JP6816794B2 - Flow state estimation method of molten steel, flow state estimation device, online display device of flow state of molten steel and continuous casting method of steel - Google Patents
Flow state estimation method of molten steel, flow state estimation device, online display device of flow state of molten steel and continuous casting method of steel Download PDFInfo
- Publication number
- JP6816794B2 JP6816794B2 JP2019123058A JP2019123058A JP6816794B2 JP 6816794 B2 JP6816794 B2 JP 6816794B2 JP 2019123058 A JP2019123058 A JP 2019123058A JP 2019123058 A JP2019123058 A JP 2019123058A JP 6816794 B2 JP6816794 B2 JP 6816794B2
- Authority
- JP
- Japan
- Prior art keywords
- molten steel
- calculated
- external force
- temperature distribution
- flow velocity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910000831 Steel Inorganic materials 0.000 title claims description 193
- 239000010959 steel Substances 0.000 title claims description 193
- 238000000034 method Methods 0.000 title claims description 52
- 238000009749 continuous casting Methods 0.000 title claims description 16
- 238000009826 distribution Methods 0.000 claims description 185
- 238000004364 calculation method Methods 0.000 claims description 56
- 238000010206 sensitivity analysis Methods 0.000 claims description 17
- 238000005266 casting Methods 0.000 claims description 10
- 238000012417 linear regression Methods 0.000 claims description 2
- 238000007599 discharging Methods 0.000 claims 2
- 238000010586 diagram Methods 0.000 description 28
- 230000010365 information processing Effects 0.000 description 8
- 230000005499 meniscus Effects 0.000 description 6
- 238000012821 model calculation Methods 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- 230000002123 temporal effect Effects 0.000 description 4
- 230000007547 defect Effects 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Landscapes
- Continuous Casting (AREA)
Description
本発明は、溶鋼の流動状態推定方法、流動状態推定装置、溶鋼の流動状態のオンライン表示装置および鋼の連続鋳造方法に関する。 The present invention relates to a flow state estimation method for molten steel, a flow state estimation device, an online display device for the flow state of molten steel, and a continuous steel casting method.
連続鋳造機において、溶鋼は、タンディッシュから連続的に注がれ、水冷管が埋設された鋳型により冷却され、鋳型の下部から引き抜かれる。その際、マスバランスを保証するため、引き抜き速度に応じてノズルの開度が調整される。このような構造の連続鋳造機内において、特に高速な鋳造を行う場合、ノズルの吐出口からの溶鋼の噴流が不安定化しやすく、左右の吐出口からの吐出流が不均一となる偏流とよばれる現象が生じる場合がある。鉄鋼各社において、このような不安定性を低減すべく、モールドの外部から磁場を印加することにより溶鋼にブレーキ力を与える流動制御装置が導入されている。また、凝固シェル表面にトラップされた介在物や気泡を洗い流すために、溶鋼に攪拌力を与える動磁場を印加する流動制御装置の導入も進んでいる。 In a continuous casting machine, molten steel is continuously poured from a tundish, cooled by a mold in which a water cooling pipe is embedded, and drawn from the bottom of the mold. At that time, in order to guarantee the mass balance, the opening degree of the nozzle is adjusted according to the pulling speed. In a continuous casting machine with such a structure, especially when high-speed casting is performed, the jet flow of molten steel from the nozzle discharge port tends to become unstable, and the discharge flow from the left and right discharge ports becomes uneven, which is called drift flow. Phenomena may occur. In order to reduce such instability, steel companies have introduced flow control devices that apply a braking force to molten steel by applying a magnetic field from the outside of the mold. In addition, a flow control device that applies a dynamic magnetic field that gives a stirring force to the molten steel is being introduced in order to wash away inclusions and air bubbles trapped on the surface of the solidified shell.
従来、このような溶鋼の流動制御装置を設計するために、例えば特許文献1に記載されているように、水モデル実験や数値計算により流動状態の解析が行われている。しかしながら、特許文献1に記載の技術によれば、モデル計算の解析結果と実現象とにおける流動状態の照合は、定常操業における数点のデータについてのみにとどまっている。一方、実際の設備では、ノズルの閉塞やアルゴンガスの乱れ、ノズルの開度による境界条件の乱れ等、様々な外乱が存在する。このような外乱の影響を考慮して、オンラインで溶鋼の流動状態を推定し制御を行うことができれば、製品の品質向上につながると考えられる。 Conventionally, in order to design such a flow control device for molten steel, as described in Patent Document 1, for example, the flow state is analyzed by a water model experiment or numerical calculation. However, according to the technique described in Patent Document 1, the collation of the flow state between the analysis result of the model calculation and the actual phenomenon is limited to only a few points of data in the steady operation. On the other hand, in actual equipment, there are various disturbances such as nozzle blockage, disturbance of argon gas, and disturbance of boundary conditions due to nozzle opening. If the flow state of molten steel can be estimated and controlled online in consideration of the effects of such disturbances, it will lead to improvement in product quality.
このような背景から、溶鋼の流動状態をオンラインで推定する技術が提案されている。例えば、特許文献2〜4には、鋳型に埋設された熱電対により測定された溶鋼の温度から換算することにより流動状態を推定する技術が記載されている。 Against this background, a technique for estimating the flow state of molten steel online has been proposed. For example, Patent Documents 2 to 4 describe a technique for estimating a flow state by converting from the temperature of molten steel measured by a thermocouple embedded in a mold.
しかしながら、特許文献2〜4に記載されているように溶鋼の温度から換算して溶鋼の流動状態を推定する技術は、鋳型近傍の凝固界面に限り適用できるため、鋳型内全体の三次元での溶鋼の流動状態を推定することができない。 However, since the technique of estimating the flow state of the molten steel by converting it from the temperature of the molten steel as described in Patent Documents 2 to 4 can be applied only to the solidification interface near the mold, the whole inside the mold can be three-dimensionally applied. The flow state of molten steel cannot be estimated.
本発明は、上記課題に鑑みてなされたものであって、その目的は、オンラインで鋳型内全体の三次元での溶鋼の流動状態を推定することが可能な溶鋼の流動状態推定方法、流動状態推定装置、溶鋼の流動状態のオンライン表示装置および鋼の連続鋳造方法を提供することにある。 The present invention has been made in view of the above problems, and an object of the present invention is a method for estimating the flow state of molten steel, which can estimate the flow state of molten steel in three dimensions in the entire mold online, and the flow state. It is an object of the present invention to provide an estimation device, an online display device for the flow state of molten steel, and a method for continuous casting of steel.
上述した課題を解決し、目的を達成するために、本発明に係る溶鋼の流動状態推定方法は、連続鋳造機の鋳型内の溶鋼の流動状態を予め定めたタイムステップごとに推定する溶鋼の流動状態推定方法であって、非定常の乱流モデルを用いて、前記鋳型内に設置されたセンサの位置における前記溶鋼の流速分布を算出する流速分布算出ステップと、前記流速分布算出ステップで算出した前記溶鋼の流速分布から、前記鋳型内に設置されたセンサの位置における前記溶鋼の温度分布を算出する温度分布算出ステップと、前記非定常の乱流モデル上において、前記鋳型内に前記溶鋼を吐出するノズル近傍に印加される外力が変化した場合の、前記溶鋼の流速分布を算出し、該算出した前記溶鋼の流速分布から、外力変化時の前記溶鋼の温度分布を算出する外力変化時温度分布算出ステップと、前記外力変化時温度分布算出ステップで算出した前記溶鋼の温度分布に対する、前記温度分布算出ステップで算出した前記溶鋼の温度分布の差分を算出する感度解析ステップと、前記センサにより測定された前記溶鋼の温度分布と、前記温度分布算出ステップで算出した前記溶鋼の温度分布との誤差を算出し、該算出した前記誤差と、前記感度解析ステップで算出した前記差分とに基づいて、前記誤差に対応する外力の変化量を算出する外力変化量算出ステップと、を含み、次のタイムステップにおける流速分布算出ステップにおいて、前記流速分布算出ステップで用いた外力に、前記外力変化量算出ステップで算出した前記外力の変化量を加算した上で新たな外力とし、前記非定常の乱流モデルを用いて、前記溶鋼の流速分布を再度算出することにより、前記溶鋼の流動状態をタイムステップごとに推定することを特徴とする。 In order to solve the above-mentioned problems and achieve the object, the method for estimating the flow state of molten steel according to the present invention estimates the flow state of molten steel in a mold of a continuous casting machine at predetermined time steps. It is a state estimation method, and is calculated by a flow velocity distribution calculation step for calculating the flow velocity distribution of the molten steel at the position of a sensor installed in the mold and a flow velocity distribution calculation step for calculating the flow velocity distribution using a non-stationary turbulence model. The molten steel is discharged into the mold on the temperature distribution calculation step of calculating the temperature distribution of the molten steel at the position of the sensor installed in the mold from the flow velocity distribution of the molten steel and the non-stationary turbulent flow model. The flow velocity distribution of the molten steel when the external force applied in the vicinity of the nozzle is changed is calculated, and the temperature distribution of the molten steel at the time of the change in the external force is calculated from the calculated flow velocity distribution of the molten steel. Measured by the sensor, a sensitivity analysis step for calculating the difference between the calculation step, the temperature distribution of the molten steel calculated in the temperature distribution calculation step when the external force changes, and the temperature distribution of the molten steel calculated in the temperature distribution calculation step. The error between the temperature distribution of the molten steel and the temperature distribution of the molten steel calculated in the temperature distribution calculation step is calculated, and based on the calculated error and the difference calculated in the sensitivity analysis step, the said In the flow velocity distribution calculation step in the next time step, including the external force change amount calculation step for calculating the change amount of the external force corresponding to the error, the external force used in the flow velocity distribution calculation step is added to the external force change amount calculation step. By adding the calculated change amount of the external force to obtain a new external force and recalculating the flow velocity distribution of the molten steel using the non-stationary turbulent flow model, the flow state of the molten steel is changed for each time step. It is characterized by estimating.
