JPH0259157A - Method for detecting surface defect on continuous casting round cast billet - Google Patents
Method for detecting surface defect on continuous casting round cast billetInfo
- Publication number
- JPH0259157A JPH0259157A JP21119788A JP21119788A JPH0259157A JP H0259157 A JPH0259157 A JP H0259157A JP 21119788 A JP21119788 A JP 21119788A JP 21119788 A JP21119788 A JP 21119788A JP H0259157 A JPH0259157 A JP H0259157A
- Authority
- JP
- Japan
- Prior art keywords
- thermocouples
- round
- detected
- mold
- height direction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000007547 defect Effects 0.000 title claims abstract description 28
- 238000000034 method Methods 0.000 title claims description 13
- 238000009749 continuous casting Methods 0.000 title claims description 6
- 238000001816 cooling Methods 0.000 abstract description 4
- 238000005336 cracking Methods 0.000 description 16
- 238000010586 diagram Methods 0.000 description 11
- 238000005266 casting Methods 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 9
- 238000007689 inspection Methods 0.000 description 6
- 230000005499 meniscus Effects 0.000 description 5
- 238000009529 body temperature measurement Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 238000005096 rolling process Methods 0.000 description 4
- 239000000843 powder Substances 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000007711 solidification Methods 0.000 description 2
- 230000008023 solidification Effects 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 239000002436 steel type Substances 0.000 description 2
- 244000103152 Eleocharis tuberosa Species 0.000 description 1
- 235000014309 Eleocharis tuberosa Nutrition 0.000 description 1
- 235000014030 Podocarpus spicatus Nutrition 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
Landscapes
- Investigating Or Analyzing Materials Using Thermal Means (AREA)
- Continuous Casting (AREA)
Abstract
Description
本発明は、連続丸鋳片の表面欠陥検知方法に係り、特に
、丸鋳片を連続鋳造によりV造する製造段階で操業上や
品質上大きな問題となっている丸鋳片の表面欠陥を複数
の熱電対で検出される測温値の変動に基づいて検知する
方法に関する。The present invention relates to a method for detecting surface defects in continuous round slabs, and in particular, the present invention relates to a method for detecting surface defects in continuous round slabs, and in particular, detects multiple surface defects in round slabs that are a major problem in terms of operation and quality during the production stage where round slabs are continuously cast into V-formers. The present invention relates to a detection method based on fluctuations in temperature values detected by thermocouples.
近時における連続鋳造技術の進歩は著しく、特に最近は
、丸鋳片を連続鋳造により製造する技術が採用されてい
る。又、丸鋳片の連続鋳造に際しては、チューブラ−モ
ールドなどの鋳型が採用されるが、このような丸鋳片の
連続鋳造段階において凝固シェルが破れ内部溶鋼が溶出
したりして丸鋳片の表面欠陥が生ずることがある。この
ような表面欠陥が発生すると操業が中断したり製品の表
面疵や内部割れといった品質上の問題を招来するように
なる。一方、連続丸鋳片の表面欠陥の検知に際しては、
主として縦割れ性ブレークアウト発生の有無を予測する
方法が行われる。
上述のような丸鋳片の表面欠陥を製造段階で検知する方
法の従来例としては、例えば特開昭62−220257
号公報に開示されている技術が知られている。この技術
は、鋳型壁面の円周方向に埋設した複数個の、¥!!電
対で検出される個々の測温値変動から、ブレークアウト
発生の有無を判断し、ブレークアウト発生が予測された
ときに鋳込み速度や冷却水量を制御してブレークアウト
を防止するものである。
しかしながら、上記従来例においては丸鋳片の縦割れ性
ブレークアウトが発生する位置と熱雷対で検出される測
温値の変動とは必ずしも一致せず、縦割れ性ブレークア
ウトを正確に検知できないという大きな欠陥があった。
即ち、第6図は、上記従来例において鋳型壁面の円周方
向に埋設された複数個の熱電対で検出される測温fii
!fT(単位は℃)と鋳造時間t (単位は秒)との関
係(即ち温度履歴)を示す図であるが、測温giTが安
定している時間帯t1、t2においても丸鋳片の縦割れ
性ブレークアウトが発生しており、温度変化を連続的に
検出していても、割れ等の表面欠陥の検知は困難である
0図中に欠陥発生部を表示しているが、必ずしも温度変
動(ハンチング)のみでは表面欠陥が特定できないこと
は明らかである。
このように従来例においては、丸鋳片の表面欠陥を正確
に検出することができないため、丸鋳片の表面欠陥を除
去することが困難であり、無検査や無人手で圧延を行な
うことが困難となっていた。
又、このような状況の下で無検査や無人手で無理に圧延
を行なうと、製品の欠陥を逆に増大させ、歩止りの低下
ひいては製造コストの上昇を招く欠点があった。従って
、無検査や無人手で圧延を行ない、究極的に製造コスト
を低減できるようにするためにも、製造段階で丸鋳片の
表面欠陥を正確に検知できる方法の実現が強く望まれて
いた。Continuous casting technology has made remarkable progress in recent years, and in particular, technology for manufacturing round slabs by continuous casting has been adopted recently. In addition, when continuously casting round slabs, molds such as tubular molds are used, but during the continuous casting process of round slabs, the solidified shell ruptures and the internal molten steel elutes, causing the round slabs to deteriorate. Surface defects may occur. When such surface defects occur, operations are interrupted and quality problems such as surface flaws and internal cracks occur in the product. On the other hand, when detecting surface defects in continuous round slabs,
The method used is mainly to predict the occurrence of vertical breakout. As a conventional example of a method for detecting the surface defects of a round slab at the manufacturing stage as described above, for example, Japanese Patent Application Laid-Open No. 62-220257
The technique disclosed in the publication No. 1 is known. This technology uses multiple pieces buried in the circumferential direction of the mold wall. ! The presence or absence of a breakout is determined from the fluctuations in individual temperature values detected by the electrocouple, and when a breakout is predicted to occur, the casting speed and amount of cooling water are controlled to prevent a breakout. However, in the conventional example described above, the position where vertical cracking breakout occurs in the round slab does not necessarily match the fluctuation in the temperature value detected by the thermal lightning pair, making it impossible to accurately detect vertical cracking breakout. There was a big flaw. That is, FIG. 6 shows the temperature measurement fii detected by a plurality of thermocouples embedded in the circumferential direction of the mold wall surface in the above conventional example.
! This is a diagram showing the relationship (i.e., temperature history) between fT (unit: °C) and casting time t (unit: seconds). Even during time periods t1 and t2 when temperature measurement giT is stable, the longitudinal direction of the round slab is A cracking breakout has occurred, and even if temperature changes are continuously detected, it is difficult to detect surface defects such as cracks. It is clear that surface defects cannot be identified by (hunting) alone. In this way, in conventional methods, surface defects in round slabs cannot be detected accurately, making it difficult to remove surface defects from round slabs, making it difficult to roll without inspection or unmanned. It was becoming difficult. In addition, if rolling is forcibly carried out without inspection or unmanned under such circumstances, there is a drawback that the number of defects in the product increases, resulting in a decrease in yield and, in turn, an increase in manufacturing costs. Therefore, there is a strong desire to develop a method that can accurately detect surface defects in round slabs at the manufacturing stage, in order to ultimately reduce manufacturing costs by performing rolling without inspection or by hand. .
本発明はかかる状況に鑑みてなされたものであり、その
課題は、製造段階で丸鋳片の表面欠陥を正確に検知でき
るような連続鋳造丸鋳片の表面欠陥検知方法を堤供する
ことにある。The present invention has been made in view of this situation, and its object is to provide a method for detecting surface defects in continuously cast round slabs that can accurately detect surface defects in round slabs during the manufacturing stage. .
本発明は、連続鋳造丸鋳片の表面欠陥検知方法において
、鋳型の壁面を高さ方向で複数段に区分すると共に各区
分毎に円周方向略同一位置に熱電対を配設し、高さ方向
同一区分内の複数個の熱電対で所定時間内に検出される
円周方向の測温値の最大値と最小値の差が所定値を超え
るか、又は、円周方向略同一位置の熱電対で検出される
高さ方向の測温値の差が、所定値を超えたときに、丸鋳
片に表面欠陥が発生していると判定するようにして、前
記課題を達成したものである。The present invention is a method for detecting surface defects in continuously cast round slabs, in which the wall surface of the mold is divided into multiple stages in the height direction, and thermocouples are arranged in substantially the same position in the circumferential direction for each division. The difference between the maximum and minimum temperature values in the circumferential direction detected within a predetermined time by multiple thermocouples in the same direction section exceeds a predetermined value, or thermocouples at approximately the same position in the circumferential direction The above-mentioned problem has been achieved by determining that a surface defect has occurred in a round slab when the difference in temperature values detected in a pair in the height direction exceeds a predetermined value. .
本発明は、丸鋳片の縦割れ性ブレークアウトには、鋳片
が鋳型内で凝固を開始してから鋳型を抜けるまでの間の
温度履歴も影響することなどに着目してなされたもので
ある。
即ち、前出第6図に示した現象について、発明者は次の
ように考察した。丸鋳片の縦割れ性ブレークアウトが発
生するのは、第一に丸鋳片の円周方向の一点が局部的に
冷却され過ぎて割れるためであり、第二に冷却が緩慢で
凝固シェルの薄い部分が凝固収縮に伴なう引張り力で割
れるなめである。従って、鋳型壁面の円周方向に配設さ
れた複数個の熱電対で検出される測温値の変動からもあ
る程度縦割れ性ブレークアウトの発生を検知することが
できるが、測温値の変動が少なくても、鋳型と鋳片が一
定時間以上接触を持たなければ樅割れは生じるはずであ
り、丸鋳片の縦割れ性ブレークアウトを正確に知るには
、丸鋳片が鋳型と一定時間以上接触していたか否かをも
調べる必要がある。又、鋳型壁面の円周方向の温度変動
と高さ方向の温度変動を調べることにより、上記第二の
要因による縦割れ性ブレークアウトも検出できると考え
られる。
このため、本発明においては、鋳型の壁面を高さ方向で
複数段に区分すると共に、各区分毎に円周方向略同一位
置に熱電対を配設し、鋳型の壁面に複数個の熱電対がマ
トリクス的に配置されるようになっている。即ち、鋳型
壁面の円周方向に埋設された、高さ方向同一区分内の複
数個の熱電対だけでら丸鋳片の縦割れ性ブレークアウト
をある程度検知できるが、高さ方向の円周方向略同一位
置に埋設された熱電対で丸鋳片の温度履歴も検出するこ
とにより、丸鋳片の縦割れ性ブレークアウトを正確に検
知するものである。
円周方向に関しては、鋳型壁面の高さ方向で区分された
各区分毎に複数個の熱電対で、例えば凝固開始点の鋳片
が鋳型を抜けるのに要する所定時間(鋳造速度Vcで、
鋳片が鋳型の長さ1を通過するのに要する時間J/Vc
)以上測温し、該測温値の最大値と最小値の差ΔTが、
例えば次式(1)を満たすか否か監視する。このような
監視により下式(1)が満たされていると判断されたと
きは、丸鋳片に表面欠陥が生じていると判定し、該丸鋳
片を検査ラインにのせる。
ΔT>a/d−ぶ ・・・・・・・・・(1)但
し、aは、2xlO’ <a <6xlO’を満足し、
割れ感度定数と呼ばれるものであって、第2図に示す如
く、丸鋳片の鋼種によって決定される定数、dは、熱電
対の温度測定時の検出感度を見るなめにとる値で、熱な
対の設置深さ(表面からの深さ)(ll16)、ぶは、
凝固シェルの発達程度を評価するためのもので、メニス
カスからの熱電対の距離(nua)である、なお、熱電
対設置深さdが一定であれば、℃のみを用いての評価も
可能である。
ところで、上記(1)式は次のようにして実験で求めら
れたものである。第2図は縦割れ性ブレークアウトが5
0%以上発生するときの鋳型壁面の温度差を実験で求め
た図であり、図中、縦軸は鋳型壁面において同一高さ(
即ち同−区分内)の円周方向に埋設された複数個の熱電
対により上記所定時間内に検出された測温値の最大値と
最小値の差(ΔT)であり、横軸は熱電対が設置された
位置の鋳型の厚さ(d )と該熱電対のメニスカスから
の距M(15との積(dXJ2)である、又、この図に
おいて、領域Aは縦割れ性ブレークアウトが全く生じな
い領域であり、領域Bは縦割れ性ブレークアウトが50
%以上生じた領域であり、領域Cは縦割れ性ブレークア
ウトが多発(例えば80%以上発生)した領域である。
更に、丸鋳片のg4種を変化させて同様の実験を行ない
、第2図の領域Bが第2図の左下方向若しくは右上方向
シフトするような分布の図(図示せず)が得られた。
これらの実験結果から、aを丸鋳片の鋼種によって決定
される定数(いわゆる縦割れ感度定数)とするとすると
き、2xlO’ <a <6xlO’の条件下で第2図
の領域Bなどにおいて、(ΔT)x(dxA)>aが成
立していることが判明しな。
この式から、丸鋳片の縦割れ性ブレークアウトが50%
以上発生するときの鋳型壁面の円周方向の温度差ΔTは
ΔT>a/(d−β)となり、上記(1)式が導かれる
のである。
なお、第2図作成のための実験においては、第1図に示
す如く、鋳型1の壁面の高さ方向を3つに区分し、各区
分毎に円周方向に6個の熱電対2a〜2f、3a〜3f
、4a〜4f (2d〜2f、3d〜3f 、4d〜4
fは図示せず)を略等開講で埋設した。又、これら熱電
対は、メニスカスからそれぞれ1801111.340
IllIM、及び540nnの距離において、鋳型壁面
の円周方向に6個ずつ配置され、結果的に合計18個の
熱電対が鋳型壁面にマトリクス的に配置された。更に、
メニスカスからそれぞれ180111.340 n11
、及び540)の距離における鋳型銅板の厚さはそれぞ
れ911.7mm及び5mmとなるように各熱な対が設
置された。
なお、上記(1)式が成立しているときは、更なるブレ
ークアウト発生等を回避するため、鋳込み速度を制御し
たり鋳型の冷却を調節するなどの対策も施される。又、
鋳型壁面の円周方向に多くの熱電対を埋設する程、精度
が向上するが、3本以上であればよい。
一方、高さ方向には、熱履歴を見るために、熱電対を少
なくとも2段設け、且つ、丸鋳片の引抜き方向に同一位
置となるように熱電対を配置する。
そして、円周方向略同一位置の熱電対で検出される高さ
方向の(例えば隣接する)測温値の差が、所定のしきい
値を超えた時に割れを検出できる。
即ち、高さ方向の測温値tzi、t3i、tri・・・
(第1図)は、鋳片の同一箇所の温度履歴を表わすもの
であり、この差(tzi t31)、(t3i
j4i>・・・の大、小は、冷却の急変を表わすので
、この差が大きい時に割れを検出できる。又、円周方向
と各段との測定結果を比教することにより、第二の要因
による割れも検出可能である。The present invention was made based on the fact that the vertical cracking breakout of round slabs is also affected by the temperature history from when the slab starts solidifying in the mold until it exits the mold. be. That is, the inventor considered the phenomenon shown in FIG. 6 as follows. The reason why vertical cracking breakout occurs in round slabs is, firstly, one point in the circumferential direction of the round slab is locally cooled too much and cracks, and secondly, cooling is slow and the solidified shell is cracked. This is a lick where the thin part cracks due to the tensile force associated with solidification and shrinkage. Therefore, although it is possible to detect the occurrence of vertical cracking breakout to some extent from the fluctuations in the temperature values detected by multiple thermocouples arranged circumferentially on the mold wall surface, the fluctuations in the temperature values Even if the amount of cracking is small, if the mold and slab are not in contact for a certain period of time, fir cracking should occur. It is also necessary to investigate whether there was any further contact. Furthermore, by examining the temperature fluctuations in the circumferential direction and the temperature fluctuations in the height direction of the mold wall surface, it is thought that vertical cracking breakout due to the second factor described above can also be detected. Therefore, in the present invention, the wall surface of the mold is divided into a plurality of stages in the height direction, and thermocouples are arranged in substantially the same position in the circumferential direction for each section. are arranged in a matrix. In other words, it is possible to detect vertical cracking breakout in a round slab to some extent by just using multiple thermocouples buried in the same vertical section in the circumferential direction of the mold wall surface, but if By detecting the temperature history of the round slab with thermocouples buried in approximately the same position, vertical breakout of the round slab can be accurately detected. Regarding the circumferential direction, a plurality of thermocouples are used for each section divided in the height direction of the mold wall surface to determine, for example, the predetermined time required for the slab at the start of solidification to pass through the mold (at the casting speed Vc,
Time required for the slab to pass through length 1 of the mold J/Vc
) or more, and the difference ΔT between the maximum and minimum temperature values is
For example, it is monitored whether the following formula (1) is satisfied. When it is determined that the following formula (1) is satisfied through such monitoring, it is determined that a surface defect has occurred in the round slab, and the round slab is placed on an inspection line. ΔT>a/d-bu (1) However, a satisfies 2xlO'<a<6xlO',
This is called the crack sensitivity constant, and as shown in Figure 2, the constant d, which is determined by the steel type of the round slab, is a value taken to check the detection sensitivity of the thermocouple when measuring temperature. The installation depth of the pair (depth from the surface) (ll16),
It is used to evaluate the degree of development of the solidified shell, and is the distance of the thermocouple from the meniscus (nua).If the thermocouple installation depth d is constant, it is also possible to evaluate using only °C. be. By the way, the above equation (1) was obtained through experiments as follows. Figure 2 shows 5 vertical breakouts.
This is a diagram obtained by experiment with the temperature difference on the mold wall surface when the temperature difference occurs at 0% or more. In the diagram, the vertical axis is the temperature difference at the same height (
In other words, it is the difference (ΔT) between the maximum and minimum temperature values detected within the above predetermined time by multiple thermocouples buried in the circumferential direction of the same category, and the horizontal axis is the thermocouple is the product (dXJ2) of the thickness of the mold at the location where it is installed (d This is a region where no breakout occurs, and region B has a vertical cracking breakout of 50
% or more, and region C is a region where vertical cracking breakouts occur frequently (for example, 80% or more). Furthermore, similar experiments were carried out by changing the g4 types of round slabs, and a distribution diagram (not shown) in which region B in Figure 2 was shifted toward the lower left or upper right of Figure 2 was obtained. . From these experimental results, when a is a constant determined by the steel type of the round slab (so-called vertical crack sensitivity constant), under the conditions of 2xlO'< a <6xlO', in region B of Fig. 2, etc. It turns out that (ΔT)x(dxA)>a holds true. From this formula, the vertical cracking breakout of a round slab is 50%.
When the above occurs, the temperature difference ΔT in the circumferential direction of the mold wall surface becomes ΔT>a/(d−β), and the above equation (1) is derived. In the experiment for creating Figure 2, as shown in Figure 1, the wall surface of the mold 1 was divided into three sections in the height direction, and six thermocouples 2a to 2 were placed in each section in the circumferential direction. 2f, 3a-3f
, 4a~4f (2d~2f, 3d~3f, 4d~4
f (not shown) was buried at approximately the same time. Also, these thermocouples each have 1801111.340 from the meniscus.
At a distance of IllIM and 540 nn, six thermocouples were arranged in the circumferential direction of the mold wall, resulting in a total of 18 thermocouples arranged in a matrix on the mold wall. Furthermore,
180111.340 n11 from meniscus respectively
, and 540), the thickness of the mold copper plate was 911.7 mm and 5 mm, respectively. Note that when the above formula (1) holds true, measures such as controlling the casting speed and adjusting the cooling of the mold are taken to avoid further occurrence of breakout. or,
The accuracy improves as more thermocouples are embedded in the circumferential direction of the mold wall surface, but three or more thermocouples are sufficient. On the other hand, in the height direction, in order to check the thermal history, thermocouples are provided in at least two stages, and the thermocouples are arranged at the same position in the drawing direction of the round slab. Then, a crack can be detected when a difference in temperature values in the height direction (for example, adjacent ones) detected by thermocouples at substantially the same position in the circumferential direction exceeds a predetermined threshold. That is, the temperature measurements in the height direction tzi, t3i, tri...
(Fig. 1) shows the temperature history of the same part of the slab, and this difference (tzi t31), (t3i
A large or small value of j4i>... represents a sudden change in cooling, so a crack can be detected when this difference is large. Furthermore, by comparing the measurement results in the circumferential direction and at each stage, it is also possible to detect cracks caused by the second factor.
【実施例]
以下、上述のような本発明について、図面を参照しなが
ら更に詳し〈実施例の説明を行なう。
第3図は本実施例を説明するための図である。
図中1は銅板材料でなり、外径175nm厚さ5Iのチ
ューブラ−モールドからなる鋳型、2a〜2C(及び図
示しない2f〜2f)は、鋳型壁面においてメニスカス
から18(Ilの位置で円周方向に略等間隔に埋設され
ている熱電対、3a〜3C(及び図示しない3d〜3f
)は、鋳型壁面においてメニスカスから34Oramの
位置で円周方向に略等間隔に埋設されている熱な対であ
る。
第3図において、鋳型1に溶鋼が流され鋳片の凝固が開
始する頃から!IL、電対2a〜2f 、3a〜3fで
温度を測定した。
このようにして測定された温度について、2分間毎に、
高さ方向に対応した熱電対の測温値の差ΔT′を求め、
高さ方向の温度差ΔT′と鋳造時間tの関係をグラフに
したところ、第4図のようになった。即ち、第4図は高
さ方向の測温値の差ΔT′と@速時間tとの関係を示す
図であり、該温度差ΔT′が40℃以上になると、縦割
れ性ブレークアウトが80%以上の確率で発生すること
が確認できた。
一方、第5図は、丸鋳片連続鋳造機に本発明を適用して
、製品の手入指数を1985年3月から1986年5月
まで追跡した結果を示す図である。
この図において、縦軸の製品手入指数は数値が小さい程
良好、即ち、縦割れ性ブレークアウトの発生が少ないこ
とを示している。
第5図から明らかなように、本発明を実施して、縦割れ
予知に基づく鋳造速度変更により無検査圧延を行った1
985年11月から製品手入指数(外面欠陥発生率)が
大幅に低下しており、本発明を実施することにより、丸
鋳片の縦割れ性ブレークアウト(即ち、丸鋳片の表面欠
陥)発生が大幅に減少することが分かる。
なお、本発明は上述の実施例に限定されることなく種々
の変形が可能であり、例えば区分の異なる位置に埋設さ
れている、任意の2つの熱電対の測温値の長毎に異なる
しきい値を設け、該しきい値を超えたか否かで縦割れ性
ブレークアウト発生の有無を判断するようにしてもよい
。
【発明の効果】
以上詳しく説明したように、本発明によれば、丸鋳片の
製造段階における鋳型内の温度履歴も検出できるように
なり、前記従来例の場合よりも一層正確に丸鋳片の表面
欠陥を検知できる。従って、無検査若しくは無人手で圧
延を行いながら、製造段階における丸鋳片の表面欠陥発
生を著しく低下できるうえ、−旦表面欠陥が発生した場
合でも更なる発生を効果的に防止できるようになる。又
、纒割れ性ブレークアウトの発生予測によりモールドパ
ウダーの流入状況なども推定できるため、モールドパウ
ダーの良否判断に役立ち適正なモールドパウダーのrM
発にも利用できるという利点がある。[Examples] Hereinafter, the present invention as described above will be described in more detail with reference to the drawings. FIG. 3 is a diagram for explaining this embodiment. In the figure, 1 is made of a copper plate material and is made of a tubular mold with an outer diameter of 175 nm and a thickness of 5I, and 2a to 2C (and 2f to 2f, not shown) are molds in the circumferential direction from the meniscus to the position of 18 (Il) on the mold wall surface. Thermocouples 3a to 3C (and 3d to 3f not shown) are buried at approximately equal intervals in
) are thermal pairs buried at approximately equal intervals in the circumferential direction at positions 34 Oram from the meniscus in the mold wall surface. In Figure 3, from the time when molten steel is poured into mold 1 and the slab begins to solidify! The temperature was measured using IL, couplers 2a to 2f, and 3a to 3f. For the temperature measured in this way, every 2 minutes,
Find the difference ΔT' between the temperature values of the thermocouple corresponding to the height direction,
A graph of the relationship between the temperature difference ΔT' in the height direction and the casting time t is shown in FIG. 4. That is, FIG. 4 is a diagram showing the relationship between the temperature difference ΔT' in the height direction and the speed time t. When the temperature difference ΔT' becomes 40°C or more, the vertical cracking breakout occurs at 80 It was confirmed that this occurs with a probability of more than %. On the other hand, FIG. 5 is a diagram showing the results of tracking the product care index from March 1985 to May 1986 by applying the present invention to a round slab continuous casting machine. In this figure, the smaller the value of the product care index on the vertical axis, the better the product, ie, the less occurrence of vertical breakout. As is clear from FIG. 5, the present invention was implemented to perform non-inspection rolling by changing the casting speed based on longitudinal crack prediction.
Since November 1998, the product care index (external surface defect occurrence rate) has decreased significantly, and by implementing the present invention, vertical cracking breakout of round slabs (i.e., surface defects of round slabs) has been reduced significantly. It can be seen that the occurrence is significantly reduced. It should be noted that the present invention is not limited to the above-described embodiments, and can be modified in various ways. A threshold value may be provided, and whether or not vertical breakout has occurred may be determined based on whether or not the threshold value is exceeded. Effects of the Invention As explained in detail above, according to the present invention, it becomes possible to detect the temperature history inside the mold during the manufacturing stage of the round slab, and the temperature history in the mold can be detected more accurately than in the conventional example. surface defects can be detected. Therefore, it is possible to significantly reduce the occurrence of surface defects in round slabs during the manufacturing stage while performing rolling without inspection or manually, and even if surface defects have already occurred, further occurrence can be effectively prevented. . In addition, the inflow status of mold powder can be estimated by predicting the occurrence of breakout, which is useful for determining the quality of mold powder and determining the appropriate rM of mold powder.
It has the advantage that it can also be used for
第1図は、本発明を説明するための斜視図、第2図は、
總割れ性ブレークアウトが50%以上発生するときの鋳
型壁面の温度差を実験で求めた線図、
第3図は、本発明の詳細な説明するための斜視図、
第4図は、高さ方向の測温値の差と鋳造時間との関係を
示す線図、
第5図は、製品の手入指数変化を示す線図、第6図は、
鋳型壁面の円周方向に埋設されな熱電対で連続的に検出
される測温値と鋳造時間との関係を示す線図である。
1・・・鋳型、
2a 〜2c 、3a 〜3c 、4a 〜4c −・
・熱電対。
第
図
第2図
メー又力入fすO津鑓上01ノ
納
一代C六/マ寥
第
3図
第
図
tog。
t (栖造84間(什))
ト傳X、セ、43のロー!=)FIG. 1 is a perspective view for explaining the present invention, and FIG. 2 is a perspective view for explaining the present invention.
A diagram showing experimentally determined temperature differences on the mold wall surface when 50% or more of cracking breakout occurs; Figure 3 is a perspective view for explaining the present invention in detail; Figure 4 is a height Figure 5 is a diagram showing the relationship between the difference in temperature values in the direction and casting time. Figure 5 is a diagram showing changes in the product care index. Figure 6 is
FIG. 2 is a diagram showing the relationship between temperature measurements continuously detected by thermocouples embedded in the circumferential direction of the mold wall and casting time. 1...Mold, 2a-2c, 3a-3c, 4a-4c--
·thermocouple. Figure 2 Mae also input fsu O Tsuyarage 01 Nona 1st generation C6/Matai Figure 3 Figure tog. t (Suzo 84 intervals (什)) Toden X, Se, 43 low! =)
Claims (1)
た複数個の熱電対で検出される測温値に基づいて前記丸
鋳片の表面欠陥を検知する方法において、 前記鋳型の壁面を高さ方向で複数段に区分すると共に各
区分毎に円周方向略同一位置に熱電対を配設し、 高さ方向同一区分内の複数個の熱電対で所定時間内に検
出される円周方向の測温値の最大値と最小値の差が、所
定値を超えるか、 又は、円周方向略同一位置の熱電対で検出される高さ方
向の測温値の差が、所定値を超えたときに、 丸鋳片に表面欠陥が発生していると判定することを特徴
とする連続鋳造丸鋳片の表面欠陥検知方法。(1) In a method of detecting surface defects of the round slab based on temperature values detected by a plurality of thermocouples arranged on the wall surface of the mold during continuous casting of the round slab, the method comprises: The wall surface is divided into multiple stages in the height direction, and thermocouples are placed at approximately the same position in the circumferential direction for each division, and the thermocouples in the same height direction are detected within a predetermined time. The difference between the maximum and minimum temperature values in the circumferential direction exceeds a predetermined value, or the difference in temperature values in the height direction detected by thermocouples at approximately the same position in the circumferential direction exceeds a predetermined value. A method for detecting surface defects in continuously cast round slabs, characterized in that when the value exceeds a value, it is determined that a surface defect has occurred in the round slab.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21119788A JPH0259157A (en) | 1988-08-25 | 1988-08-25 | Method for detecting surface defect on continuous casting round cast billet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21119788A JPH0259157A (en) | 1988-08-25 | 1988-08-25 | Method for detecting surface defect on continuous casting round cast billet |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0259157A true JPH0259157A (en) | 1990-02-28 |
Family
ID=16601980
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21119788A Pending JPH0259157A (en) | 1988-08-25 | 1988-08-25 | Method for detecting surface defect on continuous casting round cast billet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0259157A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109187638A (en) * | 2018-10-10 | 2019-01-11 | 中国计量大学 | A kind of high s/n ratio vortex thermal imaging testing method based on direction modulation |
-
1988
- 1988-08-25 JP JP21119788A patent/JPH0259157A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109187638A (en) * | 2018-10-10 | 2019-01-11 | 中国计量大学 | A kind of high s/n ratio vortex thermal imaging testing method based on direction modulation |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4688755B2 (en) | Steel continuous casting method | |
KR20180014367A (en) | Apparatus for predicting abnormality of continuous casting | |
JP4802718B2 (en) | Method for predicting surface defect occurrence risk region in continuous cast slab and method for producing continuous cast slab | |
EP3909703B1 (en) | Method for continuous casting of slab | |
JPH0259157A (en) | Method for detecting surface defect on continuous casting round cast billet | |
JPH01210160A (en) | Method for predicting longitudinal crack in continuous casting | |
JP3188148B2 (en) | Continuous casting machine | |
JPH0790343B2 (en) | Breakout prediction method in continuous casting | |
JPH01143748A (en) | Continuous casting method | |
JPS5929353B2 (en) | Breakout prediction method | |
KR100399233B1 (en) | Casting Monitoring Method of Billet Continuous Casting Machine | |
JPS6044163A (en) | Method for predicting breakout in continuous casting | |
JPH0775766B2 (en) | Method for detecting vertical crack in slab in continuous casting | |
JP2022190572A (en) | Slab defect detection method for continuous casting | |
JP2661380B2 (en) | Method for preventing short side vertical cracking and breakout of continuous cast slab | |
JP2895603B2 (en) | Surface defect judgment method for continuous cast slab | |
JPS63119963A (en) | Method for predicting breakout in continuous casting | |
JPH01284470A (en) | Method of controlling continuous casting of round ingot | |
JP2661375B2 (en) | Method for predicting longitudinal cracks in continuous cast slabs | |
JPS6138763A (en) | Method for predicting breakout in continuous casting | |
JPH0126791B2 (en) | ||
JPH05305408A (en) | Casting method at the time of lacking in continuous casting | |
JPS58148064A (en) | Predicting method for restrictive breakout | |
JPS63256250A (en) | Method for predicting breakout in continuous casting | |
JPH06182511A (en) | Method and device for controlling electromagnetic stirring in continuous casting |