Tiの関数として式
(1)で表わされる。従来の方法では熱電対の設置位置
5以外では流速分布が表示されることはない。あるいは
図2に従って熱電対データから各点でのシェル厚分布を
計算するが、このときも、熱電対設置位置のみのデータ
のみ得られる。あるいは短辺のみに熱電対が設置されて
いる場合、長辺の流速分布は推定できなかった。本発明
においては、半径R(メートル)、渦度Ω(/秒)の渦
モデル9が渦中心(X0,Y0)にあると考え、その渦
モデル9の熱電対5の設置位置(Xi,±W/2)に誘
起する流速ベクトル10即ちU(xi,±W/2)=
(ui,vi)は、式(4)に座標(xi,±W/2)
を代入することにより次式(12)で表わされる。
In the present invention, i is a thermocouple number,
When the vortex model 9 having a radius R (meters) and a vorticity Ω (/ sec) is considered to be at the center of the vortex (Xv, Yv), the width of the long side of the mold is set to W, and the origin of the coordinates is set at the center of the meniscus. The absolute value of the flow velocity vector 10 induced at the installation position (Xi, ± W / 2) of the thermocouple 5 of the vortex model 9 is made equal to the converted flow velocity absolute value (scalar value) 8 from the thermocouple. Then, the vortex model 9 identifies the vortex center (Xv, Yv),
The flow velocity vectors induced at all points in the mold 1 by the obtained vortex model 9 can be obtained. Specifically, the absolute value of the flow velocity U (meter / second) at the installation position (Xi, ± W / 2) of each thermocouple 5 is expressed by the equation (1) as a function of the temperature Ti at each point. In the conventional method, the flow velocity distribution is not displayed except at the installation position 5 of the thermocouple. Alternatively, the shell thickness distribution at each point is calculated from the thermocouple data according to FIG. 2, but also at this time, only the data of the thermocouple installation position alone is obtained. Alternatively, when a thermocouple was installed only on the short side, the flow velocity distribution on the long side could not be estimated. In the present invention, it is considered that the vortex model 9 having a radius R (meter) and vorticity Ω (/ sec) is located at the vortex center (X0, Y0), and the installation position (Xi, ±) of the thermocouple 5 of the vortex model 9 is considered. W / 2) induced flow velocity vector 10, ie, U (xi, ± W / 2) =
(Ui, vi) is expressed by the coordinates (xi, ± W / 2) in equation (4).
Is expressed by the following equation (12).

【式12】 この式は渦の角速度Ω、渦の半径R、渦の中心座標成分
x0、y0を変数とするので、熱電対を短辺の片側に4
点以上設置し、それぞれに対して式(12)を作り、連
立させて連立方程式を解くことにより求めることができ
る。つぎに求められた渦モデル9が鋳型1内の任意の点
(x,y)に誘起する流速ベクトル(u,v)は、式
(4)を用いた式(6)にて求めることができる。
(Equation 12) Since this equation uses the vortex angular velocity Ω, the vortex radius R, and the vortex center coordinate components x0 and y0 as variables, a thermocouple is placed on one side of the short side.
It can be obtained by setting the number of points or more, formulating equation (12) for each of them, and simultaneously solving simultaneous equations. Next, the flow velocity vector (u, v) induced at the arbitrary point (x, y) in the mold 1 by the obtained vortex model 9 can be obtained by Expression (6) using Expression (4). .

【0014】上記の何れかの方法で得られた鋳型内全域
の流速ベクトル分布を用いて、各計測時間で浸漬ノズル
からの溶鋼吐出流速を計算し、次に溶鋼のモールド内下
降流速を推定する前記(3)の発明に係る方法について
図8を見ながら説明する。上記の方法で浸漬ノズルから
の溶鋼吐出流11より上の流速ベクトル分布を予測する
ことができ、それらを誘引する、浸漬ノズルからの溶鋼
吐出流11の流速U0とその下流の流速Ujetを実験的
な関係式(13)を用いて推定することができる。
Using the flow velocity vector distribution in the whole area of the mold obtained by any of the above methods, the molten steel discharge velocity from the immersion nozzle is calculated at each measurement time, and then the descending velocity of the molten steel in the mold is estimated. The method according to the invention (3) will be described with reference to FIG. By the above method, the flow velocity vector distribution above the molten steel discharge flow 11 from the immersion nozzle can be predicted, and the flow velocity U0 of the molten steel discharge flow 11 from the immersion nozzle and the flow velocity Ujet downstream thereof can be experimentally induced. It can be estimated using the following relational expression (13).