また、本発明に係る溶鋼の流動状態推定方法は、上記発明において、前記外力変化量算出ステップが、前記誤差を、前記感度解析ステップで算出した前記差分によって線形回帰分析することにより、前記外力の変化量を算出することを特徴とする。 Further, in the method for estimating the flow state of molten steel according to the present invention, in the above invention, the external force change amount calculation step linearly regressions the error with the difference calculated in the sensitivity analysis step to obtain the external force. It is characterized by calculating the amount of change.
また、本発明に係る溶鋼の流動状態推定方法は、上記発明において、前記センサが、熱電対であることを特徴とする。 Further, the method for estimating the flow state of molten steel according to the present invention is characterized in that, in the above invention, the sensor is a thermocouple.
上述した課題を解決し、目的を達成するために、本発明に係る溶鋼の流動状態推定装置は、連続鋳造機の鋳型内の溶鋼の流動状態を予め定めたタイムステップごとに推定する溶鋼の流動状態推定装置であって、非定常の乱流モデルを用いて、前記鋳型内に設置されたセンサの位置における前記溶鋼の流速分布を算出する流速分布算出手段と、前記流速分布算出手段で算出した前記溶鋼の流速分布から、前記鋳型内に設置されたセンサの位置における前記溶鋼の温度分布を算出する温度分布算出手段と、前記非定常の乱流モデル上において、前記鋳型内に前記溶鋼を吐出するノズル近傍に印加される外力が変化した場合の、前記溶鋼の流速分布を算出し、該算出した前記溶鋼の流速分布から、外力変化時の前記溶鋼の温度分布を算出する外力変化時温度分布算出手段と、前記外力変化時温度分布算出手段で算出した前記溶鋼の温度分布に対する、前記温度分布算出手段で算出した前記溶鋼の温度分布の差分を算出する感度解析手段と、前記センサにより測定された前記溶鋼の温度分布と、前記温度分布算出手段で算出した前記溶鋼の温度分布との誤差を算出し、該算出した前記誤差と、前記感度解析手段で算出した前記差分とに基づいて、前記誤差に対応する外力の変化量を算出する外力変化量算出手段と、を含み、次のタイムステップにおける流速分布の算出において、前記流速分布算出手段で用いた外力に、前記外力変化量算出手段で算出した前記外力の変化量を加算した上で新たな外力とし、前記非定常の乱流モデルを用いて、前記溶鋼の流速分布を再度算出することにより、前記溶鋼の流動状態をタイムステップごとに推定することを特徴とする。 In order to solve the above-mentioned problems and achieve the object, the molten steel flow state estimation device according to the present invention estimates the flow state of the molten steel in the mold of the continuous casting machine at predetermined time steps. It is a state estimation device, and it is calculated by the flow velocity distribution calculation means for calculating the flow velocity distribution of the molten steel at the position of the sensor installed in the mold and the flow velocity distribution calculation means using a non-stationary turbulence model. The molten steel is discharged into the mold on the temperature distribution calculation means for calculating the temperature distribution of the molten steel at the position of the sensor installed in the mold from the flow velocity distribution of the molten steel and the non-stationary turbulent flow model. The flow velocity distribution of the molten steel when the external force applied in the vicinity of the nozzle is changed is calculated, and the temperature distribution of the molten steel at the time of change in the external force is calculated from the calculated flow velocity distribution of the molten steel. Measured by the calculation means, the sensitivity analysis means for calculating the difference in the temperature distribution of the molten steel calculated by the temperature distribution calculation means with respect to the temperature distribution of the molten steel calculated by the temperature distribution calculation means at the time of change in external force, and the sensor. The error between the temperature distribution of the molten steel and the temperature distribution of the molten steel calculated by the temperature distribution calculation means is calculated, and based on the calculated error and the difference calculated by the sensitivity analysis means, the said In the calculation of the flow velocity distribution in the next time step, the external force used in the flow velocity distribution calculation means is added to the external force change amount calculation means for calculating the change amount of the external force corresponding to the error. By adding the calculated change amount of the external force to obtain a new external force and recalculating the flow velocity distribution of the molten steel using the non-stationary turbulent flow model, the flow state of the molten steel is changed for each time step. It is characterized by estimating.
上述した課題を解決し、目的を達成するために、本発明に係る溶鋼の流動状態のオンライン表示装置は、前記した溶鋼の流動状態推定装置を用いることを特徴とする。 In order to solve the above-mentioned problems and achieve the object, the online display device for the flow state of molten steel according to the present invention is characterized by using the above-mentioned flow state estimation device for molten steel.
上述した課題を解決し、目的を達成するために、本発明に係る鋼の連続鋳造方法は、前記した溶鋼の流動状態推定方法によって推定した前記溶鋼の流動状態を用いることを特徴とする。 In order to solve the above-mentioned problems and achieve the object, the method for continuously casting steel according to the present invention is characterized by using the flow state of the molten steel estimated by the method for estimating the flow state of the molten steel.
本発明に係る溶鋼の流動状態推定方法、流動状態推定装置、溶鋼の流動状態のオンライン表示装置および鋼の連続鋳造方法によれば、オンラインで鋳型内全体の三次元での溶鋼の流動状態を推定することができる。 According to the molten steel flow state estimation method, the flow state estimation device, the molten steel flow state online display device, and the steel continuous casting method according to the present invention, the molten steel flow state is estimated online in three dimensions throughout the mold. can do.
以下、本発明に係る溶鋼の流動状態推定方法、流動状態推定装置、溶鋼の流動状態のオンライン表示装置および鋼の連続鋳造方法の実施形態について、図面を参照しながら説明する。なお、本発明は以下の実施形態に限定されるものではない。また、以下の実施形態における構成要素には、当業者が置換可能かつ容易なもの、あるいは実質的に同一のものが含まれる。 Hereinafter, embodiments of a molten steel flow state estimation method, a flow state estimation device, an online display device for the molten steel flow state, and a continuous steel casting method according to the present invention will be described with reference to the drawings. The present invention is not limited to the following embodiments. In addition, the components in the following embodiments include those that can be easily replaced by those skilled in the art, or those that are substantially the same.
〔連続鋳造機の構成〕
まず、本発明が適用される連続鋳造機の構成例について、図1を参照しながら説明する。連続鋳造機1は、溶鋼2が満たされたタンディッシュ3と、タンディッシュ3の鉛直方向下方に設けられた鋳型4と、タンディッシュ3の底部に設けられ、鋳型4への溶鋼2の供給口となるノズル5と、を備えている。溶鋼2は、タンディッシュ3から連続的に鋳型4に注がれ、水冷管が埋設された鋳型4により冷却され、鋳型4の下部から引き抜かれてスラブとなる。そしてその際、マスバランスを保証するために、引き抜き速度に応じてノズル5の開度が調整される。
[Construction of continuous casting machine]
First, a configuration example of a continuous casting machine to which the present invention is applied will be described with reference to FIG. The continuous casting machine 1 is provided with a tundish 3 filled with molten steel 2, a mold 4 provided vertically below the tundish 3, and a supply port for the molten steel 2 to the mold 4 provided at the bottom of the tundish 3. The nozzle 5 and the like are provided. The molten steel 2 is continuously poured from the tundish 3 into the mold 4, cooled by the mold 4 in which the water cooling pipe is embedded, and pulled out from the lower part of the mold 4 to form a slab. At that time, in order to guarantee the mass balance, the opening degree of the nozzle 5 is adjusted according to the pulling speed.
