JP3096232B2 - Continuous casting method - Google Patents

Continuous casting method

Info

Publication number
JP3096232B2
JP3096232B2 JP07228662A JP22866295A JP3096232B2 JP 3096232 B2 JP3096232 B2 JP 3096232B2 JP 07228662 A JP07228662 A JP 07228662A JP 22866295 A JP22866295 A JP 22866295A JP 3096232 B2 JP3096232 B2 JP 3096232B2
Authority
JP
Japan
Prior art keywords
mold
casting
continuous casting
solidified shell
shell thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07228662A
Other languages
Japanese (ja)
Other versions
JPH0952159A (en
Inventor
康弘 新井
信浩 高木
克己 近藤
康裕 坂本
秀明 櫻井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP07228662A priority Critical patent/JP3096232B2/en
Publication of JPH0952159A publication Critical patent/JPH0952159A/en
Application granted granted Critical
Publication of JP3096232B2 publication Critical patent/JP3096232B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Continuous Casting (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は連続鋳造方法に関す
る。特に、鋳型内の凝固状況を検知することによって、
ブレークアウトによる溶鋼の機外流出を未然に防ぐ連続
鋳造方法に関するものである。
[0001] The present invention relates to a continuous casting method. In particular, by detecting the solidification state in the mold,
The present invention relates to a continuous casting method for preventing molten steel from flowing out of a machine due to breakout.

【0002】[0002]

【従来の技術】従来の連続鋳造法を連続鋳造の概要を示
した図1を参酌して説明する。
2. Description of the Related Art A conventional continuous casting method will be described with reference to FIG.

【0003】連続鋳造法では、図1に示した如く、レー
ドルから溶鋼を注入されたタンディッシュ4から耐火物
で形成されたノズル2を通して鋳型1内に溶鋼11を注
入し、上下方向に振動(オシレーション)する鋳型内に
おいて凝固殻(シェル)10を形成し、ピンチロール9
により連続的に引き抜き、鋳片を製造している。鋳型1
は、溶鋼11をすみやかに凝固させるべく、水冷箱に、
熱伝導性の高い銅あるいは銅合金を材質とする板を用い
るとともに、潤滑材としてパウダー3を用い、銅板は背
面を水冷することで、鋳型に注入した溶鋼を凝固させる
機能としての役割を有している。しかしながら、この鋳
型による凝固が不十分であると、鋳型をでたシェル強度
が弱く、溶鋼静圧に負けることで、凝固シェルが破れ、
ブレークアウトと呼ばれる溶鋼が機外に流出するトラブ
ルを引き起こし、鋳造中止となる現象が発生する。
In the continuous casting method, as shown in FIG. 1, molten steel 11 is injected into a mold 1 from a tundish 4 in which molten steel is injected from a ladle, through a nozzle 2 made of refractory material, and vibrated vertically ( A solidified shell (shell) 10 is formed in a mold to be oscillated, and a pinch roll 9 is formed.
To continuously produce cast slabs. Mold 1
, In a water-cooled box to quickly solidify the molten steel 11,
Using a plate made of copper or copper alloy with high thermal conductivity, using powder 3 as a lubricant, the copper plate has a function of solidifying molten steel poured into the mold by cooling the back surface with water. ing. However, if the solidification by this mold is insufficient, the strength of the shell leaving the mold is weak, and the solidified shell is broken by losing the molten steel static pressure,
This causes a problem called breakout, in which molten steel flows out of the machine, and a phenomenon occurs in which casting is stopped.

【0004】通常は、このブレークアウトが起きないよ
うな鋳造速度で操業することで凝固シェル厚を確保し、
本トラブルを回避している。しかし、過度の鋳造速度低
下は生産性の低下を引き起こすため、実際は生産性の確
保とトラブル回避を両立するような操業方法が色々と提
案されている。
[0004] Normally, by operating at a casting speed that does not cause this breakout, the solidified shell thickness is ensured,
This trouble is avoided. However, since an excessive decrease in the casting speed causes a decrease in productivity, various operation methods have been proposed that actually ensure both productivity and avoid trouble.