【式13】 ここでLは吐出孔からの吐出流に沿った距離(メート
ル)、Ujet(L)は距離Lでの流速の絶対値(メート
ル毎秒)、U0は吐出流速(メートル毎秒)、d0はノ
ズルの直径(メートル)、C1とk、k2、k3,L0
は実験的に得られた定数である(C1=6.0、k=-
1.0、k2=1.0、k3=1.0、L0=5×d
0)。また溶鋼のモールド内下降流12の流速Udown
(メートル毎秒)を実験的な関係式(14)を用いて推
定することができる。
(Equation 13) Here, L is the distance (meter) along the discharge flow from the discharge hole, Ujet (L) is the absolute value of the flow velocity at the distance L (meters per second), U0 is the discharge flow velocity (meters per second), and d0 is the diameter of the nozzle (Meters), C1 and k, k2, k3, L0
Is a constant obtained experimentally (C1 = 6.0, k = −
1.0, k2 = 1.0, k3 = 1.0, L0 = 5 × d
0). The flow velocity Udown of the downflow 12 in the mold of molten steel
(Meters per second) can be estimated using the experimental relational expression (14).

【式14】 ここでLは吐出孔からの吐出流に沿った距離(メート
ル)、Udownは流速の絶対値(メートル毎秒)、C2と
m,L1は実験的に得られた定数である(C2=5.
0、m=−0.5、L1=5×d0)。また、吐出流に
垂直な流速分布u(r)は、吐出孔からの距離L(メー
トル)の位置での半値幅b(L)を用いて式(15)で
表される。
(Equation 14) Here, L is the distance (meter) along the discharge flow from the discharge hole, Udown is the absolute value of the flow velocity (meter per second), and C2, m, and L1 are constants obtained experimentally (C2 = 5.
0, m = -0.5, L1 = 5 * d0). Further, the flow velocity distribution u (r) perpendicular to the discharge flow is expressed by Expression (15) using the half-value width b (L) at a position at a distance L (meter) from the discharge hole.

【式15】 吐出孔から壁面に衝突するまでの範囲では、式13で求
めたUjetを式16に代入してu(r)を求める。
(Equation 15) In the range from the ejection hole to the collision with the wall surface, ujet obtained by Expression 13 is substituted into Expression 16 to obtain u (r).

【式16】 壁面に衝突した後の範囲では、式14で求めたUdownを
式17に代入してu(r)を求める。
(Equation 16) In the range after the collision with the wall surface, u (r) is obtained by substituting Udown obtained by Expression 14 into Expression 17.

【式17】 ここでrは吐出孔から吐出流中心に沿った距離Lのある
位置から垂直方向の距離(メートル)、u(r)は流速
の絶対値(メートル毎秒)、C3、C4、C5は実験的
に得られた定数である(C3=0.05,C4=0.
7、C5=0.7)。
(Equation 17) Here, r is a vertical distance (meter) from a position having a distance L along the discharge flow center from the discharge hole, u (r) is an absolute value of flow velocity (meters per second), and C3, C4, and C5 are experimentally These are the obtained constants (C3 = 0.05, C4 = 0.
7, C5 = 0.7).

【0015】以上で鋳型内だけでなく、鋳型の下部の全
域の流速分布も予測することができる。つまり、鋳型の
下部の任意の点(x、y)に対し、吐出孔から吐出流中
心に沿った距離Lとその位置Lから垂直方向の距離rに
(x、y)があるように、かつ、rが最小となるように
Lとrを一意に決めることができる。得られたLとrと
渦を計算するのに使用したΩとRからU0、Ujet、Ud
ownを求め、最終的に、鋳型の下部の任意の点(x、
y)での流速u(r)が得られ、吐出流中心に沿った距
離Lの線に沿ってu(r)の単位ベクトルを設定するこ
とで流速ベクトルを求めることができる。更に下降流速
を求めた後、鋳型の下部の任意の点(x、y)での流速
u(r)をシェル厚分布、介在物分布の式に代入する。
次に、鋳型内の全域の流速ベクトル分布を用いて、論文
“Yamada, Y. and Suzuki, N. : Numerical Simulation
and Visualization for Fluid Motion with Solidific
ation in Continuous Casting, WCCM-III, Makuhari, p
p. 1772-1773 (1994)”や日本機械学会第6回計算力学
講演会論文集“山田、鈴木「連続鋳造における流動凝固
シミュレーション」pp.360−361(199
3)”に書かれているように、凝固開始点であるメニス
カスから各点での流速絶対値の関数である凝固成長速度
を積分することにより、前記(1)又は(2)の発明に
係る鋳型内全域の凝固シェル厚分布を計算することがで
きる。
From the above, it is possible to predict the flow velocity distribution not only in the mold but also in the whole area below the mold. That is, with respect to an arbitrary point (x, y) at the lower portion of the mold, there is a distance L from the discharge hole along the center of the discharge flow and a distance r from the position L in the vertical direction r, and , R can be uniquely determined so that L and r are minimized. From the obtained L, r, and Ω and R used to calculate the vortex, U0, Ujet, Ud
seek own, and finally any point (x,
The flow velocity u (r) at y) is obtained, and the flow velocity vector can be obtained by setting the unit vector of u (r) along the line of the distance L along the center of the discharge flow. After further obtaining the descending flow velocity, the flow velocity u (r) at an arbitrary point (x, y) at the lower part of the mold is substituted into the expression of the shell thickness distribution and the inclusion distribution.
Next, the paper “Yamada, Y. and Suzuki, N .: Numerical Simulation
and Visualization for Fluid Motion with Solidific
ation in Continuous Casting, WCCM-III, Makuhari, p
p. 1772-1773 (1994) "and the 6th Computational Mechanics Conference of the Japan Society of Mechanical Engineers," Yamada and Suzuki, "Simulation of Flow Solidification in Continuous Casting" pp. 360-361 (199
3) As described in "), by integrating the solidification growth rate which is a function of the absolute value of the flow velocity at each point from the meniscus which is the solidification start point, the invention according to the above (1) or (2) is achieved. The solidified shell thickness distribution throughout the mold can be calculated.

【0016】具体的には、任意の点(x,y)において
シェル厚抜熱量q(ワット/平方メートル)、溶融金属
温度T∞(℃)、溶融金属の凝固温度Tm(℃)、溶融
金属の密度ρ(キログラム/立方メートル)、溶融金属
の潜熱L(ジュール/キログラム)、凝固速度V(メー
トル/秒)、鋳造速度Vc(メートル/秒)、鋳込み方
向の計算間隔Δx(メートル)、凝固開始点からの鋳造
距離方向への総和Σ(−)に対して次式(7)が成立す
る。抜熱量q、熱伝達率hは(2)式を用いて任意の点
(x,y)における流速から見積ることで、凝固速度V
(メートル/秒)が計算され、任意の点(x,y)にお
けるシェル厚分布δ(x,y)を計算することができ
る。
Specifically, at any point (x, y), the shell thickness heat dissipation q (watt / square meter), the molten metal temperature T∞ (° C.), the solidification temperature Tm (° C.) of the molten metal, Density ρ (kilogram / cubic meter), latent heat L of molten metal (joule / kilogram), solidification speed V (meter / second), casting speed Vc (meter / second), calculation interval Δx (meter) in casting direction, solidification start point The following equation (7) holds for the sum Σ (−) in the direction of the casting distance from. The heat removal amount q and the heat transfer coefficient h are estimated from the flow velocity at an arbitrary point (x, y) using the equation (2), and the solidification speed V
(M / s) is calculated, and the shell thickness distribution δ (x, y) at an arbitrary point (x, y) can be calculated.

【式7】 また、全領域の流速分布が与えられているため、介在物
の位置をラグランジュ積分することにより介在物移流を
推定することができる。具体的には、日本流体力学会
編、「混相流体の力学」(朝倉書店1991)180頁
に記載にある式を変形した次式(8)により、時刻tに
おける介在物速度Vp(t)(メートル/秒)、抵抗係
数Cd(=24/Re+6/(1+√Re)+0.4:
Reはレイノルズ数)、流体との相対速度(u−Vp
(t))(メートル/秒)、外力による加速度g(メー
トル/平方秒)、時間刻みΔ t(秒)に対して介在物
の動きXp(t)(メートル)を求めることができる。
気泡の動きXp(t)は介在物速度Vp(t)(メート
ル/秒)の時間積分により求めることができる。
Equation 7 In addition, since the flow velocity distribution in the entire region is given, inclusion advection can be estimated by Lagrangian integration of the position of the inclusion. Specifically, the inclusion velocity Vp (t) at time t is obtained by the following equation (8) obtained by modifying the equation described in “Mechanism of Multiphase Fluid” (Asakura Shoten 1991), p. M / sec), resistance coefficient Cd (= 24 / Re + 6 / (1 + √Re) +0.4)
Re is Reynolds number), relative velocity with fluid (u-Vp)
(T)) (meter / second), acceleration g (meter / square second) due to external force, and movement Xp (t) (meter) of the inclusion can be obtained with respect to time step Δt (second).
The movement Xp (t) of the bubble can be obtained by time integration of the inclusion velocity Vp (t) (meter / second).

【式8】 (Equation 8)

【0017】[0017]