鋳型4には、図2に示すように、鋳造されるスラブの厚み方向(紙面に垂直な方向)の両端となるF面およびB面に、複数の熱電対(センサ)41が設置される。各熱電対41は、各設置位置での溶鋼2の温度を測定する。本実施の形態では、高さ方向に2段、幅方向に10個の熱電対41が鋳型4に埋設されている。また、鋳型4には、湯面を回転させる撹拌磁場を発生させるための、図示しないコイルが設置されている。 As shown in FIG. 2, a plurality of thermocouples (sensors) 41 are installed in the mold 4 on the F surface and the B surface which are both ends in the thickness direction (direction perpendicular to the paper surface) of the slab to be cast. Each thermocouple 41 measures the temperature of the molten steel 2 at each installation position. In the present embodiment, two thermocouples 41 in the height direction and 10 thermocouples 41 in the width direction are embedded in the mold 4. Further, the mold 4 is provided with a coil (not shown) for generating a stirring magnetic field for rotating the molten metal surface.
〔溶鋼の流動状態を算出するための物理モデル〕
次に、本発明の実施形態に係る溶鋼2の流動状態推定装置による流動状態推定方法(流動状態推定処理)で用いる物理モデルについて説明する。本発明の実施形態に係る溶鋼2の流動状態推定方法では、溶鋼2の流動状態(具体的には流速分布、温度分布)は、非定常の乱流モデルによって算出される。具体的には、鋳造速度、スラブの寸法(幅、厚み)、撹拌磁場のコイル電流、ノズル5の吐出口51(後記図8参照)の角度等の操業条件を入力条件として、乱流モデルの標準k−εモデルを用いて溶鋼2の流動状態を算出する。
[Physical model for calculating the flow state of molten steel]
Next, the physical model used in the flow state estimation method (flow state estimation process) by the flow state estimation device of the molten steel 2 according to the embodiment of the present invention will be described. In the method for estimating the flow state of the molten steel 2 according to the embodiment of the present invention, the flow state (specifically, the flow velocity distribution and the temperature distribution) of the molten steel 2 is calculated by an unsteady turbulent flow model. Specifically, the turbulent flow model is based on operating conditions such as casting speed, slab dimensions (width, thickness), coil current of stirring magnetic field, and angle of nozzle 5 discharge port 51 (see FIG. 8 below). The flow state of the molten steel 2 is calculated using the standard k-ε model.
また、非定常の乱流モデルによって溶鋼2の流動状態を算出する際に、図3に示すような境界条件が設定される。すなわち、流入部では、設定された鋳造速度に応じたマスフローに相当する流速が与えられる。また、流出部では、流れ方向に各種物理量の勾配がないものとする自由流出境界条件が仮定される。そして、鋳型4の内壁は、鋳造速度と等速度で移動する固体壁とされる。 Further, when calculating the flow state of the molten steel 2 by the unsteady turbulent flow model, the boundary conditions as shown in FIG. 3 are set. That is, in the inflow portion, a flow velocity corresponding to the mass flow corresponding to the set casting speed is given. Further, in the outflow portion, a free outflow boundary condition is assumed in which there is no gradient of various physical quantities in the flow direction. The inner wall of the mold 4 is a solid wall that moves at the same speed as the casting speed.
図4および図5は、このようにして算出された溶鋼2の流速分布を例示する図である。具体的には、図4は、鋳造されるスラブの厚み方向の中央の断面における溶鋼2の流速分布を、図5は、鋳造されるスラブの厚み方向の鋳型4近傍における溶鋼2の流速分布を示している。また、図4および図5において、縦軸は鋳型4の高さ位置を、横軸は鋳型4の長辺方向の位置を、右側のゲージは色が最も薄い部分を100%とする流速を示している。 4 and 5 are diagrams illustrating the flow velocity distribution of the molten steel 2 calculated in this way. Specifically, FIG. 4 shows the flow velocity distribution of the molten steel 2 in the central cross section in the thickness direction of the cast slab, and FIG. 5 shows the flow velocity distribution of the molten steel 2 in the vicinity of the mold 4 in the thickness direction of the cast slab. Shown. Further, in FIGS. 4 and 5, the vertical axis indicates the height position of the mold 4, the horizontal axis indicates the position in the long side direction of the mold 4, and the gauge on the right side indicates the flow velocity with the lightest color portion as 100%. ing.
また、凝固界面の流速に応じて溶鋼2と凝固シェルとの熱伝達係数は変化し、鋳型4の熱電対41の位置での温度の変化に反映される(特許文献4参照)。そこで、本実施の形態では、乱流モデルにより算出された溶鋼2の流速分布を温度分布に換算することにより温度分布が算出される。具体的には、特許文献4に記載されている温度から流速への換算則を逆方向に用い、それぞれの熱電対41の位置における流速絶対値を温度換算することにより推定温度を算出する。 Further, the heat transfer coefficient between the molten steel 2 and the solidified shell changes according to the flow velocity at the solidified interface, and is reflected in the temperature change at the position of the thermocouple 41 of the mold 4 (see Patent Document 4). Therefore, in the present embodiment, the temperature distribution is calculated by converting the flow velocity distribution of the molten steel 2 calculated by the turbulence model into the temperature distribution. Specifically, the estimated temperature is calculated by converting the absolute value of the flow velocity at the position of each thermocouple 41 into temperature by using the conversion rule from the temperature to the flow velocity described in Patent Document 4 in the opposite direction.
図6および図7は、このようにして算出された溶鋼2の温度分布を例示する図である。具体的には、図6および図7は、図5に示した溶鋼2の流速分布から換算された、鋳造されるスラブの厚み方向の鋳型4近傍における温度分布を示している。なお、これらの図において、横軸は、図2に示した2行×10列の熱電対41の位置に対応しており、左から1〜10の熱電対設置の位置番号を示している。また、以降の説明において、熱電対位置での温度分布を示す際は同様の軸を用いる。 6 and 7 are diagrams illustrating the temperature distribution of the molten steel 2 calculated in this way. Specifically, FIGS. 6 and 7 show the temperature distribution in the vicinity of the mold 4 in the thickness direction of the slab to be cast, which is converted from the flow velocity distribution of the molten steel 2 shown in FIG. In these figures, the horizontal axis corresponds to the position of the thermocouple 41 in 2 rows × 10 columns shown in FIG. 2, and indicates the position numbers of the thermocouple installations 1 to 10 from the left. Further, in the following description, the same axis is used when showing the temperature distribution at the thermocouple position.
〔温度分布の測定値と算出値との誤差の補償〕
本発明では、上記の物理モデル(乱流モデル)により算出された温度分布と熱電対41により測定された温度分布とを照合する。そして、その誤差を後述する流動状態推定方法によって補償することにより、溶鋼2の流動状態を推定する。
[Compensation for error between measured and calculated temperature distribution]
In the present invention, the temperature distribution calculated by the above physical model (turbulence model) is compared with the temperature distribution measured by the thermocouple 41. Then, the flow state of the molten steel 2 is estimated by compensating for the error by the flow state estimation method described later.
ここで、上記の物理モデルにより算出された温度分布と熱電対41により測定された温度分布との誤差(差分)は、主にノズル5の付着物による閉塞等の形状変化(ノズル5近傍の境界条件)に由来するものと考えられる。ここで、ノズル5から吐出された溶鋼2は流動の運動方程式に従うものと仮定する。 Here, the error (difference) between the temperature distribution calculated by the above physical model and the temperature distribution measured by the thermocouple 41 is mainly a shape change such as blockage due to deposits on the nozzle 5 (boundary near the nozzle 5). Condition) is considered to be derived. Here, it is assumed that the molten steel 2 discharged from the nozzle 5 follows the equation of motion of the flow.
そこで、本実施形態では、ノズル5の吐出口51における様々な外乱を表現するための手段として、吐出口51の近傍に外力を印加する。具体的には、図8に示すように、ノズル5の左右の吐出口51のそれぞれの近傍に、向きと大きさがそれぞれ等しい水平方向の外力Fx(+Fx(左),+Fx(右))を印加する。そして、外力の変化による温度分布変化の感度を解析し、その感度解析結果に基づいて物理モデル上で誤差を補償する。 Therefore, in the present embodiment, an external force is applied in the vicinity of the discharge port 51 as a means for expressing various disturbances at the discharge port 51 of the nozzle 5. Specifically, as shown in FIG. 8, horizontal external forces Fx (+ Fx (left), + Fx (right)) having the same orientation and magnitude are applied in the vicinity of the left and right discharge ports 51 of the nozzle 5. Apply. Then, the sensitivity of the temperature distribution change due to the change of the external force is analyzed, and the error is compensated on the physical model based on the sensitivity analysis result.
〔流動状態推定装置の構成〕
本発明の実施形態に係る溶鋼2の流動状態推定装置100の構成について、図9を参照しながら説明する。流動状態推定装置100は、情報処理装置101と、入力装置102と、出力装置103と、を備えている。
[Configuration of flow state estimation device]
The configuration of the flow state estimation device 100 for the molten steel 2 according to the embodiment of the present invention will be described with reference to FIG. The flow state estimation device 100 includes an information processing device 101, an input device 102, and an output device 103.
情報処理装置101は、パーソナルコンピュータやワークステーション等の汎用の装置によって構成され、RAM111、ROM112およびCPU113を備えている。RAM111は、CPU113が実行する処理に関する制御プログラムや制御データを一時的に記憶し、CPU113のワーキングエリアとして機能する。 The information processing device 101 is composed of a general-purpose device such as a personal computer or a workstation, and includes a RAM 111, a ROM 112, and a CPU 113. The RAM 111 temporarily stores control programs and control data related to the processing executed by the CPU 113, and functions as a working area of the CPU 113.
ROM112は、本発明の実施形態に係る溶鋼2の流動状態推定方法を実行する推定プログラム112aと情報処理装置101全体の動作を制御する制御プログラムと制御データとを記憶している。 The ROM 112 stores an estimation program 112a that executes the method for estimating the flow state of the molten steel 2 according to the embodiment of the present invention, a control program that controls the operation of the entire information processing apparatus 101, and control data.
CPU113は、ROM112内に記憶されている推定プログラム112aおよび制御プログラムに従って情報処理装置101全体の動作を制御する。CPU113は、具体的には、後述するように、入力された操業情報と既知の物理モデルとに基づいて流速分布を算出し、算出された流速分布を温度分布に変換することにより、温度分布を算出する。そして、CPU113は、算出された温度分布と、鋳型4内に埋設された熱電対41により実測された温度分布との差分を解析することにより、溶鋼2の流動状態を推定する。また、CPU113は、後記する流動状態推定方法において、温度分布算出ステップを行う温度分布算出手段、感度解析ステップを行う感度解析手段、誤差算出ステップを行う誤差算出手段、外力変化量算出ステップを行う外力変化量算出手段として機能する(図10参照)。 The CPU 113 controls the operation of the entire information processing apparatus 101 according to the estimation program 112a and the control program stored in the ROM 112. Specifically, as will be described later, the CPU 113 calculates the flow velocity distribution based on the input operation information and the known physical model, and converts the calculated flow velocity distribution into the temperature distribution to convert the temperature distribution. calculate. Then, the CPU 113 estimates the flow state of the molten steel 2 by analyzing the difference between the calculated temperature distribution and the temperature distribution actually measured by the thermocouple 41 embedded in the mold 4. Further, in the flow state estimation method described later, the CPU 113 includes a temperature distribution calculation means for performing a temperature distribution calculation step, a sensitivity analysis means for performing a sensitivity analysis step, an error calculation means for performing an error calculation step, and an external force for performing an external force change amount calculation step. It functions as a change amount calculation means (see FIG. 10).
入力装置102は、キーボード、マウスポインタ、テンキー等の装置によって構成され、情報処理装置101に対して各種情報を入力する際に操作される。出力装置103は、表示装置や印刷装置等によって構成され、情報処理装置101の各種処理情報を出力する。 The input device 102 is composed of devices such as a keyboard, a mouse pointer, and a numeric keypad, and is operated when inputting various information to the information processing device 101. The output device 103 is composed of a display device, a printing device, and the like, and outputs various processing information of the information processing device 101.
〔流動状態推定方法〕
次に、本発明の実施形態に係る溶鋼2の流動状態推定方法の流れについて、図10を参照しながら説明する。同図に示すフローチャートは、オペレータが入力装置102を操作することによって情報処理装置101に対し流動状態推定方法の実行を指示したタイミングで開始となり、ステップS1の処理に進む。また、同図のフローチャートは、ステップS3,S6〜S10を、所定の制御周期(タイムステップk,k+1,k+2…)で、所定の繰り返し回数(nと表記する)だけ繰り返すことにより、溶鋼2の流動状態を推定する。なお、以下で説明する溶鋼2の流動状態推定方法は、CPU113によって実行され、具体的にはCPU113がROM112内に格納されている推定プログラム112aを実行することによって実現される。
[Flow state estimation method]
Next, the flow of the flow state estimation method for the molten steel 2 according to the embodiment of the present invention will be described with reference to FIG. The flowchart shown in the figure starts at the timing when the operator instructs the information processing device 101 to execute the flow state estimation method by operating the input device 102, and proceeds to the process of step S1. Further, in the flowchart of the figure, steps S3, S6 to S10 are repeated for a predetermined number of times (denoted as n) in a predetermined control cycle (time steps k, k + 1, k + 2 ...), whereby the molten steel 2 is formed. Estimate the flow state. The flow state estimation method for the molten steel 2 described below is executed by the CPU 113, and specifically, the CPU 113 is realized by executing the estimation program 112a stored in the ROM 112.
まず、CPU113は、図示しない外部DBから、入力装置102を介して、鋳造速度、スラブの寸法(幅、厚み)、撹拌磁場のコイル電流、ノズル5の吐出口51の角度等の操業条件を入力する(ステップS1)。続いて、CPU113は、カウンタ変数iを0に初期化する(ステップS2)。 First, the CPU 113 inputs operating conditions such as a casting speed, slab dimensions (width and thickness), a coil current of a stirring magnetic field, and an angle of a discharge port 51 of a nozzle 5 from an external DB (not shown) via an input device 102. (Step S1). Subsequently, the CPU 113 initializes the counter variable i to 0 (step S2).
続いて、CPU113は、上記操業条件を入力条件として、非定常の乱流モデル(標準k−εモデル)を用いて現在の溶鋼2の流速分布と温度分布とを算出する(ステップS3、温度分布算出ステップ)。すなわち、CPU113は、乱流モデルによって、鋳型4内に設置された熱電対41の位置における溶鋼2の流速分布と温度分布を算出する。 Subsequently, the CPU 113 calculates the current flow velocity distribution and temperature distribution of the molten steel 2 using an unsteady turbulent flow model (standard k-ε model) with the above operating conditions as input conditions (step S3, temperature distribution). Calculation step). That is, the CPU 113 calculates the flow velocity distribution and the temperature distribution of the molten steel 2 at the position of the thermocouple 41 installed in the mold 4 by the turbulent flow model.
本ステップでは、具体的には、タイムステップk−1における流速分布U(k−1)、ステップS1における操業条件a(k)、外力F(k)を入力として、以下の式(1)により、タイムステップk(=現在)の溶鋼2の流速分布U(k)を算出、出力する。なお、以下の式(1)におけるfuncは、乱流モデルを離散化した関数である。 Specifically, in this step, the flow velocity distribution U (k-1) in the time step k-1, the operating condition a (k) in the step S1, and the external force F (k) are input, and the following equation (1) is used. , The flow velocity distribution U (k) of the molten steel 2 in the time step k (= current) is calculated and output. Note that func in the following equation (1) is a function that discretizes the turbulence model.
そして、CPU113は、以下の式(2)により、タイムステップk(=現在)の溶鋼2の温度分布T(k)を算出する。なお、以下の式(2)におけるU2Tは、流速分布Uを温度分布Tに変換する関数である。また、本ステップにおいて算出される溶鋼2の温度分布は、例えば図6および図7のようなものとなる。 Then, the CPU 113 calculates the temperature distribution T (k) of the molten steel 2 in the time step k (= present) by the following equation (2). U2T in the following equation (2) is a function that converts the flow velocity distribution U into the temperature distribution T. Further, the temperature distribution of the molten steel 2 calculated in this step is as shown in FIGS. 6 and 7, for example.
続いて、CPU113は、カウンタ変数iをi+1とする(ステップS4)。続いて、CPU113は、カウンタ変数iが所定の繰り返し回数nに達しているか否かを判定する(ステップS5)。そして、所定の繰り返し回数nに達している場合(ステップS5でYes)処理を完了し、所定の繰り返し回数nに達していない場合(ステップS5でNo)、ステップS6の処理に進む。なお、繰り返し回数nは、連続鋳造機の操業停止タイミングにより決定される。 Subsequently, the CPU 113 sets the counter variable i to i + 1 (step S4). Subsequently, the CPU 113 determines whether or not the counter variable i has reached the predetermined number of repetitions n (step S5). Then, when the predetermined number of repetitions n has been reached (Yes in step S5), the process is completed, and when the predetermined number of repetitions n has not been reached (No in step S5), the process proceeds to step S6. The number of repetitions n is determined by the timing at which the continuous casting machine is stopped.
続いて、CPU113は、非定常の乱流モデルを用いて外力変化時の溶鋼2の流速分布と温度分布とを算出する(ステップS6)。本ステップでは、具体的には以下の式(3)により、図8で示した水平方向における左右に外力+Fx(左),+Fx(右)(以下、まとめて外力Fという)を印加している状態において、当該外力Fを単位量ΔFだけ変化させた場合の溶鋼2の流速分布U1(k)を算出する。そして、以下の式(4)により、外力Fを単位量ΔFだけ変化させた場合の溶鋼2の温度分布T1(k)を算出する。 Subsequently, the CPU 113 calculates the flow velocity distribution and the temperature distribution of the molten steel 2 when the external force changes using the unsteady turbulence model (step S6). Specifically, in this step, external force + Fx (left) and + Fx (right) (hereinafter collectively referred to as external force F) are applied to the left and right in the horizontal direction shown in FIG. 8 by the following equation (3). In the state, the flow velocity distribution U 1 (k) of the molten steel 2 when the external force F is changed by the unit amount ΔF is calculated. Then, the temperature distribution T 1 (k) of the molten steel 2 when the external force F is changed by the unit amount ΔF is calculated by the following equation (4).
続いて、CPU113は、ノズル5の吐出口51の近傍に印加される外力が変化した場合(外力変化時)の温度分布の算出値と、現在(外力未変化時)の温度分布の算出値との差分を算出する(ステップS7、感度解析ステップ)。本ステップでは、具体的には以下の式(5)により、ステップS6で算出した外力変化時の溶鋼2の温度分布T1(k)から、ステップS3で算出した現在の溶鋼2の温度分布T(k)を差し引くことにより、外力Fを単位量ΔFだけ変化させた場合の温度分布の変化ΔTを算出する。これにより、外力変化の影響を分離することができる。なお、このような外力変化量に対する温度分布の変化量の解析のことを感度解析という。 Subsequently, the CPU 113 includes a calculated value of the temperature distribution when the external force applied in the vicinity of the discharge port 51 of the nozzle 5 changes (when the external force changes) and a calculated value of the current temperature distribution (when the external force does not change). (Step S7, sensitivity analysis step). In this step, specifically, from the temperature distribution T 1 (k) of the molten steel 2 at the time of change in the external force calculated in step S6 by the following equation (5), the current temperature distribution T of the molten steel 2 calculated in step S3. By subtracting (k), the change ΔT of the temperature distribution when the external force F is changed by the unit amount ΔF is calculated. As a result, the influence of changes in external force can be separated. The analysis of the amount of change in the temperature distribution with respect to the amount of change in the external force is called sensitivity analysis.
図11および図12は、本ステップで算出される温度分布の差分を例示する図である。具体的には、図11は、外力変化時の溶鋼2の温度分布の算出値から外力未変化時の溶鋼2の温度分布の算出値(図6参照)を差し引いた差分を示している。また、図12は、外力変化時の溶鋼2の温度分布の算出値から外力未変化時の溶鋼2の温度分布の算出値(図7参照)を差し引いた差分を示している。 11 and 12 are diagrams illustrating the difference in temperature distribution calculated in this step. Specifically, FIG. 11 shows the difference obtained by subtracting the calculated value of the temperature distribution of the molten steel 2 when the external force does not change (see FIG. 6) from the calculated value of the temperature distribution of the molten steel 2 when the external force changes. Further, FIG. 12 shows a difference obtained by subtracting the calculated value of the temperature distribution of the molten steel 2 when the external force does not change (see FIG. 7) from the calculated value of the temperature distribution of the molten steel 2 when the external force changes.
続いて、CPU113は、現在の温度分布の測定値と、現在の温度分布の算出値との誤差を算出する(ステップS8、誤差算出ステップ)。本ステップでは、具体的には、熱電対41で測定された溶鋼2の温度分布(Tact)と、ステップS3で算出された現在の溶鋼2の温度分布(T)とを照合し、誤差を算出する。なお、本ステップは、ステップS5の後、かつステップS9の前であれば、どのタイミングで行ってもよい。 Subsequently, the CPU 113 calculates an error between the measured value of the current temperature distribution and the calculated value of the current temperature distribution (step S8, error calculation step). In this step, specifically, the temperature distribution (T act ) of the molten steel 2 measured by the thermocouple 41 is collated with the current temperature distribution (T) of the molten steel 2 calculated in step S3, and an error is obtained. calculate. In addition, this step may be performed at any timing as long as it is after step S5 and before step S9.
続いて、CPU113は、ステップS8で算出された誤差を、ステップS7で算出された感度解析結果(ΔT)で線形回帰分析し、外力の変化量を算出する(ステップS9、外力変化量算出ステップ)。本ステップでは、具体的には以下の式(6)〜式(9)に示すように、熱電対41の位置における温度分布の測定誤差をΔTで線形回帰する。そして、CPU113は、以下の式(10)に示すように、外力の変化量Fcorrectを算出する。なお、以下の式(6)、式(9)および式(10)におけるwは、回帰係数ベクトルである。 Subsequently, the CPU 113 linearly regression-analyzes the error calculated in step S8 with the sensitivity analysis result (ΔT) calculated in step S7, and calculates the amount of change in the external force (step S9, step for calculating the amount of change in the external force). .. In this step, specifically, as shown in the following equations (6) to (9), the measurement error of the temperature distribution at the position of the thermocouple 41 is linearly regressed by ΔT. Then, the CPU 113 calculates the change amount F correct of the external force as shown in the following equation (10). Note that w in the following equations (6), (9) and (10) is a regression coefficient vector.
ここで、流速分布から温度分布への換算則には、使用する2段の熱電対41の各段について、F面およびB面に共通する一定値のバイアスが存在すると仮定し、上記式(6)〜式(9)では、バイアス補正に対応する基底を用意する。すなわち、外力による1つの基底と、2段分のバイアス補正の計3つの基底により、温度分布の誤差を線形回帰する。なお、上記式(8)に示すバイアス行列Bの行数は熱電対41の総数(F面とB面との合計)とし、列数は2段の熱電対41に対応する2列とする。また、上記式(8)において、1列目は、上段の熱電対番号の要素が1、下段の熱電対番号の要素が0であり、2列目は、上段の熱電対番号の要素が0、下段の熱電対番号の要素が1である。また、上記式(10)に示すベクトル1の要素数は、各段の熱電対41の数(F面とB面との合計)とする。 Here, in the conversion rule from the flow velocity distribution to the temperature distribution, it is assumed that there is a constant value bias common to the F plane and the B plane for each stage of the two-stage thermocouple 41 to be used, and the above equation (6). )-Equation (9) prepares a basis corresponding to the bias correction. That is, the error of the temperature distribution is linearly regressed by one basis due to the external force and a total of three basises for bias correction for two steps. The number of rows of the bias matrix B shown in the above equation (8) is the total number of thermocouples 41 (the total of the F surface and the B surface), and the number of columns is two columns corresponding to the two-stage thermocouple 41. Further, in the above equation (8), in the first column, the thermocouple number element in the upper row is 1, the thermocouple number element in the lower row is 0, and in the second column, the thermocouple number element in the upper row is 0. , The element of the thermocouple number in the lower row is 1. Further, the number of elements of the vector 1 shown in the above equation (10) is the number of thermocouples 41 in each stage (total of the F plane and the B plane).
なお、本実施形態では、外力は水平方向でかつ左右同方向と限定したが(図8参照)、他の外力パターン(例えば上下方向の外力)についても、同様に感度解析の結果を算出し、温度分布の測定値(実測値)−算出値間の誤差を線形回帰する際の基底に加えればよい。 In the present embodiment, the external force is limited to the horizontal direction and the same direction on the left and right (see FIG. 8), but the result of the sensitivity analysis is similarly calculated for other external force patterns (for example, the external force in the vertical direction). The error between the measured value (measured value) and the calculated value of the temperature distribution may be added to the basis for linear regression.
続いて、CPU113は、算出された外力の変化量を、現在の外力に加算する(ステップS10)。本ステップでは、具体的には以下の式(11)に示すように、ステップS9で算出した変化量Fcorrectを、乱流モデルにおける現状の外力(前回の計算で用いた外力)に加算する。そして、次のタイムステップk+1における乱流モデル(上記式(1))に入力し、ステップS3に戻って溶鋼2の流動分布、温度分布を再度算出する。つまり、ステップS4の基準により計算が停止しない限り、ステップS3,S6〜S10はタイムステップごとに繰り返される。 Subsequently, the CPU 113 adds the calculated change amount of the external force to the current external force (step S10). In this step, specifically, as shown in the following equation (11), the amount of change F correct calculated in step S9 is added to the current external force (external force used in the previous calculation) in the turbulent flow model. Then, the input is input to the turbulence model (the above equation (1)) in the next time step k + 1, and the process returns to step S3 to recalculate the flow distribution and temperature distribution of the molten steel 2. That is, steps S3, S6 to S10 are repeated for each time step unless the calculation is stopped according to the reference of step S4.
以上のように、本発明の実施形態に係る溶鋼2の流動状態推定方法では、ステップS3,S6〜S10を繰り返すことにより、溶鋼2の温度分布の測定値(実測値)と算出値との間の誤差を外力の変化量にフィードバックする。そして、実測の温度分布に合致させるように外力を変化させることを周期的に繰り返すことにより、時々刻々変化する流動状態を推定する。これにより、本発明の実施形態に係る溶鋼2の流動状態推定方法は、オンラインで鋳型内全体の三次元での溶鋼2の流動状態を推定することができる。 As described above, in the method for estimating the flow state of the molten steel 2 according to the embodiment of the present invention, by repeating steps S3, S6 to S10, between the measured value (measured value) and the calculated value of the temperature distribution of the molten steel 2. The error of is fed back to the amount of change in the external force. Then, by periodically repeating changing the external force so as to match the actually measured temperature distribution, the flow state that changes from moment to moment is estimated. Thereby, the method for estimating the flow state of the molten steel 2 according to the embodiment of the present invention can estimate the flow state of the molten steel 2 in three dimensions in the entire mold online.
また、前記した流動状態推定方法によって推定された溶鋼2の流動状態は、前記した連続鋳造機1による鋼の連続鋳造方法において用いることができる。また、流動状態推定装置100の出力装置103(図9参照)として表示装置を備えることにより、当該流動状態推定装置100を、推定した溶鋼2の流動状態をオンラインで表示するオンライン表示装置として機能させることができる。 Further, the flow state of the molten steel 2 estimated by the above-mentioned flow state estimation method can be used in the above-mentioned continuous steel casting method by the continuous casting machine 1. Further, by providing a display device as the output device 103 (see FIG. 9) of the flow state estimation device 100, the flow state estimation device 100 functions as an online display device that displays the estimated flow state of the molten steel 2 online. be able to.
以下では本発明に係る溶鋼の流動状態推定方法の検証を行う。図13に示すように、シミュレーション上で仮想プラントのノズル詰まりを発生させ、その部分的情報(流速)とノズル詰まりなしの乱流モデルによるモデル計算とを融合した仮想プラントの鋳型内温度(温度分布)を算出する。そして、ノズル詰まりによって生じた仮想プラントと乱流モデル(以下、モデルと表記)との間の鋳型内温度(温度分布)の温度推定誤差を、モデル計算(上記式(1)参照)上の外力にフィードバックし、仮想プラントとモデル計算の流速分布が一致するか否かを確認した。これにより、ノズル詰まりの影響を外力の変化によって表現できるか否かを検証した。 In the following, the method for estimating the flow state of molten steel according to the present invention will be verified. As shown in FIG. 13, the nozzle clogging of the virtual plant is generated on the simulation, and the temperature (temperature distribution) in the mold of the virtual plant is fused with the partial information (flow velocity) and the model calculation by the turbulent flow model without the nozzle clogging. ) Is calculated. Then, the temperature estimation error of the temperature inside the mold (temperature distribution) between the virtual plant and the turbulent flow model (hereinafter referred to as the model) caused by the clogging of the nozzle is calculated by the external force in the model calculation (see the above equation (1)). It was confirmed whether or not the flow velocity distributions of the virtual plant and the model calculation match. In this way, it was verified whether or not the effect of nozzle clogging could be expressed by a change in external force.
図14および図15は、仮想プラントにおける溶鋼の流動状態を例示する図である。具体的には、図14は、鋳造されるスラブの厚み方向の中央の断面における溶鋼の流速分布を、図15は、鋳造されるスラブの厚み方向の鋳型近傍における溶鋼の流速分布を示している。これらの図の左上に示すように、仮想プラントでは、ノズル詰まりによって偏流が発生していることがわかる。 14 and 15 are diagrams illustrating the flow state of molten steel in a virtual plant. Specifically, FIG. 14 shows the flow velocity distribution of molten steel in the central cross section in the thickness direction of the slab to be cast, and FIG. 15 shows the flow velocity distribution of molten steel in the vicinity of the mold in the thickness direction of the slab to be cast. .. As shown in the upper left of these figures, it can be seen that in the virtual plant, drift is generated due to nozzle clogging.
図16および図17は、図15に示した溶鋼の流速分布から換算された温度分布を示している。これらの図と、温度推定誤差のない図6および図7とをそれぞれ比較すると、仮想プラントでは、偏流によって熱電対の温度分布に差異が生じていることがわかる。 16 and 17 show the temperature distribution converted from the flow velocity distribution of the molten steel shown in FIG. Comparing these figures with FIGS. 6 and 7 having no temperature estimation error, it can be seen that in the virtual plant, the temperature distribution of the thermocouple is different due to the drift.
図18〜図21は、このようにして生じた温度分布の誤差を、モデル上の吐出口の外力にフィードバックした結果を示している。具体的には、図18は、乱流モデルにより算出されたスラブの厚み方向の中央の断面における溶鋼の流速分布であって、図10におけるステップS3,S6〜S10を繰り返した後に算出された溶鋼の流速分布を示している。また、図19は、乱流モデルにより算出されたスラブの厚み方向の鋳型近傍における溶鋼の流速分布であって、図10におけるステップS3,S6〜S10を繰り返した後に算出された溶鋼の流速分布を示している。そして、図20および図21は、図19に示した溶鋼の流速分布から換算された温度分布を示している。これらの図に示すように、本発明に係る溶鋼の流動状態推定方法によれば、溶鋼の流速分布、温度分布ともに、仮想プラントにおける偏流(図14〜図17参照)を的確に再現できていることがわかる。 18 to 21 show the result of feeding back the error of the temperature distribution thus generated to the external force of the discharge port on the model. Specifically, FIG. 18 shows the flow velocity distribution of the molten steel in the central cross section in the thickness direction of the slab calculated by the turbulence model, and the molten steel calculated after repeating steps S3, S6 to S10 in FIG. Shows the flow velocity distribution of. Further, FIG. 19 shows the flow velocity distribution of the molten steel in the vicinity of the mold in the thickness direction of the slab calculated by the turbulent flow model, and shows the flow velocity distribution of the molten steel calculated after repeating steps S3, S6 to S10 in FIG. Shown. 20 and 21 show the temperature distribution converted from the flow velocity distribution of the molten steel shown in FIG. As shown in these figures, according to the method for estimating the flow state of molten steel according to the present invention, the drift flow (see FIGS. 14 to 17) in the virtual plant can be accurately reproduced in both the flow velocity distribution and the temperature distribution of the molten steel. You can see that.
図22および図23は、ノズル詰まり度を時間的に変化させた場合における推定外力の変化を例示する図である。すなわち、図22は、タイムステップ(1step=10sec)の増加に対するノズル詰まり度の変化を、図23は、タイムステップ(1step=10sec)の増加に対する推定外力の変化を示している。また、図23において、実線はノズルの左側の吐出口を、破線はノズルの右側の吐出口を示している。 22 and 23 are diagrams illustrating changes in the estimated external force when the nozzle clogging degree is changed over time. That is, FIG. 22 shows the change in the nozzle clogging degree with respect to the increase in the time step (1 step = 10 sec), and FIG. 23 shows the change in the estimated external force with respect to the increase in the time step (1 step = 10 sec). Further, in FIG. 23, the solid line indicates the discharge port on the left side of the nozzle, and the broken line indicates the discharge port on the right side of the nozzle.
また、図24に示すように、ノズルの左右の吐出口の流量比についても、良好な精度で推定できており、本実施例により、本発明に係る溶鋼の流動状態推定方法の妥当性を示すことができた。 Further, as shown in FIG. 24, the flow rate ratio of the left and right discharge ports of the nozzle can also be estimated with good accuracy, and the validity of the flow state estimation method of the molten steel according to the present invention is shown by this embodiment. I was able to.
また、本手法を用いて推定したメニスカス近傍の流速(以下、メニスカス流速と表記する)と、スラブ長さ当りのパウダー性欠陥頻度との関係を調査した結果を図25に示す。同図における縦軸は欠陥頻度を、横軸はメニスカス流速を示している。同図に示すように、メニスカス流速が過大となるとスラブ品質が悪化することから、本発明による推定メニスカス流速が一定値以下となるように操業条件を設定することにより、スラブ品質の向上が期待される。 In addition, FIG. 25 shows the result of investigating the relationship between the flow velocity in the vicinity of the meniscus estimated by using this method (hereinafter referred to as the meniscus flow velocity) and the powder defect frequency per slab length. In the figure, the vertical axis shows the defect frequency and the horizontal axis shows the meniscus flow velocity. As shown in the figure, if the meniscus flow velocity becomes excessive, the slab quality deteriorates. Therefore, it is expected that the slab quality will be improved by setting the operating conditions so that the estimated meniscus flow velocity according to the present invention is below a certain value. To.
以上、本発明者らによってなされた発明を適用した実施の形態について説明したが、本実施形態による本発明の開示の一部をなす記述および図面により本発明は限定されることはない。すなわち、本実施形態に基づいて当業者等によりなされる他の実施の形態、実施例、および運用技術等は全て本発明の範疇に含まれる。 Although the embodiment to which the invention made by the present inventors has been applied has been described above, the present invention is not limited by the description and the drawings which form a part of the disclosure of the present invention according to the present embodiment. That is, other embodiments, examples, operational techniques, and the like made by those skilled in the art based on the present embodiment are all included in the scope of the present invention.
1 連続鋳造機
2 溶鋼
3 タンディッシュ
4 鋳型
41 熱電対(センサ)
5 ノズル
51 吐出口
100 流動状態推定装置
101 情報処理装置
102 入力装置
103 出力装置
111 RAM
112 ROM
112a 推定プログラム
113 CPU
1 Continuous casting machine 2 Molten steel 3 Tundish 4 Mold 41 Thermocouple (sensor)
5 Nozzle 51 Discharge port 100 Flow state estimation device 101 Information processing device 102 Input device 103 Output device 111 RAM
112 ROM
112a estimation program 113 CPU
Claims (6)
非定常の乱流モデルを用いて、前記鋳型内に設置されたセンサの位置における前記溶鋼の流速分布を算出する流速分布算出ステップと、
前記流速分布算出ステップで算出した前記溶鋼の流速分布から、前記鋳型内に設置されたセンサの位置における前記溶鋼の温度分布を算出する温度分布算出ステップと、
前記非定常の乱流モデル上において、前記鋳型内に前記溶鋼を吐出するノズル近傍に印加される外力が変化した場合の、前記溶鋼の流速分布を算出し、該算出した前記溶鋼の流速分布から、外力変化時の前記溶鋼の温度分布を算出する外力変化時温度分布算出ステップと、
前記外力変化時温度分布算出ステップで算出した前記溶鋼の温度分布に対する、前記温度分布算出ステップで算出した前記溶鋼の温度分布の差分を算出する感度解析ステップと、
前記センサにより測定された前記溶鋼の温度分布と、前記温度分布算出ステップで算出した前記溶鋼の温度分布との誤差を算出し、該算出した前記誤差と、前記感度解析ステップで算出した前記差分とに基づいて、前記誤差に対応する外力の変化量を算出する外力変化量算出ステップと、
を含み、
次のタイムステップにおける流速分布算出ステップにおいて、前記流速分布算出ステップで用いた外力に、前記外力変化量算出ステップで算出した前記外力の変化量を加算した上で新たな外力とし、前記非定常の乱流モデルを用いて、前記溶鋼の流速分布を再度算出することにより、前記溶鋼の流動状態をタイムステップごとに推定することを特徴とする溶鋼の流動状態推定方法。 This is a method for estimating the flow state of molten steel in a mold of a continuous casting machine, which estimates the flow state of molten steel at predetermined time steps.
A flow velocity distribution calculation step for calculating the flow velocity distribution of the molten steel at the position of the sensor installed in the mold using an unsteady turbulence model, and
A temperature distribution calculation step for calculating the temperature distribution of the molten steel at the position of the sensor installed in the mold from the flow velocity distribution of the molten steel calculated in the flow velocity distribution calculation step.
On the unsteady turbulent flow model, the flow velocity distribution of the molten steel when the external force applied in the vicinity of the nozzle for discharging the molten steel into the mold changes, and the flow velocity distribution of the molten steel calculated from the calculated flow velocity distribution , The temperature distribution calculation step when the external force changes, and the temperature distribution calculation step when the external force changes.
A sensitivity analysis step for calculating the difference in the temperature distribution of the molten steel calculated in the temperature distribution calculation step with respect to the temperature distribution of the molten steel calculated in the temperature distribution calculation step when the external force changes.
The error between the temperature distribution of the molten steel measured by the sensor and the temperature distribution of the molten steel calculated in the temperature distribution calculation step is calculated, and the calculated error and the difference calculated in the sensitivity analysis step are used. The external force change amount calculation step for calculating the change amount of the external force corresponding to the error based on
Including
In the flow velocity distribution calculation step in the next time step, the change amount of the external force calculated in the external force change amount calculation step is added to the external force used in the flow velocity distribution calculation step to obtain a new external force, which is the unsteady state. A method for estimating the flow state of molten steel, which comprises estimating the flow state of the molten steel for each time step by recalculating the flow velocity distribution of the molten steel using a turbulent flow model.
非定常の乱流モデルを用いて、前記鋳型内に設置されたセンサの位置における前記溶鋼の流速分布を算出する流速分布算出手段と、
前記流速分布算出手段で算出した前記溶鋼の流速分布から、前記鋳型内に設置されたセンサの位置における前記溶鋼の温度分布を算出する温度分布算出手段と、
前記非定常の乱流モデル上において、前記鋳型内に前記溶鋼を吐出するノズル近傍に印加される外力が変化した場合の、前記溶鋼の流速分布を算出し、該算出した前記溶鋼の流速分布から、外力変化時の前記溶鋼の温度分布を算出する外力変化時温度分布算出手段と、
前記外力変化時温度分布算出手段で算出した前記溶鋼の温度分布に対する、前記温度分布算出手段で算出した前記溶鋼の温度分布の差分を算出する感度解析手段と、
前記センサにより測定された前記溶鋼の温度分布と、前記温度分布算出手段で算出した前記溶鋼の温度分布との誤差を算出し、該算出した前記誤差と、前記感度解析手段で算出した前記差分とに基づいて、前記誤差に対応する外力の変化量を算出する外力変化量算出手段と、
を含み、
次のタイムステップにおける流速分布の算出において、前記流速分布算出手段で用いた外力に、前記外力変化量算出手段で算出した前記外力の変化量を加算した上で新たな外力とし、前記非定常の乱流モデルを用いて、前記溶鋼の流速分布を再度算出することにより、前記溶鋼の流動状態をタイムステップごとに推定することを特徴とする溶鋼の流動状態推定装置。 It is a molten steel flow state estimation device that estimates the flow state of molten steel in the mold of a continuous casting machine at predetermined time steps.
A flow velocity distribution calculation means for calculating the flow velocity distribution of the molten steel at the position of the sensor installed in the mold using an unsteady turbulence model, and
A temperature distribution calculation means for calculating the temperature distribution of the molten steel at the position of the sensor installed in the mold from the flow velocity distribution of the molten steel calculated by the flow velocity distribution calculation means.
On the unsteady turbulent flow model, the flow velocity distribution of the molten steel when the external force applied in the vicinity of the nozzle for discharging the molten steel into the mold changes, and the flow velocity distribution of the molten steel calculated from the calculated flow velocity distribution , A temperature distribution calculation means for calculating the temperature distribution of the molten steel when the external force changes, and
Sensitivity analysis means for calculating the difference in temperature distribution of the molten steel calculated by the temperature distribution calculation means with respect to the temperature distribution of the molten steel calculated by the temperature distribution calculation means at the time of change in external force.
An error between the temperature distribution of the molten steel measured by the sensor and the temperature distribution of the molten steel calculated by the temperature distribution calculation means is calculated, and the calculated error and the difference calculated by the sensitivity analysis means are used. An external force change amount calculating means for calculating the change amount of the external force corresponding to the error based on
Including
In the calculation of the flow velocity distribution in the next time step, the change amount of the external force calculated by the external force change amount calculation means is added to the external force used by the flow velocity distribution calculation means to obtain a new external force, which is the unsteady state. A molten steel flow state estimation device characterized in that the flow state of the molten steel is estimated for each time step by recalculating the flow velocity distribution of the molten steel using a turbulent flow model.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016039887 | 2016-03-02 | ||
JP2016039887 | 2016-03-02 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017033834A Division JP6607215B2 (en) | 2016-03-02 | 2017-02-24 | Flow state estimation method for molten steel, flow state estimation device, on-line display device for flow state of molten steel, and continuous casting method for steel |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019177421A JP2019177421A (en) | 2019-10-17 |
JP6816794B2 true JP6816794B2 (en) | 2021-01-20 |
Family
ID=59852942
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017033834A Active JP6607215B2 (en) | 2016-03-02 | 2017-02-24 | Flow state estimation method for molten steel, flow state estimation device, on-line display device for flow state of molten steel, and continuous casting method for steel |
JP2019123058A Active JP6816794B2 (en) | 2016-03-02 | 2019-07-01 | Flow state estimation method of molten steel, flow state estimation device, online display device of flow state of molten steel and continuous casting method of steel |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017033834A Active JP6607215B2 (en) | 2016-03-02 | 2017-02-24 | Flow state estimation method for molten steel, flow state estimation device, on-line display device for flow state of molten steel, and continuous casting method for steel |
Country Status (1)
Country | Link |
---|---|
JP (2) | JP6607215B2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019217510A (en) * | 2018-06-15 | 2019-12-26 | 日本製鉄株式会社 | Device for visualizing the inside of continuous casting mold, method, and program |
TWI743686B (en) * | 2019-02-19 | 2021-10-21 | 日商Jfe鋼鐵股份有限公司 | Control method of continuous casting machine, control device of continuous casting machine, and manufacturing method of cast piece |
JP6981551B2 (en) * | 2019-02-19 | 2021-12-15 | Jfeスチール株式会社 | Continuous casting machine control method, continuous casting machine control device, and slab manufacturing method |
WO2020170563A1 (en) * | 2019-02-19 | 2020-08-27 | Jfeスチール株式会社 | Control method for continuous casting machine, control device for continuous casting machine, and method for manufacturing slab |
JP7332875B2 (en) * | 2019-09-13 | 2023-08-24 | 日本製鉄株式会社 | Continuous casting mold visualization device, method, and program |
JP7335499B2 (en) * | 2019-09-13 | 2023-08-30 | 日本製鉄株式会社 | Continuous casting mold visualization device, method, and program |
JP2021102221A (en) * | 2019-12-25 | 2021-07-15 | 日本製鉄株式会社 | Device for visualizing inside of continuous casting mold, method therefor and program therefor |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3252768B2 (en) * | 1997-09-12 | 2002-02-04 | 日本鋼管株式会社 | Flow control method of molten steel in continuous casting mold |
JP4105839B2 (en) * | 2000-02-28 | 2008-06-25 | 新日本製鐵株式会社 | In-mold casting abnormality detection method in continuous casting |
JP3607882B2 (en) * | 2000-07-19 | 2005-01-05 | 新日本製鐵株式会社 | Solidified shell thickness, molten steel flow velocity, slab quality sensing method and apparatus throughout the continuous casting mold. |
JP3598078B2 (en) * | 2001-06-13 | 2004-12-08 | 新日本製鐵株式会社 | A method for estimating and visualizing a flow velocity vector distribution in a continuous casting mold, and an apparatus therefor. |
JP3856686B2 (en) * | 2001-11-07 | 2006-12-13 | Jfeスチール株式会社 | Casting status monitoring system for continuous casting |
JP5387508B2 (en) * | 2010-06-01 | 2014-01-15 | 新日鐵住金株式会社 | Continuous casting method, continuous casting control device and program |
JP5949316B2 (en) * | 2012-08-20 | 2016-07-06 | Jfeスチール株式会社 | Manufacturing method of continuous cast slab |
JP5935837B2 (en) * | 2014-07-07 | 2016-06-15 | Jfeスチール株式会社 | Flow state estimation method and flow state estimation apparatus for molten steel |
-
2017
- 2017-02-24 JP JP2017033834A patent/JP6607215B2/en active Active
-
2019
- 2019-07-01 JP JP2019123058A patent/JP6816794B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP6607215B2 (en) | 2019-11-20 |
JP2017159363A (en) | 2017-09-14 |
JP2019177421A (en) | 2019-10-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6816794B2 (en) | Flow state estimation method of molten steel, flow state estimation device, online display device of flow state of molten steel and continuous casting method of steel | |
JP5935837B2 (en) | Flow state estimation method and flow state estimation apparatus for molten steel | |
Liu et al. | Measurements of molten steel surface velocity and effect of stopper-rod movement on transient multiphase fluid flow in continuous casting | |
JP6443165B2 (en) | State estimation method and state estimation device | |
Calderón-Ramos et al. | Modeling study of turbulent flow in a continuous casting slab mold comparing three ports SEN designs | |
Wang et al. | Improved filling condition to reduce casting inclusions using the submerged gate method | |
JP6825760B1 (en) | In-mold solidification shell thickness estimation device, in-mold solidification shell thickness estimation method, and continuous steel casting method | |
WO2020195599A1 (en) | Device for estimating solidifying shell thickness in casting mold, and method for estimating solidifying shell thickness in casting mold | |
JP2019217510A (en) | Device for visualizing the inside of continuous casting mold, method, and program | |
JP7367733B2 (en) | Method and device for estimating surface defects in steel materials, manufacturing specification determination support method and device for steel materials, and manufacturing method for steel materials | |
WO2021065342A1 (en) | Device and method for estimating solidifying shell thickness in casting mold and continuous steel casting method | |
JP3607882B2 (en) | Solidified shell thickness, molten steel flow velocity, slab quality sensing method and apparatus throughout the continuous casting mold. | |
JP2016022523A (en) | State estimation method for molten metal surface variation in continuous casting mold | |
JP2019000861A (en) | Method for determining run of molten metal in pressure casting and its device | |
Chen | Control of constrained moving-boundary process with application to steel continuous casting | |
RU2787109C1 (en) | Device for assessment of thickness of solidified crust in crystallizer and method for assessment of thickness of solidified crust in crystallizer | |
RU2775264C1 (en) | Method for controlling continuous casting machine, control device for continuous casting machine and casting manufacturing method | |
EP3928890B1 (en) | Control method for continuous casting machine, control device for continuous casting machine, and manufacturing method for casting | |
JP2019171418A (en) | Cast simulation apparatus | |
JP7332875B2 (en) | Continuous casting mold visualization device, method, and program | |
JP7122745B2 (en) | Information processing method and apparatus for casting | |
KR101246313B1 (en) | Rolling control method using temperature compensation | |
JP4626826B2 (en) | Control device for continuous casting equipment | |
Gursoy et al. | Effect of Flow Rate Controllers and their Opening Levels on Liquid Steel Flow in Continuous Casting Mold | |
Pütz et al. | Investigations of unsteady and asymmetric flow phenomena in continuous casting moulds by advanced simulation techniques |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190701 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20200626 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20201006 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20201112 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20201124 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20201207 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6816794 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |