JPS6353904B2 - - Google Patents

Info

Publication number
JPS6353904B2
JPS6353904B2 JP57031027A JP3102782A JPS6353904B2 JP S6353904 B2 JPS6353904 B2 JP S6353904B2 JP 57031027 A JP57031027 A JP 57031027A JP 3102782 A JP3102782 A JP 3102782A JP S6353904 B2 JPS6353904 B2 JP S6353904B2
Authority
JP
Japan
Prior art keywords
heat flux
mold
heat
casting
slabs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57031027A
Other languages
Japanese (ja)
Other versions
JPS58148063A (en
Inventor
Masuhito Shimizu
Genpei Yaji
Hiromitsu Yamanaka
Takao Koshikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP3102782A priority Critical patent/JPS58148063A/en
Priority to PCT/JP1983/000048 priority patent/WO1983002911A1/en
Priority to DE8383900659T priority patent/DE3367341D1/en
Priority to EP83900659A priority patent/EP0101521B1/en
Priority to US06/537,403 priority patent/US4553604A/en
Publication of JPS58148063A publication Critical patent/JPS58148063A/en
Publication of JPS6353904B2 publication Critical patent/JPS6353904B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/165Controlling or regulating processes or operations for the supply of casting powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/168Controlling or regulating processes or operations for adjusting the mould size or mould taper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/20Controlling or regulating processes or operations for removing cast stock
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/22Controlling or regulating processes or operations for cooling cast stock or mould

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Continuous Casting (AREA)

Description

【発明の詳細な説明】 本発明は、連続鋳造における鋳片の割れ防止方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for preventing cracking of slabs in continuous casting.

現在の連続鋳造においては、圧延加熱炉への高
温鋳片の供給が、省エネルギという面で大きな課
題となつており、そのため、連続鋳造の操業で
は、高速鋳込み、及び、表面欠陥の迅速な検出に
よる鋳片の短時間での圧延への供給が要求されて
いる。しかしながら、高速鋳込みを行う時は、鋳
込み速度が速いため、鋳片内で形成される鋳片凝
固シエルの厚みが薄く、連続鋳造用鋳型(以下、
モールドと称する)内において凝固シエル厚の薄
い部位がモールド下端に来たときに凝固シエルが
破れる、いわゆるブレークアウト発生の危険があ
つた。しかしながら従来は、このブレークアウト
の発生を正確に予知することができず、従つて、
ブレークアウトを防止するために、鋳込み速度を
必要以上に低下したり、或いは、ブレークアウト
が発生してしまつた場合には、何時間もの操業停
止に追い込まれることがあつた。又、表面縦割れ
等の表面欠陥は、主として、モールドと溶鋼(鋳
片)との間に入るモールドパウダの流入の不均
一、特に局部的な減少或いは増加により抜熱量が
変化し、凝固シエルの形成が不均一となつて発生
するものであるが、従来は、(1)圧延後の疵検査、
手入れ、(2)鋳片冷却後の目視検査、(3)鋳片を抽出
して冷却した後の検査等の方法により表面欠陥を
検出するようにしていたため、(1)欠陥検出後の処
理のため、鋳込中での操業の対応がとれず、歩留
りが低下したり、(2)鋳片を冷却する必要があるた
め、加熱炉の原単位が上昇したり、或いは、(3)完
全な欠陥検出ができない等の欠点を有していた。
In current continuous casting, supplying high-temperature slabs to the rolling heating furnace is a major issue in terms of energy conservation.Therefore, continuous casting operations require high-speed pouring and rapid detection of surface defects. There is a demand for supply of slabs for rolling in a short time. However, when performing high-speed casting, the thickness of the slab solidification shell formed within the slab is thin because the casting speed is high, and the continuous casting mold (hereinafter referred to as
There was a risk of so-called breakout occurring, in which the solidified shell ruptured when a thin part of the solidified shell reached the lower end of the mold within the mold. However, conventionally, it has not been possible to accurately predict the occurrence of this breakout, and therefore,
In order to prevent a breakout, the casting speed was lowered more than necessary, or if a breakout occurred, the operation could be shut down for many hours. In addition, surface defects such as vertical surface cracks are mainly caused by unevenness in the inflow of mold powder between the mold and molten steel (slab), especially due to a local decrease or increase in the amount of heat removed, which causes the solidification shell to change. This occurs due to uneven formation, but conventionally, (1) inspection for defects after rolling;
Surface defects were detected by methods such as (2) visual inspection after cooling the slab, and (3) inspection after extracting and cooling the slab. (2) The heating furnace consumption rate increases due to the need to cool the slab; or (3) complete It had drawbacks such as inability to detect defects.

前記のようなブレークアウト及び表面欠陥が、
いずれも、モールドと鋳片の接触状態即ち、抜熱
状態に密接に関係していることは周知の事実であ
り、例えば、モールドと鋳片の接触状態が不均一
となると抜熱量分布も不均一となることから、抜
熱量の分布を測定することにより、鋳片の表面割
れを予知できると考えられる。従つて、例えば、
第1図に示す如く、モールド10を形成している
鋳型側板11の外側面に形成された冷却水通路1
1aの底部に孔11bをあけ、その中に、熱電対
12を埋め込み、深さ方向に2点距離をあけて埋
設した熱電対の出力から検出される温度勾配か
ら、計算により熱流束を判定して、モールド10
における抜熱状態を検知することが行われてい
る。しかしながら、このような方法では、熱電対
12を埋め込むことにより熱擾乱が発生するだけ
でなく、熱電対12の埋め込み位置が例えば1mm
狂うと5〜10℃の違いがあるので、正確な位置へ
の埋め込みが要求され、埋め込み作業が大変であ
る。又、2個の熱電対の検出温度T1,T2、埋設
間隔d及びモールド10の熱伝導率λから、次式
を用いて抜熱量Qを計算する際に、検出温度T1
T2に熱擾乱による誤差があるだけでなく、埋設
間隔dに埋め込み位置による誤差があり、誤差を
生じ易い。
Breakouts and surface defects as mentioned above
It is a well-known fact that both of these are closely related to the state of contact between the mold and the slab, that is, the state of heat removal.For example, if the contact state between the mold and the slab becomes uneven, the distribution of the amount of heat removed will also be uneven. Therefore, it is considered that surface cracks in slabs can be predicted by measuring the distribution of the amount of heat removed. Therefore, for example,
As shown in FIG. 1, a cooling water passage 1 is formed on the outer surface of a mold side plate 11 forming a mold 10.
A hole 11b is made at the bottom of the hole 1a, and a thermocouple 12 is embedded in the hole 11b.The heat flux is determined by calculation from the temperature gradient detected from the output of the thermocouple that is buried at two points apart in the depth direction. Hey, mold 10
The state of heat removal is being detected. However, in such a method, not only thermal disturbance occurs due to embedding the thermocouple 12, but also the embedding position of the thermocouple 12 is, for example, 1 mm.
Since there is a difference of 5 to 10 degrees Celsius when the temperature goes out of order, it is necessary to embed in an accurate position, which makes the embedding work difficult. In addition, when calculating the amount of heat removed Q using the following formula from the detected temperatures T 1 and T 2 of the two thermocouples, the burial interval d, and the thermal conductivity λ of the mold 10, the detected temperature T 1 ,
Not only is there an error in T 2 due to thermal disturbance, but there is also an error in the embedding distance d due to the embedding position, which tends to cause errors.

Q=λT1−T2/d …(1) 更に、熱流束を直接指示記録することができな
い。又、ブレークアウト或いは表面疵発生時の熱
電対出力の変化量が、第2図(ブレークアウトの
場合)に示す如く比較的小さいため、例えばブレ
ークアウトを検知する場合には、5〜10℃程度の
温度上昇の短時間での変化を見なければならず、
その判定が困難である。更に、熱電対では、鋳片
の摩耗によるモールド厚みの変化、熱電対自身の
埋め込み誤差等の要因のため、ブレークアウト時
の温度変化量、表面欠陥発生時の温度変化量等の
明確な数値が把握できず、又、縦割れ発生時は、
その数値の変化が小さいと、欠陥の発生を検出で
きない。更に、鋳型側板に孔をあけて熱電対を埋
め込むため、モールド寿命が短縮され、又、移設
も困難である等の欠点を有していた。
Q=λT 1 −T 2 /d (1) Furthermore, the heat flux cannot be directly recorded. In addition, the amount of change in thermocouple output when a breakout or surface flaw occurs is relatively small as shown in Figure 2 (in the case of a breakout), so for example, when detecting a breakout, it is necessary to It is necessary to look at changes in the temperature rise over a short period of time,
It is difficult to judge. Furthermore, with thermocouples, due to factors such as changes in mold thickness due to abrasion of the slab and embedding errors in the thermocouple itself, it is difficult to obtain clear numerical values such as the amount of temperature change at the time of breakout or the amount of temperature change at the time of surface defects. If it cannot be grasped or a vertical crack occurs,
If the change in the value is small, the occurrence of a defect cannot be detected. Furthermore, since a hole is made in the side plate of the mold and a thermocouple is embedded therein, the life of the mold is shortened, and it is difficult to relocate the mold.