【実施例】以下、図1から図5の図面を参照しながら、
本発明の実施例について具体的に説明する。図5は本発
明の鋳型内全域の凝固シェル厚センシング方法を用いて
推定した溶鋼流速ベクトル図である。連続鋳造設備にお
ける内のり幅(長辺)1m、厚さ(短辺)30cm、メ
ニスカス〜鋳型下端までの距離(深さ)60cmの鋳型
1において、直径20cm2孔の浸漬ノズル4から溶鋼
2が連続鋳造鋳型1に供給され、連続鋳造が行われてい
る。溶鋼2は連続鋳造鋳型1の表面から抜熱され、凝固
し凝固シェル3を形成する。この凝固シェル3はロール
6により引き抜き速度毎分1mで連続鋳造鋳型1の下方
から引き抜かれる。この凝固シェル3の厚さの分布、介
在物の分布、気泡の分布は鋳込まれた鋳片の品質に影響
する。このため従来から、鋳片品質のモニターのため、
鋳型1の冷却銅板内部に熱電対5を鋳込み面から5cm
の深さに両端からそれぞれ10cm,30cm,上端か
ら10cm,30cmの位置に片面8個ずつ設置し、温
度を時系列でモニターした。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring to FIGS.
An embodiment of the present invention will be specifically described. FIG. 5 is a molten steel flow velocity vector diagram estimated using the method for sensing the thickness of the solidified shell in the entire region of the mold according to the present invention. In a mold 1 having an inner width (long side) of 1 m, a thickness (short side) of 30 cm, and a distance from the meniscus to the lower end of the mold (depth) of 60 cm in a continuous casting facility, molten steel 2 is continuously cast from an immersion nozzle 4 having a diameter of 20 cm and 2 holes. It is supplied to the mold 1 and continuous casting is performed. The molten steel 2 is removed from the surface of the continuous casting mold 1 and solidifies to form a solidified shell 3. The solidified shell 3 is drawn from below the continuous casting mold 1 by a roll 6 at a drawing speed of 1 m / min. The distribution of the thickness, the distribution of inclusions, and the distribution of bubbles of the solidified shell 3 affect the quality of the cast slab. For this reason, conventionally, to monitor slab quality,
A thermocouple 5 is placed 5 cm from the casting surface inside the cooling copper plate of the mold 1.
At a depth of 10 cm and 30 cm from both ends and 10 cm and 30 cm from the upper end, respectively, and eight pieces were installed on each side, and the temperature was monitored in time series.

【0018】本発明においては、半径R(メートル)、
渦度Ω(/秒)の渦モデル9が渦中心(Xv,Yv)に
あると考える。 各熱電対5の設置番号i=1〜4とし
て左側の4点について設置位置を次式(9)のように定
める。
In the present invention, the radius R (meter),
It is assumed that the vortex model 9 having a vorticity of Ω (/ sec) is at the vortex center (Xv, Yv). Assuming that the installation numbers i of the thermocouples 5 are i = 1 to 4, the installation positions of the four points on the left side are determined as in the following equation (9).

【式9】 発明の実施の形態の手順に従い、i=1〜4に対し次式
(10)を得る。
[Equation 9] According to the procedure of the embodiment of the invention, the following equation (10) is obtained for i = 1 to 4.

【式10】 式(10)を変形すると次式(11)を得る。(Equation 10) By transforming equation (10), the following equation (11) is obtained.

【式11】 式(11)の4方程式を用いて変数Xv,Yv,R,Ω
が求まり、渦モデル9の渦中心(Xv,Yv)が同定さ
れる。
[Equation 11] The variables Xv, Yv, R, and Ω are calculated using the four equations of Expression (11).
Is determined, and the vortex center (Xv, Yv) of the vortex model 9 is identified.

【0019】つぎに求められた渦モデル9が鋳型1内の
任意の点(x,y)に誘起する流速ベクトル(u,v)
は、式(6)で求めることができる。この解法で得られ
た流速ベクトル溶鋼流速ベクトル図を図5に示した。メ
ニスカスから浸漬ノズルの吐出口上端まで0.2mとし
た。次に、鋳型内の全域の流速ベクトル分布を用いて鋳
型内全域の凝固シェル厚分布、介在物移流をラグランジ
ュ積分により推定した。凝固シェル厚分布を図6に,介
在物分布を図7に示す。図6において、凝固シェル厚を
ミリメートル単位で等高線で示した。浸漬ノズル吐出口
位置近傍で10mm、メニスカスから0.4mの深さで
14mmとほぼ実績に近い値が得られた。
Next, a flow velocity vector (u, v) induced at an arbitrary point (x, y) in the mold 1 by the obtained vortex model 9
Can be obtained by Expression (6). FIG. 5 shows a flow velocity vector molten steel flow velocity vector diagram obtained by this solution. The distance from the meniscus to the upper end of the discharge port of the immersion nozzle was 0.2 m. Next, the distribution of solidified shell thickness and inclusion advection throughout the mold were estimated by Lagrangian integration using the flow velocity vector distribution throughout the mold. FIG. 6 shows the thickness distribution of the solidified shell, and FIG. 7 shows the distribution of inclusions. In FIG. 6, the thickness of the solidified shell is shown by contour lines in millimeters. The values almost 10 mm were obtained near the position of the discharge port of the immersion nozzle and 14 mm at a depth of 0.4 m from the meniscus.

【0020】また、図7において、表示範囲を図6と同
様としたときの介在物分布(介在物分布とは均一に介在
物を流入条件として与えた場合の相対的な個数密度割合
[−]で、数密度が最大の部分を1とし、0.2刻みで
等高線で表示した。図9に鋳型下部までの鋳型内全域の
流速ベクトルの予測計算例を示す。式13から式17ま
でを用いて、流速ベクトルを求めた。図9(a)は鋳型
短辺の中央断面での流速分布を、図9(b)は鋳型長辺
の凝固面での流速分布を示す。このように3次元的な流
速分布が求まるので広範囲の介在物、気泡の3次元的な
挙動を計算することができる。
In FIG. 7, the inclusion distribution when the display range is the same as that in FIG. 6 (inclusion distribution is a relative number density ratio [−] when inclusions are given uniformly as inflow conditions) In Fig. 9, a portion where the number density is the largest is indicated by contour lines in increments of 0.2, and Fig. 9 shows an example of a prediction calculation of a flow velocity vector in the entire mold up to the lower portion of the mold. 9 (a) shows the flow velocity distribution at the center cross section of the short side of the mold, and FIG.9 (b) shows the flow velocity distribution at the solidified surface of the long side of the mold. Since a typical flow velocity distribution is obtained, the three-dimensional behavior of a wide range of inclusions and bubbles can be calculated.

【0021】[0021]

【発明の効果】本発明により、連続鋳造鋳型内の長辺又
は短辺に設置した温度計測器から得られた時系列データ
を用いて、各計測時間で2点以上の温度計測器設置点近
傍の溶鋼流速を計算し、次に各計測点での各当該流速を
生じさせる渦を求め、次にその渦が鋳型内全域に形成す
る流速ベクトル分布を計算しているため、溶鋼流速ベク
トル分布を推定することができ,これにより凝固シェル
厚、介在物又は気泡の分布を求めることができる。
According to the present invention, two or more temperature measuring instrument installation points are used at each measurement time using time series data obtained from the temperature measuring instruments installed on the long side or the short side in the continuous casting mold. The flow velocity of the molten steel is calculated, then the vortex that generates the flow velocity at each measurement point is determined, and then the flow velocity vector distribution that the vortex forms throughout the mold is calculated. The solidification shell thickness and the distribution of inclusions or bubbles can be determined.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の鋳型内全域の凝固シェル厚センシング
方法の流れ説明図である。
FIG. 1 is a flowchart illustrating a method for sensing the thickness of a solidified shell in the entire region of a mold according to the present invention.

【図2】従来の凝固シェル厚センシング方法の流れ説明
図である。
FIG. 2 is a flowchart illustrating a conventional method for sensing a solidified shell thickness.

【図3】連続鋳造鋳型における鋳型温度計測方法の説明
図で、(a)は連続鋳造鋳型短辺中央部断面(図3
(b)のB−B断面)、(b)は連続鋳造鋳型長辺断面
(図3(a)のA−A断面)である。
3A and 3B are explanatory diagrams of a method of measuring a mold temperature in a continuous casting mold. FIG.
(B) is a cross section taken along the line BB, and (b) is a cross section of a long side of the continuous casting mold (a cross section taken along the line AA in FIG. 3 (a)).

【図4】(a)従来の熱電対設置位置における流速分布
の計算方法の説明図である。 (b)本発明の鋳型長辺に熱電対を設置した場合の鋳型
内全域の流速ベクトル分布計算方法の説明図である。
FIG. 4A is an explanatory diagram of a conventional method of calculating a flow velocity distribution at a thermocouple installation position. (B) It is explanatory drawing of the flow velocity vector distribution calculation method in the whole area | region in a casting_mold | template in case a thermocouple is installed in the long side of a casting_mold | template of this invention.

【図5】本発明の鋳型内全域の凝固シェル厚センシング
方法を用いて推定した溶鋼流速ベクトル図である。
FIG. 5 is a molten steel flow velocity vector diagram estimated using the method for sensing the thickness of a solidified shell in the entire region of a mold according to the present invention.

【図6】本発明による凝固シェル厚分布の推定例であ
る。
FIG. 6 is an example of estimating a solidified shell thickness distribution according to the present invention.

【図7】本発明による介在物分布の推定例である。FIG. 7 is an example of estimation of inclusion distribution according to the present invention.

【図8】本発明の鋳型短辺に熱電対を設置した場合の鋳
型内全域の流速ベクトル分布計算方法の説明図である。
FIG. 8 is an explanatory diagram of a method of calculating a flow velocity vector distribution over the entire region in a mold when a thermocouple is installed on the short side of the mold according to the present invention.

【図9】(a)本発明の鋳型短辺の中央断面での流速分
布を示す実施例である。 (b)本発明の鋳型長辺の凝固面での流速分布を示す実
施例である。
FIG. 9 (a) is an example showing the flow velocity distribution in the center cross section of the short side of the mold of the present invention. (B) Example of the present invention showing the flow velocity distribution on the solidification surface of the long side of the mold.

【符号の簡単な説明】[Brief description of reference numerals]

1 連続鋳造鋳型 2 溶鋼 3 凝固シェル 4 浸漬ノズル 5 熱電対 6 引き抜きロール 7 冷却ボックス 8 熱電対からの換算流速絶対値(スカラー値) 9 渦モデル 10 渦モデルの誘起流速ベクトル 11 浸漬ノズルからの溶鋼吐出流 12 溶鋼のモールド内下降流 DESCRIPTION OF SYMBOLS 1 Continuous casting mold 2 Molten steel 3 Solidification shell 4 Immersion nozzle 5 Thermocouple 6 Drawing roll 7 Cooling box 8 Converted absolute value of flow velocity from thermocouple (scalar value) 9 Vortex model 10 Induced velocity vector of vortex model 11 Molten steel from immersion nozzle Discharge flow 12 Downflow of molten steel in mold

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】連続鋳造鋳型内長辺に設置した2以上の温
度計測器から得られた時系列データを用いて、各計測時
間で温度計測器設置点近傍の溶鋼流速を計算し、次に各
計測点での各当該流速を生じさせる渦を求め、次にその
渦が鋳型内全域に形成する流速ベクトル分布を計算し、
当該流速ベクトル分布を用いて鋳型内全域の凝固シェル
厚分布を推定することを特徴とする連続鋳造鋳型内全域
の凝固シェル厚センシング方法。
(1) using time-series data obtained from two or more temperature measuring instruments installed on a long side in a continuous casting mold, calculating a molten steel flow velocity near a temperature measuring instrument installation point at each measurement time; Find the vortex that generates each flow velocity at each measurement point, then calculate the flow velocity vector distribution that the vortex forms throughout the mold,
A method for sensing a thickness of a solidified shell in the entire continuous casting mold, comprising estimating a solidified shell thickness distribution in the entire casting mold using the flow velocity vector distribution.
【請求項2】連続鋳造鋳型内短辺に設置した2以上の温
度計測器から得られた時系列データを用いて、各計測時
間で温度計測器設置点近傍の溶鋼流速を計算し、次に各
計測点での各当該流速を生じさせる渦を求め、次にその
渦が鋳型内全域に形成する流速ベクトル分布を計算し、
当該流速ベクトル分布を用いて鋳型内全域の凝固シェル
厚分布を推定することを特徴とする連続鋳造鋳型内全域
の凝固シェル厚センシング方法。
2. Using the time series data obtained from two or more temperature measuring instruments installed on the short side in the continuous casting mold, calculate the molten steel flow velocity near the temperature measuring instrument installation point at each measurement time, Find the vortex that generates each flow velocity at each measurement point, then calculate the flow velocity vector distribution that the vortex forms throughout the mold,
A method for sensing a thickness of a solidified shell in the entire continuous casting mold, comprising estimating a solidified shell thickness distribution in the entire casting mold using the flow velocity vector distribution.
【請求項3】連続鋳造鋳型内に設置した2以上の温度計
測器から得られた時系列データを用いて、各計測時間で
温度計測器設置点近傍の溶鋼流速を計算し、次に各計測
点での各当該流速を生じさせる渦を求め、次にその渦が
鋳型内全域に形成する流速ベクトル分布を計算し、当該
流速ベクトル分布を用いて、各計測時間で浸漬ノズルか
らの溶鋼吐出流速を計算し、次に溶鋼の鋳型内下降流速
を推定することを特徴とする連続鋳造鋳型内全域の溶鋼
流速センシング方法。
3. Using a time series data obtained from two or more temperature measuring instruments installed in a continuous casting mold, calculate a molten steel flow velocity near a temperature measuring instrument installation point at each measurement time, and then calculate each measurement time. The vortex that generates the flow velocity at the point is determined, and then the flow velocity vector distribution formed by the vortex in the entire area within the mold is calculated.Using the flow velocity vector distribution, the molten steel discharge velocity from the immersion nozzle at each measurement time is calculated. , And then estimating the descending flow velocity of the molten steel in the mold.
【請求項4】請求項1〜3の何れか1項に記載の方法で
得られた鋳型内全域の流速ベクトル分布を用いて気泡お
よび/又は介在物の拡散分布を計算し、可視化表示する
ことを特徴とする連続鋳型内全域の鋳片品質オンライン
可視化センシング方法。
4. A method for calculating a diffusion distribution of bubbles and / or inclusions using a flow velocity vector distribution in the entire region of a mold obtained by the method according to any one of claims 1 to 3, and displaying the calculated distribution. A method for online visualization sensing of slab quality throughout the continuous mold.
【請求項5】連続鋳造鋳型内に設置した2以上の温度計
測器と、 前記温度計測器から得られた時系列データを用いて温度
計測器設置点近傍の溶鋼流速を計算する溶鋼流速演算手
段と、 各温度計測点での前記溶鋼流速を生じさせる渦を計算す
る渦演算手段と、 前記渦が鋳型内全域に形成する流速ベクトル分布を計算
する流速ベクトル演算手段と、 前記流速ベクトル分布から鋳型内全域の凝固シェル厚分
布を計算する凝固シェル厚演算手段と、 出力手段を有することを特徴とする凝固シェル厚センシ
ング装置。
5. A molten steel flow rate calculating means for calculating a molten steel flow rate near a temperature measuring instrument installation point using two or more temperature measuring instruments installed in a continuous casting mold and time series data obtained from the temperature measuring instruments. Vortex calculating means for calculating a vortex that generates the molten steel flow velocity at each temperature measurement point; flow velocity vector calculating means for calculating a flow velocity vector distribution formed by the vortex in the entire region of the mold; and a mold from the flow velocity vector distribution. A solidified shell thickness sensing device, comprising: a solidified shell thickness calculating means for calculating a solidified shell thickness distribution over the entire area; and an output means.
【請求項6】請求項5記載の温度計測器、溶鋼流速演算
手段、渦演算手段,流速ベクトル演算手段及び出力手段
に加え、 流速ベクトル分布から気泡及び/又は介在物の拡散分布
を計算する気泡介在物拡散演算手段を有することを特徴
とする鋳片品質オンライン可視化センシング装置。
6. A bubble for calculating a diffusion distribution of bubbles and / or inclusions from a flow velocity vector distribution, in addition to the temperature measuring device, molten steel flow velocity calculation means, vortex calculation means, flow velocity vector calculation means and output means according to claim 5. A slab quality on-line visualization sensing device comprising inclusion diffusion calculation means.
【請求項7】 連続鋳造鋳型内に設置した2以上の温度
計測器と、 前記温度計測器から得られた時系列データを用いて温度
計測器設置点近傍の溶鋼流速を計算する溶鋼流速演算手
段と、 各温度計測点での前記溶鋼流速を生じさせる渦を計算す
る渦演算手段と、 前記渦が鋳型内全域に形成する流速ベクトル分布を計算
する流速ベクトル演算手段と、 前記流速ベクトル分布から溶鋼の鋳型内下降流速を推定
する下降流速演算手段を有することを特徴とする溶鋼流
速センシング装置。
7. A molten steel flow velocity calculating means for calculating a molten steel flow velocity near a temperature measuring instrument installation point using two or more temperature measuring instruments installed in a continuous casting mold and time-series data obtained from the temperature measuring instruments. Vortex calculation means for calculating a vortex that generates the molten steel flow velocity at each temperature measurement point; flow velocity vector calculation means for calculating a flow velocity vector distribution formed by the vortex in the entire area of the mold; and molten steel from the flow velocity vector distribution. A flow velocity sensing device for molten steel, comprising: a downward flow velocity calculating means for estimating the downward flow velocity in the mold.
JP2001183765A 2000-07-19 2001-06-18 Solidified shell thickness, molten steel flow velocity, slab quality sensing method and apparatus throughout the continuous casting mold. Expired - Fee Related JP3607882B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001183765A JP3607882B2 (en) 2000-07-19 2001-06-18 Solidified shell thickness, molten steel flow velocity, slab quality sensing method and apparatus throughout the continuous casting mold.

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000219607 2000-07-19
JP2000-219607 2000-07-19
JP2001183765A JP3607882B2 (en) 2000-07-19 2001-06-18 Solidified shell thickness, molten steel flow velocity, slab quality sensing method and apparatus throughout the continuous casting mold.

Publications (2)

Publication Number Publication Date
JP2002096147A true JP2002096147A (en) 2002-04-02
JP3607882B2 JP3607882B2 (en) 2005-01-05

Family

ID=26596352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001183765A Expired - Fee Related JP3607882B2 (en) 2000-07-19 2001-06-18 Solidified shell thickness, molten steel flow velocity, slab quality sensing method and apparatus throughout the continuous casting mold.

Country Status (1)

Country Link
JP (1) JP3607882B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105855495A (en) * 2016-04-07 2016-08-17 马鞍山尚元冶金科技有限公司 Determination method for casting blank solidification structure
JP2017159363A (en) * 2016-03-02 2017-09-14 Jfeスチール株式会社 Estimation method and device for molten steel flow state, online display device for molten steel flow state, and continuous casting method for steel
JP2020066026A (en) * 2018-10-24 2020-04-30 日本製鉄株式会社 Apparatus for visualizing flow of molten steel, method for visualizing flow of molten steel, and computer program
CN113423521A (en) * 2019-02-19 2021-09-21 杰富意钢铁株式会社 Control method for continuous casting machine, control device for continuous casting machine, and method for manufacturing cast slab
EP3928890A4 (en) * 2019-02-19 2022-04-06 JFE Steel Corporation Control method for continuous casting machine, control device for continuous casing machine, and manufacturing method for cast slab
CN114466716A (en) * 2019-10-03 2022-05-10 杰富意钢铁株式会社 Device for estimating thickness of solidified shell in mold, method for estimating thickness of solidified shell in mold, and method for continuously casting steel

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017159363A (en) * 2016-03-02 2017-09-14 Jfeスチール株式会社 Estimation method and device for molten steel flow state, online display device for molten steel flow state, and continuous casting method for steel
JP2019177421A (en) * 2016-03-02 2019-10-17 Jfeスチール株式会社 Flow state estimation method for molten steel, flow state estimation device, online display device for flow state of molten steel, and continuous casting method for steel
CN105855495A (en) * 2016-04-07 2016-08-17 马鞍山尚元冶金科技有限公司 Determination method for casting blank solidification structure
CN105855495B (en) * 2016-04-07 2017-06-16 马鞍山尚元冶金科技有限公司 A kind of determination method of casting blank solidification structure
JP2020066026A (en) * 2018-10-24 2020-04-30 日本製鉄株式会社 Apparatus for visualizing flow of molten steel, method for visualizing flow of molten steel, and computer program
JP7107160B2 (en) 2018-10-24 2022-07-27 日本製鉄株式会社 Molten steel flow visualization device, molten steel flow visualization method, and computer program
CN113423521A (en) * 2019-02-19 2021-09-21 杰富意钢铁株式会社 Control method for continuous casting machine, control device for continuous casting machine, and method for manufacturing cast slab
EP3928890A4 (en) * 2019-02-19 2022-04-06 JFE Steel Corporation Control method for continuous casting machine, control device for continuous casing machine, and manufacturing method for cast slab
CN113423521B (en) * 2019-02-19 2023-12-01 杰富意钢铁株式会社 Control method for continuous casting machine, control device for continuous casting machine, and method for producing cast piece
US11890671B2 (en) 2019-02-19 2024-02-06 Jfe Steel Corporation Control method for continuous casting machine, control device for continuous casting machine, and manufacturing method for casting
CN114466716A (en) * 2019-10-03 2022-05-10 杰富意钢铁株式会社 Device for estimating thickness of solidified shell in mold, method for estimating thickness of solidified shell in mold, and method for continuously casting steel
CN114466716B (en) * 2019-10-03 2023-09-08 杰富意钢铁株式会社 Device for estimating thickness of solidified shell in mold, method for estimating thickness of solidified shell in mold, and method for continuously casting steel

Also Published As

Publication number Publication date
JP3607882B2 (en) 2005-01-05

Similar Documents

Publication Publication Date Title
JP6430467B2 (en) Slab quality prediction apparatus and method
Szekely et al. Flow pattern velocity and turbulence energy measurements and predictions in a water model of an argon-stirred ladle
Thomas et al. Comparison of four methods to evaluate fluid velocities in a continuous slab casting mold
JP5505086B2 (en) Method, apparatus and program for estimating state in mold in continuous casting
JP6816794B2 (en) Flow state estimation method of molten steel, flow state estimation device, online display device of flow state of molten steel and continuous casting method of steel
Chakraborty et al. Estimation of surface heat flux in continuous casting mould with limited measurement of temperature
JP3607882B2 (en) Solidified shell thickness, molten steel flow velocity, slab quality sensing method and apparatus throughout the continuous casting mold.
JP4105839B2 (en) In-mold casting abnormality detection method in continuous casting
JP3230513B2 (en) Method of estimating molten steel flow velocity in continuous casting mold, quality control method in continuous casting of steel, and continuous casting method of steel
JP2003001386A (en) Estimation method for temperature distribution, flow rate distribution and flow rate vector distribution inside continuous casting mold, and their visualization apparatus
WO2016060164A1 (en) Device, method, and program for detecting molten-metal surface level in continuous casting mold
JP6471632B2 (en) Mold level estimation method, level level control method and apparatus in mold
JP7335499B2 (en) Continuous casting mold visualization device, method, and program
Miłkowska-Piszczek et al. Applying a numerical model of the continuous steel casting process to control the length of the liquid core in the strand
JP4081399B2 (en) Slag outflow detection device, slag outflow detection method, computer-readable storage medium, and computer program
JP3537625B2 (en) Method and apparatus for measuring solidified shell thickness in continuous casting
JP5408040B2 (en) Continuous casting method, continuous casting control device and program
Velicka et al. Mach u
JP5418411B2 (en) Continuous casting method, continuous casting control device and program
Pütz et al. Investigations of unsteady and asymmetric flow phenomena in continuous casting moulds by advanced simulation techniques
JP5861668B2 (en) Apparatus for estimating final solidification position of continuous cast slab and method for producing continuous cast slab
Hou et al. Domination and effect of multi-parameters in direct chill casting based on establishment of thermo model by numerical simulation and experiment
JP2021041452A (en) Continuous casting mold interior visualization device, method, and program
JP2020093286A (en) Apparatus and method for visualizing molten steel flow, and computer program
JP2004268122A (en) Method and device for detecting flow-out of slag, recording medium readable with computer and computer program

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040928

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041008

R151 Written notification of patent or utility model registration

Ref document number: 3607882

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071015

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081015

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091015

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101015

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101015

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111015

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111015

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121015

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121015

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 9

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees