JP2661380B2 - Method for preventing short side vertical cracking and breakout of continuous cast slab - Google Patents
Method for preventing short side vertical cracking and breakout of continuous cast slabInfo
- Publication number
- JP2661380B2 JP2661380B2 JP3023312A JP2331291A JP2661380B2 JP 2661380 B2 JP2661380 B2 JP 2661380B2 JP 3023312 A JP3023312 A JP 3023312A JP 2331291 A JP2331291 A JP 2331291A JP 2661380 B2 JP2661380 B2 JP 2661380B2
- Authority
- JP
- Japan
- Prior art keywords
- mold
- gap
- short side
- breakout
- slab
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
- Continuous Casting (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、連続鋳造鋳片の短辺縦
割れ、ブレークアウト防止方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for preventing short side vertical cracks and breakouts in continuous cast slabs.
【0002】[0002]
【従来の技術】鋼の連続鋳造において、特に炭素含有量
が0.09〜0.15重量%の中炭素鋼スラブの連続鋳
造において、スラブ表面に縦割れ疵が発生することが多
い。炭素含有量が0.09〜0.15重量%では包晶凝
固となり、凝固時の収縮量が大きい。そのために、鋳型
内面と鋳片表面との間に局部的な隙間(以下、ギャップ
という。)が生じ、不均一凝固シェルが生成しやすくな
る。その結果、熱応力によって割れが生じると考えられ
ている。2. Description of the Related Art In continuous casting of steel, particularly in the continuous casting of medium carbon steel slabs having a carbon content of 0.09 to 0.15% by weight, longitudinal cracks often occur on the slab surface. When the carbon content is 0.09 to 0.15% by weight, peritectic solidification occurs and the amount of shrinkage during solidification is large. Therefore, a local gap (hereinafter, referred to as a gap) is generated between the inner surface of the mold and the surface of the slab, and a non-uniform solidified shell is easily generated. As a result, it is considered that cracks occur due to thermal stress.
【0003】そこで、このような縦割れを防止する方法
として、(1)パウダの粘度を適正化する方法、(2)
鋳型銅板内面に低熱伝導率の金属を接合したり、溝を形
成することにより、溶鋼からの抜熱量を低下させる方法
等が提案されている。In order to prevent such vertical cracks, there are (1) a method of optimizing the viscosity of the powder, and (2)
A method has been proposed in which a low heat conductivity metal is joined to the inner surface of a mold copper plate or a groove is formed to reduce the amount of heat removed from molten steel.
【0004】一方、縦割れは鋳込初期の1〜2チャージ
目に発生しやすい傾向がある。この経時変化に対応する
対策が望まれている。また、鋳込中での縦割れ発生に対
してはピンチロール出側での光学的検出、または、スラ
ブの熱間手入れ時の目視検査等でしか検出されず、鋳込
中での対策が必要である。On the other hand, vertical cracks tend to occur at the first or second charge in the early stage of casting. There is a need for a countermeasure against this change over time. In addition, the occurrence of vertical cracks during casting is detected only by optical detection at the pinch roll exit side, or by visual inspection at the time of hot maintenance of the slab, and measures are required during casting. It is.
【0005】したがって、前述の対策(1)では、パウ
ダ物性のバラツキにより完全に防止できるとは言えな
い。前述の対策(2)では、高速鋳造時の凝固シェル厚
不足によりブレークアウトを発生するという危険性が増
加する。縦割れが鋳込初期に発生するという経時変化に
対しては、いずれの対策も効果がなく、過剰な処置と言
わざるを得ない。[0005] Therefore, it cannot be said that the above-mentioned measure (1) can be completely prevented due to variations in powder physical properties. In the above-described measure (2), there is an increased risk that breakout occurs due to insufficient solidified shell thickness during high-speed casting. Neither countermeasure is effective for a temporal change in which a vertical crack occurs in the early stage of casting, and it must be said that this is an excessive measure.
【0006】さらに、この傾向は短辺シェル側に強く、
短辺縦割れ、およびその割れに起因するブレークアウト
が多発するという問題がある。Furthermore, this tendency is strong on the short side shell side,
There is a problem that short side vertical cracks and breakouts caused by the cracks occur frequently.
【0007】鋳型・鋳片間のギャップ測定方法として
は、パウダ・フィルムからのエネルギを測定する方法
(鉄と鋼、83−S161)が提案されている。この方
法も鋳型直下での測定であるため、リアルタイムでの対
処が不可能であるとともに、耐久性に大きな問題があ
る。そこで、鋳片縦割れ発生を鋳型内で検知し、リアル
タイムで防止対策を施す必要がある。現状での鋳型内の
情報としては、鋳型鋼板からの温度情報がある。この情
報は鋳片のブレークアウト予知はできるが、縦割れ予知
ができる程度に感度が良くない。鋳型内で予知し、防止
対策に結び付けうる方策が望まれている。As a method for measuring a gap between a mold and a slab, a method for measuring energy from a powder film (iron and steel, 83-S161) has been proposed. Since this method is also a measurement directly under a mold, it cannot be dealt with in real time and has a serious problem in durability. Therefore, it is necessary to detect the occurrence of vertical cracks in the slab in the mold and take preventive measures in real time. As information in a mold at present, there is temperature information from a mold steel plate. Although this information can predict a slab breakout, it is not sensitive enough to predict a vertical crack. There is a need for measures that can be foreseen in the mold and linked to preventive measures.
【0008】[0008]
【発明が解決しようとする課題】本発明が解決しようと
する課題は、連続鋳造中に鋳型と鋳片間のギャップ量に
応じて短辺テーパを変えることにより、短辺縦割れに起
因するブレークアウトを防止することにある。The problem to be solved by the present invention is to change the short-side taper in accordance with the gap between the mold and the slab during continuous casting, thereby reducing breakage caused by short-side vertical cracks. To prevent out.
【0009】[0009]
【課題を解決するための手段】本発明の連続鋳造鋳片の
短辺縦割れおよびブレークアウト防止方法は、鋼の連続
鋳造方法において、鋳型短辺を強制的に変形させるマル
チテーパ鋳型を用いるマルチテーパ鋳型を用いること、
該鋳型の短辺内面の厚み方向にわたって所定のピッチ
で、かつ、鋳込方向に複数列に金属間間隙測定素子を埋
設すること、該素子により鋳型短辺内面と鋳片表面との
間の間隙を測定し、該間隙が0.05mm以上で、か
つ、鋳込方向の間隙の偏差が0.2mm未満となるよう
に前記測定値に基づいて、前記鋳型の短辺のテーパを制
御することからなる手段によって、上記課題を解決して
いる。SUMMARY OF THE INVENTION The present invention provides a method for preventing short side vertical cracks and breakout of a continuous cast slab. Using a tapered mold,
Embedding the intermetallic gap measuring elements at a predetermined pitch in the thickness direction of the inner surface of the short side of the mold, and in a plurality of rows in the casting direction, the gap between the inner surface of the short side of the mold and the surface of the slab by the element. Is measured, and the taper of the short side of the mold is controlled based on the measured value so that the gap is 0.05 mm or more, and the deviation of the gap in the casting direction is less than 0.2 mm. The above problem has been solved by the following means.
【0010】[0010]
【作用】本発明の方法に用いられる金属間間隙測定素子
は、例えば本出願人の特許出願(特願平2−29853
6号)に開示されているようなものでもよい。この特許
出願に係る発明の金属体の面間間隙計測方法は、相対向
して配された金属体の一方に、他方との対向面と平行な
面内にて適長離隔せしめて一対のコイルを埋設し、これ
らのコイルの内の一方に低周波の励磁電流を通電して、
磁場を発生する送信コイルとして機能させ、この磁場の
エネルギが両金属体中及び両者間の間隙を伝播して他方
のコイルに誘起する誘導電流を捉えたとき、この誘導電
流には、磁場エネルギの伝播経路の相違、特に前記間隙
の大小に応じた位相遅れ及び強度低下が生じることを利
用し、この励磁電流と受信コイルの誘導電流との間の位
相変化及び/又は強度変化を検出して前記間隙の寸法を
特定する。The intermetallic gap measuring element used in the method of the present invention is disclosed in, for example, a patent application of the present applicant (Japanese Patent Application No. 2-29853).
No. 6). The method for measuring an inter-surface gap of a metal body according to the invention according to this patent application includes a method in which one of metal bodies arranged opposite to each other is separated by a suitable length in a plane parallel to a surface opposed to the other pair of coils. And a low-frequency exciting current is applied to one of these coils,
It functions as a transmission coil that generates a magnetic field, and when the energy of this magnetic field propagates through the gap between the two metal bodies and captures the induced current induced in the other coil, this induced current includes the magnetic field energy Utilizing the difference in the propagation paths, especially the fact that the phase lag and the intensity decrease corresponding to the size of the gap occur, the phase change and / or the intensity change between the exciting current and the induced current of the receiving coil are detected to detect the phase change and / or the intensity change. Identify the dimensions of the gap.
【0011】両コイル間の間隙は、相互の干渉、測定範
囲を考慮に入れて、100mm程度をとる必要があるこ
とが判明した。したがって、鋳型短辺鋳込方向に100
mmピッチにコイルを埋設することにより、鋳込方向の
ギャップ分布状態を測定することができる。It has been found that the gap between both coils needs to be about 100 mm in consideration of mutual interference and measurement range. Therefore, in the casting direction of the short side of the mold, 100
By embedding coils at a pitch of mm, the state of gap distribution in the casting direction can be measured.
【0012】一方、本出願人は、鋳型短辺銅板に加圧装
置を取り付け、強制的に短辺を変形させて鋳片のプロフ
ィルと一致させるマルチテーパ鋳型を提案した(特開平
2−247059号公報)。On the other hand, the present applicant has proposed a multi-tapered mold in which a pressing device is attached to a copper plate on a short side of a mold and the short side is forcibly deformed to match the profile of a slab (Japanese Patent Laid-Open No. 2-247059). Gazette).
【0013】このマルチテーパ鋳型の短辺に前述の金属
間間隙測定素子を取り付けることによって、常に一定ギ
ャップを維持することが可能となる。By attaching the above-described intermetallic gap measuring element to the short side of the multi-taper mold, it is possible to always maintain a constant gap.
【0014】鋳片の短辺プロフィルは、鋼種、鋳造速
度、鋳型冷却強度によって異なる。同一条件において
も、図3に示すように、凝固シェル厚の不均一、すなわ
ち、鋳型・鋳片間のギャップ変化が現れる。したがっ
て、鋼種・鋳造速度によって鋳型テーパを決めても、鋳
込中にそれが変化することがある。The short side profile of a slab differs depending on the type of steel, casting speed, and mold cooling strength. Even under the same conditions, as shown in FIG. 3, unevenness of the solidified shell thickness, that is, a change in the gap between the mold and the slab appears. Therefore, even if the mold taper is determined according to the steel type and the casting speed, it may change during casting.
【0015】そこで鋳込中にギャップを測定しながら、
テーパを随時変更させて、ギャップを一定に保つ。これ
によって、鋳片短辺シェル厚の均一化を図り、縦割れ防
止、それに起因するブレークアウトを防止することが可
能となる。Therefore, while measuring the gap during casting,
Change the taper from time to time to keep the gap constant. This makes it possible to make the slab short-side shell thickness uniform, prevent vertical cracks, and prevent breakout due to the cracks.
【0016】縦割れ発生率と短辺鋳込方向ギャップ分布
との関係を図4に示す。隣接測定素子間の短辺鋳込方向
ギャップ量の偏差が0.2mm以上となると、縦割れ発
生の確率が急増することから、ギャップ量の偏差が0.
2mmを越えると縦割れ予知警報を出し、テーパ率を変
更する。FIG. 4 shows the relationship between the vertical crack generation rate and the gap distribution in the short side casting direction. If the deviation of the gap amount in the short side casting direction between adjacent measuring elements is 0.2 mm or more, the probability of the occurrence of vertical cracks increases rapidly.
If it exceeds 2 mm, a warning for predicting a vertical crack is issued and the taper ratio is changed.
【0017】ただし、ギャップの限界量は、鋼種・鋳造
速度等により異なるため、鋳造条件により限界量を予め
種々に求めておくことが必要である。However, since the limit amount of the gap varies depending on the type of steel, casting speed, and the like, it is necessary to obtain various limit amounts in advance according to casting conditions.
【0018】ブレークアウト発生率とギャップ量との関
係を図5に示す。ギャップの値が0.05mm以下とな
ると、ブレークアウト発生比率が急増する。そこで、ギ
ャップが0.05mm以下になるとブレークアウト予知
警報を出し、テーパ率を変更する。FIG. 5 shows the relationship between the breakout occurrence rate and the gap amount. When the value of the gap becomes 0.05 mm or less, the breakout occurrence ratio sharply increases. Therefore, when the gap becomes 0.05 mm or less, a breakout prediction alarm is issued and the taper ratio is changed.
【0019】したがって、ギャップが0.05mm以上
で、偏差が0.2mm未満になるように鋳型短辺テーパ
率を変更するように制御すれば、縦割れおよびブレーク
アウトを防止することができる。Accordingly, if the short side taper ratio of the mold is controlled so that the gap becomes 0.05 mm or more and the deviation becomes less than 0.2 mm, vertical cracks and breakout can be prevented.
【0020】縦割れ予知、ブレークアウト予知共に、鋳
型短辺内面においてメニスカス下方200mmまでのギ
ャップ量で決まるので、測定用コイルをメニスカスか
ら、鋳型短辺内面で鋳込方向に複数段(実施例では2
段)で、かつ、鋳型短辺内面の厚み方向に複数列(実施
例では2列)に配列すれば十分である。Since both the prediction of longitudinal cracks and the prediction of breakout are determined by the gap amount up to 200 mm below the meniscus on the inner surface of the mold short side, the measurement coil is moved from the meniscus to a plurality of steps in the casting direction on the inner surface of the mold short side (in the embodiment, 2
It is sufficient to arrange them in a plurality of rows (two rows in the embodiment) in the thickness direction of the inner surface of the short side of the mold.
【0021】[0021]
【実施例】図1、2を参照して、本発明の方法の実施例
について説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the method of the present invention will be described with reference to FIGS.
【0022】湾曲半径が10mの1点矯正連続鋳造機に
おいて、中炭素鋼(C=0.10%)、200mm厚×
1800mm幅のスラブを、鋳造速度3.0m/分で連
続鋳造した。No.1ストランドの鋳型1の短辺11に
は、図2に示すように、ギップ測定用コイル2を鋳込方
向にメニスカスから下方50mm、150mmの2段で
かつ鋳型短辺の厚み方向に2列に埋設した。No.2ス
トランドは、比較として従来鋳型を用いた。In a one-point straightening continuous casting machine having a curvature radius of 10 m, a medium carbon steel (C = 0.10%), a thickness of 200 mm ×
A slab having a width of 1800 mm was continuously cast at a casting speed of 3.0 m / min. No. As shown in FIG. 2, on the short side 11 of the one-strand mold 1, the gap measuring coils 2 are arranged in two stages of 50 mm and 150 mm below the meniscus in the casting direction and in two rows in the thickness direction of the short side of the mold. Buried. No. The two strands used the conventional mold as a comparison.
【0023】第1ストランドでは、前述したように、ギ
ャップが0.05mm以上、ギャップ量偏差が0.2m
m未満になるように、鋳型短辺テーパを随時制御した。
その結果を図6に示す。縦割れ発生は従来法の約1/5
以下になる。As described above, the first strand has a gap of 0.05 mm or more and a gap amount deviation of 0.2 m.
m, the short side of the mold was controlled as needed.
FIG. 6 shows the result. Vertical cracking is about 1/5 of the conventional method
It becomes below.
【0024】図1は、鋳型1の短辺11の背面に押出装
置3を設けて、テーパ率を変更する機構の一列を示す。FIG. 1 shows a row of mechanisms for changing the taper ratio by providing an extruder 3 on the back side of the short side 11 of the mold 1.
【0025】[0025]
【発明の効果】本発明によれば、鋳片の短辺縦割れおよ
びそれに起因するブレークアウトを防止することがで
き、手入れ工程の省略、大幅な歩留向上を図ることがで
きる。According to the present invention, it is possible to prevent short-side vertical cracks in the cast slab and breakout caused by the short-side cracks, to omit a maintenance step, and to greatly improve the yield.
【図1】本発明の方法を適用したマルチテーパ鋳型の部
分側面図である。FIG. 1 is a partial side view of a multi-tapered mold to which the method of the present invention has been applied.
【図2】本発明の方法に用いられるギャップ測定コイル
の設置例の斜視図である。FIG. 2 is a perspective view of an installation example of a gap measuring coil used in the method of the present invention.
【図3】鋳片の凝固シェル厚の変動状況を示すグラフで
ある。FIG. 3 is a graph showing a variation of a solidified shell thickness of a slab.
【図4】ギャップ量の偏差と縦割れ発生率との関係を示
すグラフである。FIG. 4 is a graph showing a relationship between a deviation of a gap amount and a vertical crack occurrence rate.
【図5】ギャップ量とブレークアウト発生率との関係を
示すグラフである。FIG. 5 is a graph showing a relationship between a gap amount and a breakout occurrence rate.
【図6】本発明の方法の効果を示すグラフである。FIG. 6 is a graph showing the effect of the method of the present invention.
1:鋳型、 2:ギャップ測定用コイ
ル、3:押出装置、 11:短辺。1: mold, 2: gap measuring coil, 3: extruder, 11: short side.
Claims (1)
強制的に変形させるマルチテーパ鋳型を用いること、該
鋳型の短辺内面の厚み方向にわたって所定のピッチで、
かつ、鋳込方向に複数列に金属間間隙測定素子を埋設す
ること、該素子により鋳型短辺内面と鋳片表面との間の
間隙を測定し、該間隙が0.05mm以上で、かつ、鋳
込方向の間隙の偏差が0.2mm未満となるように前記
測定値に基づいて、前記鋳型の短辺のテーパを制御する
ことからなる連続鋳造鋳片の短辺縦割れおよびブレーク
アウト防止方法。In a continuous casting method for steel, a multi-tapered mold for forcibly deforming a short side of a mold is used, and at a predetermined pitch over a thickness direction of an inner surface of a short side of the mold.
And, burying the intermetallic gap measuring elements in a plurality of rows in the pouring direction, measuring the gap between the inner surface of the short side of the mold and the surface of the slab with the element, the gap is 0.05 mm or more, and, A method of preventing short-side longitudinal cracking and breakout of a continuous cast slab, comprising controlling a taper of a short side of the mold based on the measured value so that a deviation of a gap in a casting direction is less than 0.2 mm. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3023312A JP2661380B2 (en) | 1991-02-18 | 1991-02-18 | Method for preventing short side vertical cracking and breakout of continuous cast slab |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3023312A JP2661380B2 (en) | 1991-02-18 | 1991-02-18 | Method for preventing short side vertical cracking and breakout of continuous cast slab |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0577014A JPH0577014A (en) | 1993-03-30 |
JP2661380B2 true JP2661380B2 (en) | 1997-10-08 |
Family
ID=12107076
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3023312A Expired - Lifetime JP2661380B2 (en) | 1991-02-18 | 1991-02-18 | Method for preventing short side vertical cracking and breakout of continuous cast slab |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2661380B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5011087B2 (en) * | 2007-12-26 | 2012-08-29 | 新日鉄エンジニアリング株式会社 | Continuous casting mold |
CN105964960B (en) * | 2016-07-11 | 2017-12-19 | 内蒙古科技大学 | A kind of taper measurer of plate slab crystallizer |
CN113510226B (en) * | 2021-06-08 | 2022-07-01 | 中国重型机械研究院股份公司 | Intelligent control device and method for real-time online correction of slab narrow-side defects |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54163728A (en) * | 1978-06-16 | 1979-12-26 | Nippon Kokan Kk | Preventing break out in continuous casting |
JPS6083759A (en) * | 1983-10-15 | 1985-05-13 | Sumitomo Metal Ind Ltd | Foreseeing method of breakout in continuous casting |
-
1991
- 1991-02-18 JP JP3023312A patent/JP2661380B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH0577014A (en) | 1993-03-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3386051B2 (en) | Method for estimating flow pattern of molten steel in continuous casting, temperature measuring device for mold copper plate, method for determining surface defects of continuous cast slab, method for detecting molten steel flow, method for evaluating non-uniformity of heat removal in mold, method for controlling molten steel flow, Quality control method in continuous casting, continuous casting method of steel, estimation method of molten steel flow velocity | |
US6776217B1 (en) | Method for continuous casting of slab, in particular, thin slab, and a device for performing the method | |
JP2003181609A (en) | Method and apparatus for estimating and controlling flow pattern of molten steel in continuous casting | |
JP2661380B2 (en) | Method for preventing short side vertical cracking and breakout of continuous cast slab | |
EP3572163A1 (en) | Steel continuous casting method | |
JP2661375B2 (en) | Method for predicting longitudinal cracks in continuous cast slabs | |
JPH03275256A (en) | Method for controlling drift flow of molten steel in continuous casting mold | |
JPH01210160A (en) | Method for predicting longitudinal crack in continuous casting | |
JP2972051B2 (en) | Steel continuous casting mold and continuous casting method | |
JPH08276257A (en) | Breakout detector for continuous casting and method for controlling casting | |
KR100399233B1 (en) | Casting Monitoring Method of Billet Continuous Casting Machine | |
JP2950188B2 (en) | Method of controlling surface defects in continuous casting | |
JP3000305B2 (en) | Method for estimating surface defects of slab slab | |
JP3389449B2 (en) | Continuous casting method of square billet | |
EP2461924A1 (en) | Mould for continuous casting of long or flat products, cooling jacket designed to cooperate with such a mould and assembly comprising such a mould and such a cooling jacket | |
JP3096232B2 (en) | Continuous casting method | |
JPS62224454A (en) | Mold for continuous casting | |
JPH0929407A (en) | Continuous caster | |
JPS6044163A (en) | Method for predicting breakout in continuous casting | |
JP2962788B2 (en) | Control method of drift of molten steel in continuous casting mold | |
US10399142B2 (en) | Method for setting a conicity of a die of a strand casting installation, and device for a strand casting installation | |
JP2895603B2 (en) | Surface defect judgment method for continuous cast slab | |
JP3414219B2 (en) | Continuous casting mold and continuous casting method | |
JPS6330162A (en) | Measurement for shell thickness in continuous casting | |
JPH0126791B2 (en) |