【0005】例えば、特開昭63−183763号公報
では鋳型銅板内に熱電対を埋めこみ、その温度情報から
鋳型の凝固状況を推定し、ブレークアウトを未然に防止
する方法が提案されている。しかしながら、この方法で
は、あくまで鋳型内に埋め込むという間接的な評価法で
あるため、推定精度が劣り、完全にブレークアウトを防
ぐことは不可能であった。この原因は、鋳型上端におい
ては鋳型にパウダーが接触していること、また鋳型下端
においては凝固収縮によりエアギャップ(鋳型と非接触
部)を生じており、これらの熱抵抗が非常に大きいこと
により鋳型内の熱電対では鋳型全体での凝固状況を精度
よく推定することが困難なことによる。
For example, Japanese Patent Application Laid-Open No. 63-183763 proposes a method of embedding a thermocouple in a mold copper plate, estimating the solidification state of the mold from its temperature information, and preventing breakout. However, since this method is an indirect evaluation method of embedding in a mold, estimation accuracy is poor, and it is impossible to completely prevent breakout. The cause is that the powder is in contact with the mold at the upper end of the mold, and an air gap (non-contact portion with the mold) is generated at the lower end of the mold due to solidification shrinkage, and these thermal resistances are extremely large. This is because it is difficult to accurately estimate the solidification state of the entire mold with a thermocouple in the mold.

【0006】このように、鋳型直下の凝固シェル厚はブ
レークアウトを防止する上で非常に重要であるにもかか
わらず、それを精度良く推定する方法がなかった。
As described above, although the thickness of the solidified shell immediately below the mold is very important in preventing breakout, there has been no method for accurately estimating the thickness.

【0007】[0007]

【発明が解決しようとする課題】本発明は、この鋳型直
下の凝固シェル厚を精度良く推定するとともに、該推定
情報により、鋳造速度を適正に制御することで、生産性
の確保とトラブル回避とを両立させた連続鋳造方法を提
供することを課題とする。
SUMMARY OF THE INVENTION According to the present invention, it is possible to accurately estimate the thickness of a solidified shell immediately below a mold and appropriately control a casting speed based on the estimated information, thereby ensuring productivity and avoiding trouble. It is an object of the present invention to provide a continuous casting method that achieves both.

【0008】[0008]

【課題を解決するための手段】本発明は連続鋳造鋳型直
下の鋳片を光学装置で監視し、その映像を画像解析装置
で輝度解析を実施することで、その輝度の値から鋳型直
下の凝固シェル厚を求めるとともに、ブレークアウトを
防止するのに必要な鋳造速度に制御することにより、生
産性の確保とトラブル回避とを両立させた連続鋳造方法
である。
SUMMARY OF THE INVENTION According to the present invention, a slab immediately below a continuous casting mold is monitored by an optical device, and a video thereof is subjected to luminance analysis by an image analysis device. This is a continuous casting method that ensures both productivity and avoids troubles by determining the shell thickness and controlling the casting speed necessary to prevent breakout.

【0009】即ち、本発明は鋳片を光学装置で検査する
と、該鋳片の輝度と凝固シェル厚との間に反比例の相関
があるとする知見に基づき、該輝度から鋳造速度を制御
して適正な凝固シェル厚を確保するようにして、ブレー
クアウトを防止した生産性の極めて高い連続鋳造方法で
ある。
That is, according to the present invention, when a slab is inspected by an optical device, the casting speed is controlled from the luminance based on the finding that there is an inversely proportional correlation between the luminance of the slab and the solidified shell thickness. This is a highly productive continuous casting method that secures an appropriate solidified shell thickness and prevents breakout.