本発明は、前記従来の欠点を解消するべくなさ
れたもので、あらゆる操業条件下で、鋳片の割れ
の発生を、感度良く、簡単且つ確実に予知して、
鋳片の割れを簡単且つ確実に防止することができ
る、連続鋳造における鋳片の割れ防止方法を提供
することを目的とする。
The present invention has been made to eliminate the above-mentioned conventional drawbacks, and is capable of predicting cracking in slabs with high sensitivity, simply and reliably under all operating conditions.
It is an object of the present invention to provide a method for preventing cracking of slabs in continuous casting, which can easily and reliably prevent cracking of slabs.

本発明は、鋳型の外表面に配設した薄板型の表
面用熱流束計により鋳型の抜熱量に応じた熱流束
を測定して、連続鋳造における鋳片の割れを防止
する方法において、前記流束計により熱流束を測
定し、該熱流束の時間的な変化を表わした熱流束
波形の振幅が所定の範囲を超えた時に鋳込み速度
を低下させ、前記振幅が元に戻るまで低速鋳込み
を行うことにより、鋳片の割れの発生を防止する
ようにして、前記目的を達成したものである。
The present invention provides a method for preventing cracking of slabs during continuous casting by measuring heat flux according to the amount of heat removed from the mold using a thin plate type surface heat flux meter disposed on the outer surface of the mold. The heat flux is measured by a flux meter, and when the amplitude of the heat flux waveform representing the temporal change in the heat flux exceeds a predetermined range, the casting speed is reduced, and low-speed casting is performed until the amplitude returns to the original value. This achieves the above object by preventing the occurrence of cracks in the slab.

本発明は、近年開発された、薄板型の表面用熱
流束計を利用したものである。この表面用熱流束
計14は、第3図に示す如く、熱伝導の行われて
いる固体の表面に、熱伝導率がλで、厚みdが十
分に薄い熱抵抗板16を取付けた場合、定常状態
に達してから後に、この熱抵抗板16を貫通して
流れる熱流束Qが、次式で与えられることに基づ
いて作動する。
The present invention utilizes a thin plate type surface heat flux meter developed in recent years. As shown in FIG. 3, this surface heat flux meter 14 is constructed by attaching a heat resistance plate 16 with a thermal conductivity of λ and a sufficiently thin thickness d to the surface of a solid body undergoing heat conduction. After reaching a steady state, the heat flux Q flowing through the thermal resistance plate 16 operates based on the following equation.

Q=λ/d△T …(2) ここで、△Tは、熱抵抗板16の表裏両面間の
温度差である。従つて、熱伝導率λ及び厚みdが
既知であれば、熱抵抗板16の表裏面にそれぞれ
配設した検知板18間の温度差△Tを電気的に測
定することによつて、熱流束Qを求めることがで
きる。
Q=λ/dΔT (2) Here, ΔT is the temperature difference between the front and back surfaces of the thermal resistance plate 16. Therefore, if the thermal conductivity λ and the thickness d are known, the heat flux can be determined by electrically measuring the temperature difference ΔT between the detection plates 18 disposed on the front and back surfaces of the thermal resistance plate 16. Q can be found.

この薄板型の表面用熱流束計は、(1)モールド内
に埋め込む必要がなく、冷却水通路等の外面から
の測定が可能である、(2)小型でどこにでも取付け
られる、(3)局所的な熱流束を求めることができ
る、(4)熱電対のような、埋め込み誤差による出力
の変化がなく、取付けるだけで正確な熱流束値を
得ることができ、熱擾乱が発生した場合にも、検
定によつて確認できる、又、(5)熱電対のように、
ある水準からの変化を捉える必要が無く、測定し
た熱流束値によつて、直接、表面割れの発生等を
予知することができる等の特徴を有する。
This thin-plate type surface heat flux meter (1) does not need to be embedded in a mold and can be measured from the outside surface of cooling water passages, etc., (2) is small and can be installed anywhere, and (3) locally (4) Unlike thermocouples, there is no change in output due to embedding errors, and accurate heat flux values can be obtained just by installing them, even when thermal disturbances occur. , can be confirmed by verification, and (5) like a thermocouple,
There is no need to detect changes from a certain level, and the occurrence of surface cracks can be directly predicted based on the measured heat flux value.

このような熱流束計14によつて得られる熱流
束Qの時間的な変化を表わした熱流束波形の一例
を第4図に示す。この熱流束波形の振幅Wは、第
5図に示すような、溶鋼22から凝固シエル24
a及びモールドパウダ25を介してモールド10
に抜熱される熱量の均一さを示すものであり、モ
ールドパウダ25の異常流入等によるノロかみ現
象により、微小な表面割れが発生した際には、該
割れ発生箇所の振幅Wが大きくなるので、熱流束
波形の振幅Wを監視することによつて、振幅W
が、所定値、例えば、60×104Kcal/m2・hr以上
となつたことから、大きな表面割れの発生を予知
することができる。本発明は、このような知見に
基いてなされたものである。第5図において、2
0は、注入管、24は、鋳片、15は、熱流束計
14のケースである。
FIG. 4 shows an example of a heat flux waveform representing a temporal change in the heat flux Q obtained by such a heat flux meter 14. The amplitude W of this heat flux waveform varies from the molten steel 22 to the solidified shell 24 as shown in FIG.
a and the mold 10 via the mold powder 25
This indicates the uniformity of the amount of heat removed by the mold powder 25, and when a minute surface crack occurs due to the slag phenomenon caused by abnormal inflow of the mold powder 25, the amplitude W of the crack occurrence location increases. By monitoring the amplitude W of the heat flux waveform, the amplitude W
is greater than a predetermined value, for example, 60×10 4 Kcal/m 2 ·hr, so it is possible to predict the occurrence of large surface cracks. The present invention has been made based on such knowledge. In Figure 5, 2
0 is an injection pipe, 24 is a slab, and 15 is a case of the heat flux meter 14.

尚、表面割れの発生が予知された場合には、表
面割れの進展を防止するため、例えば、鋳込速度
を低下して、再び元の鋳込速度に戻したり、或い
は、鋳込速度を元の速度に戻しても熱流束波形の
振幅Wが元に戻らない場合には、モールドパウダ
の変更等の操業条件の変化によつて対処して、鋳
片の割れ発生を防止することができる。
In addition, if the occurrence of surface cracks is predicted, in order to prevent the progress of surface cracks, for example, the casting speed may be reduced and returned to the original casting speed, or the casting speed may be changed back to the original speed. If the amplitude W of the heat flux waveform does not return to its original value even if the speed is returned to , it is possible to prevent cracking of the slab by changing operating conditions such as changing the mold powder.

又、前記熱流束波形の波高Hは、溶鋼22−モ
ールド10間の抜熱量に比例しており、湯面から
100〜300mm程度迄の測定点では、通常、150〜250
×104Kcal/m2・hr(鋳込速度、モールドパウダ、
テーパ等によつて異なる)である。一方、凝固シ
エル24aが破断したり、凝固シエル24aが薄
くなつて、ブレークアウト発生の可能性が高くな
ると、熱抵抗が減り、溶鋼22からの熱量が急速
にモールド10に供給されるようになるため、波
高Hが、急激に300×104Kcal/m2・hr以上に上
昇する。従つて、熱流束波形の波高Hを監視する
ことによつて、波高Hが所定値、例えば、300×
104Kcal/m2・hr以上となつたことから、凝固シ
エルの割れの発生を予知することもできる。
Further, the wave height H of the heat flux waveform is proportional to the amount of heat removed between the molten steel 22 and the mold 10, and is
At measurement points of 100 to 300 mm, it is usually 150 to 250 mm.
×10 4 Kcal/m 2・hr (casting speed, mold powder,
(varies depending on taper, etc.). On the other hand, if the solidified shell 24a breaks or becomes thinner, increasing the possibility of breakout, the thermal resistance will decrease and the amount of heat from the molten steel 22 will be rapidly supplied to the mold 10. Therefore, the wave height H suddenly rises to 300×10 4 Kcal/m 2 ·hr or more. Therefore, by monitoring the wave height H of the heat flux waveform, the wave height H can be set to a predetermined value, for example, 300×
Since it was 10 4 Kcal/m 2 ·hr or more, it is possible to predict the occurrence of cracks in the solidified shell.

又、熱流束波形の周期は、鋳片凝固シエルとモ
ールドの間の微少なギヤツプの変化を示すが、こ
の周期が異常になると、例えば、極めて長くなる
と、定常時凝固が進行していないことを示す。よ
つて周期によつても割れを予知できる。
In addition, the period of the heat flux waveform indicates a slight change in the gap between the solidified slab shell and the mold, but if this period becomes abnormal, for example, if it becomes extremely long, it may indicate that steady state solidification is not progressing. show. Therefore, cracks can be predicted based on the period.

更に、熱流束の波高、振巾、周期の個々の情報
のみならず、それらのうち、2乃至3の情報から
より確実に割れ発生を予知できる。
Furthermore, the occurrence of cracks can be more reliably predicted not only from the individual information on the wave height, amplitude, and period of the heat flux, but also from information on two or three of them.

以下図面を参照して、本発明に係る鋳片の表面
割れ防止方法が採用された連続鋳造設備の実施例
を詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Examples of continuous casting equipment in which the method for preventing surface cracking of slabs according to the present invention is adopted will be described in detail with reference to the drawings.

本実施例は、第6図に示す如く、注入管20を
介して上方より注入された溶鋼22を冷却して、
鋳片24を形成するためのモールド10と、鋳片
24をガイドするためのガイドローラ26と、鋳
片24を引抜くためのピンチロール28と、該ピ
ンチロール28を回転駆動するためのモータ30
と、該モータ30を制御するためのピンチロール
駆動装置32とを有する従来と同様の連続鋳造設
備において、前記モールド10を形成している鋳
型側板11に形成された冷却水通路11a内に、
鋳型側板11と熱伝導率がほぼ等しい材質の検知
板を有し、熱流非検知方向の熱伝導を妨げるよう
なケース15(第5図)に格納された、薄板型の
表面用熱流束計14をはんだ付けにより密着状態
で配設すると共に、該熱流束計14の出力を、抜
熱量変換器34を介して信号処理装置36内に取
込み、該信号処理装置36により、熱流束波形の
振幅Wが60×104Kcal/m2・hr以上となるか、或
いは、波高Hが300×104Kcal/m2・hr以上とな
つた時は、鋳込速度制御装置38を介して前記ピ
ンチロール駆動装置32を制御することによつて
鋳込速度を低下させて、鋳片の表面割れ及びブレ
ークアウトの発生を防止すると共に、警報器40
を作動させて、操作員に予知警報を与えるように
したものである。
In this embodiment, as shown in FIG. 6, molten steel 22 injected from above through an injection pipe 20 is cooled.
A mold 10 for forming the slab 24, a guide roller 26 for guiding the slab 24, a pinch roll 28 for pulling out the slab 24, and a motor 30 for rotationally driving the pinch roll 28.
and a pinch roll drive device 32 for controlling the motor 30, in a continuous casting equipment similar to the conventional one, in a cooling water passage 11a formed in a mold side plate 11 forming the mold 10,
A thin plate type surface heat flux meter 14 is housed in a case 15 (FIG. 5) that has a detection plate made of a material that has approximately the same thermal conductivity as the mold side plate 11 and prevents heat conduction in the direction in which heat flow is not detected. are arranged in close contact with each other by soldering, and the output of the heat flux meter 14 is taken into the signal processing device 36 via the heat extraction converter 34, and the amplitude W of the heat flux waveform is determined by the signal processing device 36. is 60×10 4 Kcal/m 2・hr or more, or when the wave height H is 300×10 4 Kcal/m 2・hr or more, the pinch roll is By controlling the driving device 32, the casting speed is reduced to prevent surface cracking and breakout of the slab, and the alarm 40 is
The system is designed to provide a predictive warning to the operator by activating the system.

前記熱流束計14は、例えば第7図及び第8図
に示す如く、モールド短片11c及び長辺11d
の、通常の湯面位置より下方に設けられ、横方向
には各々の冷却水通路11a毎或いは1個おきに
配設され、縦方向には、高さ100〜200mmおきに2
乃至3個程度配設されている。
The heat flux meter 14 has a mold short piece 11c and a long side 11d, as shown in FIGS. 7 and 8, for example.
The cooling water passages 11a are provided below the normal hot water level, and in the horizontal direction, each cooling water passage 11a or every other cooling water passage 11a is provided, and in the vertical direction, two cooling water passages are provided at every 100 to 200 mm in height.
Approximately 3 to 3 pieces are provided.

以下作用を説明する。 The action will be explained below.

前出第7図に示す如く、モールド側板11の冷
却水通路11aの各々に、縦方向に湯面から100
〜300mmの位置で熱流束計14をセツトし、1.2
m/分の鋳込速度で操業を行つていたところ、局
所的に、第9図Aに示す如く、熱流束波形の振幅
Wが時刻t11から急激に大となつたので、同じく
第9図Bに示す如く、若干遅れて、時刻t12から
鋳込速度を一旦0.7m/分に低下させたところ、
第9図Aに示す如く、時刻t13で振幅が元の状態
に戻り、表面割れ発生が防止されたことが明らか
となつた。従つて、時刻t13から再び鋳込速度を
元の1.2m/分に戻して、高速鋳込みを再開する
ことができる。尚、鋳込速度を1.2m/分に戻し
た際に、再び振幅が大となる時には、モールドパ
ウダの変更等、他の方法によつて表面割れの発生
を防止することが可能である。
As shown in FIG. 7 above, each of the cooling water passages 11a of the mold side plate 11 is provided with a distance of 100 mm from the hot water level in the vertical direction.
Set the heat flux meter 14 at a position of ~300mm, 1.2
While the operation was being carried out at a casting speed of m/min, locally, as shown in Figure 9A, the amplitude W of the heat flux waveform suddenly increased from time t11 . As shown in Figure B, after a slight delay, the casting speed was once lowered to 0.7 m/min from time t12 .
As shown in FIG. 9A, the amplitude returned to its original state at time t13 , making it clear that surface cracking was prevented. Therefore, from time t13 , the casting speed can be returned to the original 1.2 m/min, and high-speed casting can be resumed. If the amplitude becomes large again when the casting speed is returned to 1.2 m/min, it is possible to prevent the occurrence of surface cracks by other methods such as changing the mold powder.

以上説明した通り、本発明によれば、あらゆる
操業条件下で鋳片の割れの発生を、感度良く、簡
単且つ確実に予知して、鋳片の割れを簡単且つ確
実に防止することができるという優れた効果を有
する。
As explained above, according to the present invention, it is possible to easily and reliably predict the occurrence of cracks in slabs under any operating conditions, and to easily and reliably prevent cracks in slabs. Has excellent effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、抜熱状態を検知するための熱電対を
連続鋳造用鋳型に埋め込んだ状態を示す断面図、
第2図は、前記熱電対によつて得られる出力波形
の一例を示す線図、第3図は、本発明に係る鋳片
の表面割れ防止方法で用いられている熱流束計の
原理的な構成を示す斜視図、第4図は、前記熱流
束計によつて得られる熱流束波形の一例を示す線
図、第5図は、凝固シエルが破断している状態に
おける溶鋼と熱流束計の関係を示す断面図、第6
図は、本発明に係る連続鋳造における鋳片の表面
割れ防止方法が採用された連続鋳造設備の実施例
の全体構成を示す、一部ブロツク線図を含む断面
図、第7図は、前記実施例における熱流束計の取
付け位置を示す斜視図、第8図は、同じく熱流束
計の取付け状態を示す拡大斜視図、第9図は、前
記実施例における熱流束計出力と鋳込速度の関係
を示す線図である。 10……連続鋳造用鋳型(モールド)、11…
…鋳型側板、14……熱流束計、Q……熱流束、
22……溶鋼、24……鋳片、24a……凝固シ
エル、26……ガイドローラ、28……ピンチロ
ール、30……モータ、32……ピンチロール駆
動装置、34……抜熱量変換器、36……信号処
理装置、38……鋳込速度制御装置、40……警
報器、W……熱流束波形の振幅。
FIG. 1 is a cross-sectional view showing a state in which a thermocouple for detecting heat removal state is embedded in a continuous casting mold;
FIG. 2 is a diagram showing an example of the output waveform obtained by the thermocouple, and FIG. 3 is a diagram showing the principle of the heat flux meter used in the method for preventing surface cracking of slabs according to the present invention. FIG. 4 is a diagram showing an example of the heat flux waveform obtained by the heat flux meter, and FIG. 5 is a diagram showing the relationship between molten steel and the heat flux meter when the solidification shell is broken. Cross-sectional view showing the relationship, No. 6
The figure is a sectional view, including a partial block diagram, showing the overall configuration of an embodiment of continuous casting equipment in which the method for preventing surface cracking of slabs in continuous casting according to the present invention is adopted. FIG. 8 is a perspective view showing the mounting position of the heat flux meter in the example, FIG. 8 is an enlarged perspective view showing the mounting state of the heat flux meter, and FIG. 9 is the relationship between the heat flux meter output and the casting speed in the example. FIG. 10...Mold for continuous casting, 11...
...Mold side plate, 14...Heat flux meter, Q...Heat flux,
22... Molten steel, 24... Slab, 24a... Solidification shell, 26... Guide roller, 28... Pinch roll, 30... Motor, 32... Pinch roll drive device, 34... Heat extraction converter, 36... Signal processing device, 38... Casting speed control device, 40... Alarm, W... Amplitude of heat flux waveform.

Claims (1)

【特許請求の範囲】 1 鋳型の外表面に配設した薄板型の表面用熱流
束により、鋳型の抜熱量に応じた熱流束を測定し
て、連続鋳造における鋳片の割れを防止する方法
において、 前記熱流束計により熱流束を測定し、 該熱流束の時間的な変化を表わした熱流束波形
の振幅が所定の範囲を超えた時に鋳込み速度を低
下させ、 前記振幅が元に戻るまで低速鋳込みを行うこと
により、 鋳片の割れの発生を防止することを特徴とする
連続鋳造における鋳片の割れ防止方法。
[Scope of Claims] 1. A method for preventing cracking of a slab during continuous casting by measuring a heat flux corresponding to the amount of heat removed from the mold using a surface heat flux of a thin plate provided on the outer surface of the mold. , the heat flux is measured by the heat flux meter, and when the amplitude of the heat flux waveform representing the temporal change in the heat flux exceeds a predetermined range, the casting speed is reduced, and the casting speed is kept at low speed until the amplitude returns to the original value. A method for preventing cracks in slabs in continuous casting, characterized by preventing cracks in slabs by performing casting.
JP3102782A 1982-02-24 1982-02-26 Method for predicting cracking of ingot in continuous casting Granted JPS58148063A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP3102782A JPS58148063A (en) 1982-02-26 1982-02-26 Method for predicting cracking of ingot in continuous casting
PCT/JP1983/000048 WO1983002911A1 (en) 1982-02-24 1983-02-18 Method of controlling continuous casting facility
DE8383900659T DE3367341D1 (en) 1982-02-24 1983-02-18 Method of controlling continuous casting facility
EP83900659A EP0101521B1 (en) 1982-02-24 1983-02-18 Method of controlling continuous casting facility
US06/537,403 US4553604A (en) 1982-02-24 1983-08-31 Method of controlling continuous casting equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3102782A JPS58148063A (en) 1982-02-26 1982-02-26 Method for predicting cracking of ingot in continuous casting

Publications (2)

Publication Number Publication Date
JPS58148063A JPS58148063A (en) 1983-09-03
JPS6353904B2 true JPS6353904B2 (en) 1988-10-26

Family

ID=12320027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3102782A Granted JPS58148063A (en) 1982-02-24 1982-02-26 Method for predicting cracking of ingot in continuous casting

Country Status (1)

Country Link
JP (1) JPS58148063A (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6099467A (en) * 1983-11-04 1985-06-03 Nippon Steel Corp Detection of shell rupture in continuous casting
JPS60106653A (en) * 1983-11-14 1985-06-12 Nippon Steel Corp Continuous casting method of steel
DE102008029742A1 (en) 2008-06-25 2009-12-31 Sms Siemag Aktiengesellschaft Mold for casting metal
JP5387507B2 (en) * 2010-06-01 2014-01-15 新日鐵住金株式会社 Continuous casting method, continuous casting control device and program
JP5387506B2 (en) * 2010-06-01 2014-01-15 新日鐵住金株式会社 Continuous casting method, continuous casting control device and program
JP5387505B2 (en) * 2010-06-01 2014-01-15 新日鐵住金株式会社 Continuous casting method, continuous casting control device and program
JP5418411B2 (en) * 2010-06-01 2014-02-19 新日鐵住金株式会社 Continuous casting method, continuous casting control device and program
JP5408040B2 (en) * 2010-06-01 2014-02-05 新日鐵住金株式会社 Continuous casting method, continuous casting control device and program
JP5387508B2 (en) * 2010-06-01 2014-01-15 新日鐵住金株式会社 Continuous casting method, continuous casting control device and program
JP6642392B2 (en) * 2016-11-24 2020-02-05 株式会社デンソー Surface roughness measuring method and surface roughness measuring device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5653852A (en) * 1979-10-08 1981-05-13 Kawasaki Steel Corp Mold heat extraction controlling method of continous casting
JPS5666364A (en) * 1979-10-31 1981-06-04 Nippon Kokan Kk <Nkk> Continuous casting method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5653852A (en) * 1979-10-08 1981-05-13 Kawasaki Steel Corp Mold heat extraction controlling method of continous casting
JPS5666364A (en) * 1979-10-31 1981-06-04 Nippon Kokan Kk <Nkk> Continuous casting method

Also Published As

Publication number Publication date
JPS58148063A (en) 1983-09-03

Similar Documents

Publication Publication Date Title
JPS6353903B2 (en)
JPS6353904B2 (en)
JP4105839B2 (en) In-mold casting abnormality detection method in continuous casting
JPH1190599A (en) Method for judging abnormality in mold for continuous casting
JPS5946703B2 (en) Continuous casting method using a mold equipped with a mold temperature measuring element
KR20180014367A (en) Apparatus for predicting abnormality of continuous casting
JP2000263203A (en) Method for predicting longitudinal crack on continuously cast slab
JP2000317594A (en) Solidified shell thickness within molten metal casting mold and method for predicting powder inflow thickness
JPH11300455A (en) Detection of liquid level in casting mold in continuous casting and apparatus therefor
JPH01210160A (en) Method for predicting longitudinal crack in continuous casting
JPH0242409B2 (en)
JPS5946702B2 (en) Continuous casting mold
KR20120044421A (en) Crack diagnosis device of solidified shell in mold and method thereof
JPH01262050A (en) Detection of leaning flow of molten steel in mold at continuous casting of steel and method for continuous casting steel
JPS58145344A (en) Method for controlling taper quantity on short side of casting mold in continuous casting
JP3369926B2 (en) Auto start method for continuous casting
JPS6336865B2 (en)
KR100435430B1 (en) A method for monitoring the casting in the continuous slab caster
Mazza et al. The mold temperature mapping with ultrasonic contactless technology is the key for the real-time initial solidification process control tools
JP2005007460A (en) Method for detecting surface defect on continuously cast steel billet
KR100399233B1 (en) Casting Monitoring Method of Billet Continuous Casting Machine
JP5915463B2 (en) Breakout prediction method
JPH0929407A (en) Continuous caster
JPH10277716A (en) Method for measuring thickness of solidified shell in continuous casing and instrument therefor
JP2895603B2 (en) Surface defect judgment method for continuous cast slab