【0010】連続鋳造中の鋳型内における鋳片の凝固状
況は通常、鋳型による冷却により、鋳型下端での凝固シ
ェル厚は10mm以上確保するような鋳造速度が選択さ
れている。しかしながら、実際にブレークアウトした鋳
片を見ればわかる様に、上記を達成するような鋳型速度
を選択すると共に、鋳型速度を一定にして操業を実施し
ていても、凝固シェルが不均一な厚さで鋳型内に存在
し、場合によっては鋳型下端でのシェル厚が5mm以下
となるような異常に薄い場合が存在する。この現象の原
因としては、潤滑剤として使用されるパウダーが鋳型で
の伝熱形態に大きな影響を及ぼすことに起因する。すな
わち、鋳型と凝固シェルの間には潤滑剤としてパウダー
が介されており、そのパウダーを介しての伝熱形態を有
するが、このパウダーは、鋳造中常に一定の粘度で流れ
込むのが望ましいものの実際は溶鋼中に存在するアルミ
ナを吸着することで成分が変質し、かつ粘度も大きく変
化する。したがって、実際の鋳造時においては過剰に流
れ込む場合や、逆に流れ込まずに空気を巻き込む現象が
発生する。この場合シェルは異常に薄くなり、それに伴
い鋳片表面温度は高温化する。その結果鋳型直下の鋳片
の輝度はハレーション(白輝色)状態となり、鋳型直下
に配置した光学装置により、検出可能となる。本発明
は、さらにその光学装置で検出した映像を輝度解析を行
うことで、精度よくシェル厚に換算し、この結果に基づ
き鋳造速度を制御することで鋳型直下の凝固シェル厚を
常にブレークアウトを防止する適正な厚さにコントロー
ル可能であることを見出し本発明を完成した。
[0010] The solidification state of the slab in the mold during continuous casting is usually selected at a casting speed such that the thickness of the solidified shell at the lower end of the mold is at least 10 mm by cooling by the mold. However, as can be seen from the actually broken-out slab, the mold speed is selected so as to achieve the above, and even when the operation is performed at a constant mold speed, the solidified shell has an uneven thickness. Now, there is a case where the shell is abnormally thin such that the shell thickness at the lower end of the mold is 5 mm or less in some cases. The cause of this phenomenon is that the powder used as the lubricant has a great effect on the heat transfer form in the mold. That is, a powder is interposed as a lubricant between the mold and the solidified shell, and has a form of heat transfer through the powder.However, although it is desirable that the powder always flows with a constant viscosity during casting, it is actually By adsorbing the alumina present in the molten steel, the components are altered and the viscosity is also greatly changed. Therefore, during the actual casting, there is a case where the air flows excessively, or conversely, a phenomenon in which air is drawn in without flowing. In this case, the shell becomes unusually thin, and the slab surface temperature increases accordingly. As a result, the brightness of the cast slab immediately below the mold is in a halation (white brilliant) state, and can be detected by the optical device disposed immediately below the mold. The present invention further performs a brightness analysis on the image detected by the optical device, accurately converts the thickness into a shell thickness, and controls the casting speed based on the result to constantly break out the solidified shell thickness immediately below the mold. The present inventors have found that it is possible to control the thickness to be appropriate for prevention, and completed the present invention.

【0011】尚、本発明で使用する光学装置とは撮像デ
バイスとして、光電効果を利用したビディコン、光電子
放出効果を利用したSIT管に代表される撮像管タイプ
やCCD・MOS・CIDを代表とする固体撮像タイ
プ、或いは、ファイバーセンサー等を用いるものであ
る。
The optical device used in the present invention is, as an image pickup device, a vidicon utilizing a photoelectric effect, an image pickup tube type represented by a SIT tube utilizing a photoelectron emission effect, or a CCD / MOS / CID. A solid-state imaging type, a fiber sensor, or the like is used.

【0012】[0012]

【発明の実施の形態】以下図面を用いて本発明の方法を
説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The method of the present invention will be described below with reference to the drawings.

【0013】図1は本発明の方法を実施する連続鋳造装
置の概要を示す図である。図2はあらかじめ光学装置の
撮影条件を一定にした場合に得られた鋳片輝度とシェル
厚との関係を示した図である。
FIG. 1 is a diagram showing an outline of a continuous casting apparatus for carrying out the method of the present invention. FIG. 2 is a diagram showing the relationship between the slab brightness and the shell thickness obtained when the imaging conditions of the optical device are fixed in advance.

【0014】また、式(1)は鋳片の輝度から求めたシ
ェル厚を用いて、現地点での操業時の凝固係数K値を産
出する式であり、式(2)は式(1)で求めたK値を用
い、鋳型直下にて凝固シェルを必要とする所定の厚さに
確保するための鋳造速度を産出する式である。尚、ここ
で使用した輝度は所定の撮影条件にて撮影した際の絶対
輝度を255階調で表現したものであるが、これに限ら
れるものではない。
Equation (1) is an equation for producing a solidification coefficient K at the time of operation at a local point using the shell thickness obtained from the brightness of the slab, and equation (2) is equation (1). Is a formula for producing a casting speed for securing a solidified shell to a required thickness immediately below the mold using the K value obtained in the above. Note that the brightness used here represents the absolute brightness at the time of shooting under predetermined shooting conditions in 255 gradations, but is not limited to this.

【0015】[0015]

【数1】 上記式(1)に於いて、K:凝固係数(−)、L:鋳型
長さ(m)、Vc:操業時の鋳造速度(m/min)、
および、l1:現操業時の凝固シェル厚(mm)であ
る。
(Equation 1) In the above formula (1), K: solidification coefficient (-), L: mold length (m), Vc : casting speed during operation (m / min),
And l 1 : solidified shell thickness (mm) in the current operation.

【0016】[0016]

【数2】 上記式(2)において、Vc′:ブレークアウトを防止
するための目標鋳造速度(m/min)、K:凝固係数
(−)、L:鋳型長さ(m)、および、l2:鋳型下端
必要シェル厚(mm)を示す。
(Equation 2) In the above formula (2), V c ′: target casting speed (m / min) for preventing breakout, K: solidification coefficient (−), L: mold length (m), and l 2 : mold Shows the required lower shell thickness (mm).

【0017】図1に示した如くレードルから溶鋼を注入
されたタンディッシュ4から耐火物で形成されたノズル
2を通して鋳型1内に溶鋼11を注入し、上下方向に振
動(オシレーション)する鋳型内において凝固殻(シェ
ル)10を形成し、ピンチロール9により連続的に引き
抜き、鋳片を連続鋳造する操業を実施する。該連続鋳造
の操業では、鋳型直下に設置した光学装置5により鋳片
の映像を検出し、その出力を画像解析装置6によって輝
度解析して鋳片表面輝度を算出する。この情報から、予
め検定した図2に示す輝度と凝固シェル厚との関係に基
づき、現状の鋳型下端での凝固シェル厚10を求めると
ともに、凝固シェル厚算出式(1)から現地点での凝固
係数K値を算出し、さらにこの凝固係数K値を用いて鋳
型下端での凝固シェル厚がブレークアウトしないような
所定の厚さになるように鋳造速度を演算式(2)により
求める。この演算は、凝固係数及び必要速度の演算制御
器7により行う。そして、この演算結果により、鋳造速
度調整器8でもって鋳造速度制御を実施する。この操業
方法により、ブレークアウトすることなく、効率的に連
続鋳造の生産性を確保することが可能となる。
As shown in FIG. 1, molten steel 11 is injected into a mold 1 from a tundish 4 in which molten steel is injected from a ladle, through a nozzle 2 made of refractory material, and is oscillated in a vertical direction (oscillation). , A solidified shell (shell) 10 is formed, continuously extracted with a pinch roll 9, and an operation of continuously casting a slab is performed. In the continuous casting operation, an image of the slab is detected by the optical device 5 installed immediately below the mold, and the output thereof is subjected to luminance analysis by the image analysis device 6 to calculate the slab surface luminance. From this information, based on the relationship between the brightness and the solidified shell thickness shown in FIG. 2, which has been verified in advance, the current solidified shell thickness 10 at the lower end of the mold is obtained, and the solidified shell thickness at the local point is obtained from the solidified shell thickness calculation formula (1). The coefficient K value is calculated, and using this solidification coefficient K value, the casting speed is determined by an arithmetic expression (2) so that the solidified shell thickness at the lower end of the mold does not break out. This calculation is performed by the calculation controller 7 for the coagulation coefficient and the required speed. Then, based on the calculation result, the casting speed control is performed by the casting speed adjuster 8. According to this operation method, it is possible to efficiently secure the productivity of continuous casting without breakout.

【0018】[0018]

【実施例】図1に示す如く、鋳型1下端に光学装置5、
画像解析装置6、演算制御装置7および速度調整器8を
設置した連続鋳造機を用い、鋳造速度を制御せずにその
まま鋳造する操業と、鋳造速度を制御する操業との2つ
の操業を実施した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS As shown in FIG.
Using a continuous casting machine in which the image analysis device 6, the arithmetic and control unit 7 and the speed regulator 8 were installed, two operations were carried out: an operation for casting without controlling the casting speed and an operation for controlling the casting speed. .

【0019】両者の操業条件は、比較可能とすべく、使
用したパウダー3、浸漬ノズル2の形状、鋳型1通過以
降の2次冷却水量、鋳造幅はもちろん、鋳造速度につい
ても、鋳造を開始してから10min後には2.0m/
minで鋳造するなど、極力同一条件になるように操業
を実施した。また、光学系の撮影条件は絞り値f=2.
5、シャッタースピード1/200秒にて撮影を実施す
るとともに、図2は本撮影条件下での相関図である。
In order to make the two operating conditions comparable, the casting is started not only with regard to the used powder 3, the shape of the immersion nozzle 2, the amount of secondary cooling water after passing through the mold 1, the casting width, but also the casting speed. 2.0m / after 10min
The operation was carried out under the same conditions as much as possible, such as casting in min. The imaging conditions of the optical system are as follows: aperture value f = 2.
5. Photographing is performed at a shutter speed of 1/200 second, and FIG. 2 is a correlation diagram under the actual photographing conditions.

【0020】図3は上記設置した装置を使用せずに、鋳
造速度を制御せずにそのまま鋳造を続けた時に得られた
鋳造時間(min)に対する鋳造速度(m/min)、
輝度、凝固シェル厚(mm)及び凝固定数(−)の結果
を示す図である。図4は上記設置した装置を使用して、
鋳造速度の制御を実施した時に得られた鋳造時間(mi
n)に対する鋳造速度(m/min)、輝度、凝固シェ
ル厚(mm)及び凝固定数(−)の結果を示す図であ
る。
FIG. 3 shows a casting speed (m / min) with respect to a casting time (min) obtained when the casting was continued without using the installed apparatus and without controlling the casting speed.
It is a figure which shows the result of a brightness | luminance, solidification shell thickness (mm), and solidification constant (-). FIG. 4 shows the use of the above-described device.
The casting time (mi) obtained when the casting speed was controlled
It is a figure which shows the result of casting speed (m / min), brightness | luminance, solidification shell thickness (mm), and solidification constant (-) with respect to n).

【0021】図3に示したように、鋳造速度制御を実施
しなかった場合、鋳造を開始してから30min後徐々
に鋳型下端の鋳片の輝度が上昇しはじめ、32min後
にはさらに大きな上昇を示すとともに、結局35min
後にブレークアウトに至った。この現象を図2に基づい
て算出したシェル厚10でみると、鋳造開始から30m
inまではシェル厚を10mm以上確保する操業を実施
していたが、30min後からの輝度上昇によりシェル
厚が10mm以下となり、結局35min後にシエル厚
が5mmとなった時点でブレークアウトに至ったことが
わかる。
As shown in FIG. 3, when the casting speed control was not performed, the brightness of the slab at the lower end of the mold started to increase gradually after 30 minutes from the start of casting, and further increased after 32 minutes. 35 minutes after all
Later, a breakout occurred. Looking at this phenomenon with a shell thickness 10 calculated based on FIG.
The operation to secure a shell thickness of 10 mm or more was carried out until in, but the shell thickness became 10 mm or less due to the increase in luminance after 30 min, and eventually a breakout occurred when the shell thickness became 5 mm after 35 min. I understand.

【0022】図4の鋳造速度制御を実施した場合、やは
り図3と同様に鋳造スタートから25min後にパウダ
ー3の劣化に起因されると考えられる輝度の上昇が見ら
れたが、式(1)および式(2)に基づく演算制御装置
7および速度調整器8による制御により、鋳型下端凝固
シェル厚10mmを確保するよう鋳造速度が低下するこ
とで、図3の場合のようなブレークアウトは発生しなか
った。さらに、このまま操業を継続したが、35min
後には逆に序々に輝度の低下が見られた(パウダーの劣
化が回復した)ため、再び低下する前の鋳造速度に復帰
し、このような状況が何度か繰り返されつつ300mi
n間最後まで安定した操業が継続され、鋳造終了した。
When the casting speed control shown in FIG. 4 was carried out, an increase in luminance which was considered to be caused by the deterioration of the powder 3 was observed 25 minutes after the start of casting, as in FIG. The control by the arithmetic and control unit 7 and the speed adjuster 8 based on the equation (2) reduces the casting speed so as to secure the solidified shell thickness at the lower end of the mold of 10 mm, so that the breakout as in the case of FIG. 3 does not occur. Was. Furthermore, the operation was continued as it was,
Later, on the contrary, the brightness gradually decreased (the deterioration of the powder was recovered), so the casting speed returned to the casting speed before the decrease again, and such a situation was repeated several times for 300 mi.
The stable operation was continued until the end of n, and the casting was completed.

【0023】[0023]

【発明の効果】このように本発明により、ブレークアウ
トするとなく、効率的に連続鋳造の操業を実施でき、且
つ、生産性を確保することが可能となった。
As described above, according to the present invention, the continuous casting operation can be efficiently performed without breaking out, and the productivity can be secured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】連続鋳造装置の概要を示す図である。FIG. 1 is a diagram showing an outline of a continuous casting apparatus.

【図2】光学系の撮影条件を一定にした場合に得られた
鋳片輝度と凝固シェル厚との関係を示した図である。
FIG. 2 is a diagram showing a relationship between a slab luminance and a solidified shell thickness obtained when imaging conditions of an optical system are fixed.

【図3】鋳造速度を制御せずにそのまま連続鋳造を続け
た時に得られた結果を示す図である。
FIG. 3 is a diagram showing a result obtained when continuous casting is continued without controlling the casting speed.

【図4】鋳造速度の制御を実施した時に得られた結果を
示す図である。
FIG. 4 is a diagram showing a result obtained when a casting speed is controlled.

【符号の説明】[Explanation of symbols]

1 鋳型 2 浸漬ノズル 3 パウダー 4 タンディッシュ 5 光学装置 6 画像解析装置 7 演算制御器 8 速度調整器 9 ピンチロール 10 凝固シェル 11 溶鋼 REFERENCE SIGNS LIST 1 mold 2 immersion nozzle 3 powder 4 tundish 5 optical device 6 image analysis device 7 arithmetic controller 8 speed controller 9 pinch roll 10 solidified shell 11 molten steel

フロントページの続き (72)発明者 坂本 康裕 東海市東海町5−3 新日本製鐵株式会 社 名古屋製鐵所内 (72)発明者 櫻井 秀明 東海市東海町5−3 新日本製鐵株式会 社 名古屋製鐵所内 (56)参考文献 特開 昭48−80430(JP,A) 特開 昭57−97857(JP,A) 特開 昭57−171555(JP,A) 特開 昭53−37532(JP,A) 特開 昭52−156728(JP,A) 特開 昭58−135758(JP,A) 特開 昭63−183763(JP,A) 特開 平8−90185(JP,A) 特開 平8−90184(JP,A) 特開 昭59−94024(JP,A) 特開 昭63−132758(JP,A) 特開 平1−254362(JP,A) 特開 昭57−17359(JP,A) 特開 昭52−123650(JP,A) 特公 昭40−10561(JP,B1) (58)調査した分野(Int.Cl.7,DB名) B22D 11/16 104 B22D 11/16 B22D 11/20 G01B 11/06 101 Continuing on the front page (72) Inventor Yasuhiro Sakamoto 5-3 Tokai-cho, Tokai-shi Nippon Steel Corporation Nagoya Works (72) Inventor Hideaki Sakurai 5-3 Tokai-cho, Tokai-shi Nippon Steel Corporation Nagoya Works (56) References JP-A-48-80430 (JP, A) JP-A-57-97857 (JP, A) JP-A-57-171555 (JP, A) JP-A-53-37532 (JP, A) JP-A-52-156728 (JP, A) JP-A-58-135758 (JP, A) JP-A-63-183763 (JP, A) JP-A-8-90185 (JP, A) 8-90184 (JP, A) JP-A-59-94024 (JP, A) JP-A-63-132758 (JP, A) JP-A-1-254362 (JP, A) JP-A-57-17359 (JP, A) A) JP-A-52-123650 (JP, A) JP-B-40-10561 (JP, B1) (58) Fields investigated (Int. Cl. 7 , DB name) B22D 11/16 104 B22D 11/16 B22D 11/20 G01B 11/06 101

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 連続鋳造鋳型直下の鋳片を光学装置で監
視し、その映像を画像解析装置で輝度解析を実施するこ
とで、その輝度の値から鋳型直下の凝固シェル厚を求め
るとともに、ブレークアウトを防止するのに必要な鋳造
速度に制御することを特徴とする連続鋳造方法。
1. A slab immediately below a continuous casting mold is monitored by an optical device, and an image thereof is subjected to luminance analysis by an image analyzer to obtain a solidified shell thickness immediately below the mold from the value of the luminance. A continuous casting method characterized by controlling a casting speed necessary to prevent out-flow.
JP07228662A 1995-08-15 1995-08-15 Continuous casting method Expired - Fee Related JP3096232B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07228662A JP3096232B2 (en) 1995-08-15 1995-08-15 Continuous casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07228662A JP3096232B2 (en) 1995-08-15 1995-08-15 Continuous casting method

Publications (2)

Publication Number Publication Date
JPH0952159A JPH0952159A (en) 1997-02-25
JP3096232B2 true JP3096232B2 (en) 2000-10-10

Family

ID=16879854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07228662A Expired - Fee Related JP3096232B2 (en) 1995-08-15 1995-08-15 Continuous casting method

Country Status (1)

Country Link
JP (1) JP3096232B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002028764A (en) * 2000-07-13 2002-01-29 Tokai Carbon Co Ltd Method and device for observing break-out in continuous casting of steel
JP4501892B2 (en) * 2006-04-21 2010-07-14 Jfeスチール株式会社 Method and apparatus for estimating molten metal temperature in continuous casting mold
CN103182496B (en) * 2011-12-31 2017-06-13 Posco公司 Bleedout detection means in continuous casting process

Also Published As

Publication number Publication date
JPH0952159A (en) 1997-02-25

Similar Documents

Publication Publication Date Title
JP3096232B2 (en) Continuous casting method
KR100523793B1 (en) Breakout monitoring system and its method in continuous casting process
JP3095346B2 (en) Level control method in mold for continuous casting
JPH08276257A (en) Breakout detector for continuous casting and method for controlling casting
JP2995516B2 (en) Metal surface level control method in twin roll continuous casting
JPH0890184A (en) Device and method for preventing flaw on cast slab
JP2661380B2 (en) Method for preventing short side vertical cracking and breakout of continuous cast slab
JPH0747199B2 (en) Continuous casting method and its mold
JP3101069B2 (en) Continuous casting method
JP3188148B2 (en) Continuous casting machine
KR20210037118A (en) Constrained breakout prediction method in continuous casting process
KR102634137B1 (en) Surface quality control method in continuous casting
JPS6087956A (en) Continuous casting method of metal
JPS6092052A (en) Continuous casting method of thin sheet
JPS62224454A (en) Mold for continuous casting
JPS6130270A (en) Continuous casting method
JP2661375B2 (en) Method for predicting longitudinal cracks in continuous cast slabs
JPS63137544A (en) Horizontal continuous casting method
JPS5813456A (en) Monitoring device for ingot in continuous casting machine
JPS60191642A (en) Horizontal and continuous casting method of metal
JPS60191641A (en) Horizontal and continuous casting method of metal
JPH05337609A (en) Continuous casting apparatus
JP2903844B2 (en) Method of finishing casting in continuous casting
KR20120073656A (en) Device and method for detecting breakout in a continuous die casting process
JPH1099949A (en) Method for casting steel under electromagnetic field

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000725

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080804

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090804

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090804

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100804

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100804

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110804

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120804

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130804

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130804

Year of fee payment: 13

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130804

Year of fee payment: 13

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130804

Year of fee payment: 13

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees