JPH0747199B2 - Continuous casting method and its mold - Google Patents

Continuous casting method and its mold

Info

Publication number
JPH0747199B2
JPH0747199B2 JP60121133A JP12113385A JPH0747199B2 JP H0747199 B2 JPH0747199 B2 JP H0747199B2 JP 60121133 A JP60121133 A JP 60121133A JP 12113385 A JP12113385 A JP 12113385A JP H0747199 B2 JPH0747199 B2 JP H0747199B2
Authority
JP
Japan
Prior art keywords
mold
casting
short side
speed
taper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60121133A
Other languages
Japanese (ja)
Other versions
JPS61279351A (en
Inventor
正志 河本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP60121133A priority Critical patent/JPH0747199B2/en
Publication of JPS61279351A publication Critical patent/JPS61279351A/en
Publication of JPH0747199B2 publication Critical patent/JPH0747199B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/168Controlling or regulating processes or operations for adjusting the mould size or mould taper

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は連続鋳造において短辺鋳型のテーパ量、鋳込
み速度、鋳片幅替速度を自動制御し得る連続鋳造方法お
よび連続鋳造鋳型に関するものである。
TECHNICAL FIELD The present invention relates to a continuous casting method and a continuous casting mold capable of automatically controlling the taper amount, casting speed and slab width changing speed of a short side mold in continuous casting. is there.

〈従来技術とその問題点〉 連続鋳造においては、転炉吹錬後の溶鋼を、脱酸、成分
調整、真空脱ガス等の処理を行なつた後、取鍋により移
送し、連続鋳造設備のタンデイツシユに所定流量づつ注
湯し、さらに、このタンデイツシユから浸漬ノズルによ
り所定流量づつ鋳型に注湯し、冷却能を有する鋳型によ
り一次冷却して薄い凝固シエルを形成しつつ所定の鋳造
速度(引抜速度)で引き抜き、スプレーゾーンにより二
次冷却して完全に凝固させ、鋳片を得る。
<Conventional technology and its problems> In continuous casting, the molten steel after converter blowing is subjected to deoxidation, component adjustment, vacuum degassing, etc., and then transferred by a ladle to allow continuous casting equipment It is poured into the mold at a predetermined flow rate and then poured into the mold at a predetermined flow rate from this tundish with a dipping nozzle, and is primarily cooled by a mold having a cooling capacity to form a thin solidified shell and at a predetermined casting speed (drawing speed). ), And secondarily cooled by a spray zone to completely solidify to obtain a slab.

ここで、前記鋳型は、溶鋼に接触する面を熱伝導の良い
銅あるいは銅合金、場合によつては寿命の延長を目的と
して溶鋼の接触面をNiめつき等を施したものが使用され
ている。
Here, the mold is a copper or copper alloy having good thermal conductivity on the surface in contact with molten steel, and in some cases, the contact surface of molten steel with Ni plating is used for the purpose of extending the life. There is.

そして、このような鋳型は、外側に冷却(水冷)手段を
備えており、さらに、2枚の長辺鋳型と2枚の短辺鋳型
を組立てて箱型を形成した組立鋳型が多用され、このよ
うな組立鋳型は、一つの鋳型で種々の幅の鋳片が鋳造可
能とすべく、2枚の短辺鋳型が移動可能とされている。
Further, such a mold is provided with a cooling (water cooling) means on the outside, and further, an assembly mold in which two long-side molds and two short-side molds are assembled to form a box-shaped mold is often used. In such an assembled mold, two short side molds are movable so that a single mold can cast slabs of various widths.

一方、鋳型に注湯された溶鋼は、表面に薄い凝固シエル
を形成するが、凝固時に体積収縮を伴ない、これにより
鋳型4方側壁と凝固シエルとの間に間隙(エアーギヤツ
プ)が発生する。この間隙は、鋳型以降の二次冷却帯で
の凝固層の形成に影響を与え、場合によつては、表面欠
陥の原因となる。
On the other hand, the molten steel poured into the mold forms a thin solidified shell on the surface, but is accompanied by volume contraction during solidification, which causes a gap (air gear trap) between the side wall of the mold 4 and the solidified shell. This gap affects the formation of the solidified layer in the secondary cooling zone after the mold, and in some cases, causes the surface defect.

さらに、薄い凝固シエルが溶鋼の静圧に耐え切れない場
合には、ブレークアウト(シエルが破れ、溶鋼が漏れ
る)の原因にもなり、歩留低下の原因ともなる。
Further, when the thin solidified shell cannot withstand the static pressure of the molten steel, it may cause breakout (the shell breaks and the molten steel leaks), resulting in a decrease in yield.

したがつて、鋳型と凝固中の溶鋼の接触状態あるいは鋳
型による溶鋼の支持状態は重要である。
Therefore, the state of contact between the mold and the molten steel during solidification or the state of support of the molten steel by the mold is important.

これに対処するため通常行なわれていることは、鋳型上
方より下方のサイズが小さくなつてテーパ鋳型を使用
し、溶鋼の凝固収縮量に見合うだけ、テーパ量を調整す
ることである。
In order to cope with this, what is usually done is to use a taper mold in which the size below the mold is smaller than the size above the mold, and to adjust the taper amount to match the solidification shrinkage amount of the molten steel.

この他に鋳型と凝固中の溶鋼との接触状態を向上させる
手段としては、オツシレーション、すなわち鋳型を振動
させ、凝固中溶鋼との摩擦焼付を軽減すること、鋳型と
溶鋼との潤滑のためのパウダ投入がある。
In addition to this, as means for improving the contact state between the mold and the molten steel during solidification, oscillation, that is, vibrating the mold to reduce friction seizure with molten steel during solidification, for lubrication between the mold and molten steel There is powder input.

他方、生産能率向上の目的で、多連鋳操業を行なう場合
の一方策として、鋳込中の幅替がある。これは、鋳型内
に溶鋼を注湯しながら鋳型短辺を広げるか、狭めるかで
ある。
On the other hand, as one of the measures for carrying out a multiple casting operation for the purpose of improving the production efficiency, there is a width change during casting. This is to widen or narrow the shorter side of the mold while pouring molten steel into the mold.

そして、この場合、鋳型短辺を移動させた事により、短
辺側テーパを変動させねばならないが、従来、実施され
ていることは、短辺鋳型を移動後にテーパを変化させる
か、短辺鋳型を移動する前にテーパを変化させることで
ある。
Then, in this case, the short side taper must be changed by moving the short side mold, but conventionally, what is practiced is to change the taper after moving the short side mold, or to change the short side mold. Is to change the taper before moving.

ここで、この鋳込中の幅替えとテーパ変動に関し、考慮
すべき事項について述べる。
Here, matters to be considered regarding the width change and the taper fluctuation during the casting will be described.

鋳片幅寸法やパウダー種類等に応じた適切な短辺テーパ
を付与し、適切な幅替速度と適切な鋳込速度で幅替を実
施せねばならない。このためには、幅替中の鋳型内溶鋼
の形状やパウダー流れの状況(溶鋼と鋳型の接触状況
等)を知ることが必要であるが、従来はテーパと幅替速
度と鋳込速度および鋳型と溶鋼との接触状態を全て考慮
して自動幅替を実施している訳ではなく、例えば、幅替
中のテーパを一定にし、新に設定したテーパと幅替量を
付与すべく、定常鋳込中より小さい鋳込速度(この場
合、鋳型側壁およびスプレーゾーンでの冷却水量を制御
して低下させる)で、かつ所定の幅替速度(鋳片と鋳型
との接触・支持状態、鋳込速度、パウダー流れ状況等を
考慮した速度)で幅替を行なうことにより新たなテーパ
と2枚の短辺鋳型壁間距離(鋳片幅)がセツトされる。
It is necessary to provide a suitable short side taper according to the slab width dimension, powder type, etc., and perform width changing at an appropriate width changing speed and an appropriate casting speed. To this end, it is necessary to know the shape of molten steel in the mold during width change and the state of powder flow (contact state between molten steel and mold, etc.). Conventionally, taper, width change speed, pouring speed and mold The automatic width changing is not carried out in consideration of all the contact states between the molten steel and molten steel.For example, in order to keep the taper during the width changing constant and to give the newly set taper and width changing amount, steady casting Casting speed lower than during casting (in this case, control and reduce the amount of cooling water in the mold side wall and spray zone), and a predetermined width changing speed (contact / support state between the slab and the mold, casting speed) , A new taper and a distance between two short side mold walls (width of slab) are set by changing the width at a speed which takes into consideration the powder flow condition and the like.

ここで、前述の接触状態を未確認のまま幅替を実施する
ため、幅替中の鋳造速度や幅替速度が適切とならず、さ
らに、冷却水量も適切とならない。したがつて、幅替中
において種々の不都合が生じる。
Here, since the width change is performed without confirming the above-mentioned contact state, the casting speed and the width change speed during the width change are not appropriate, and further the cooling water amount is not appropriate. Therefore, various inconveniences occur during the width change.

まず、前記の接触未確認では、漏鋼、ブレークアウトの
要因となる。
First, if the contact is not confirmed, it causes steel leakage and breakout.

さらに、鋳造速度の低下による生産能率低下、熱ロスお
よび品質低下(これは冷却水量が制御器の制御範囲を超
えた場合等、幅替後の品質にも悪影響を及ぼす)が生じ
る。幅替速度が必要以上に遅くなると、同様に生産能率
の低下、熱ロスおよび品質低下の要因となる。
Further, the production efficiency is lowered, the heat loss and the quality are lowered due to the reduction of the casting speed (this also adversely affects the quality after changing the width when the cooling water amount exceeds the control range of the controller). If the width changing speed becomes slower than necessary, it also causes a decrease in production efficiency, heat loss and quality deterioration.

さらに、幅替中の短辺鋳型壁への鋳片押し付けすぎによ
る鋳型めつき面損傷の原因となる。次に、幅替後の定常
鋳込中においても、接触未確認により、漏鋼、ブレーク
アウト、鋳型のめつき損傷、鋳片の表面欠陥の要因とな
る。
Further, it causes damage to the mold contact surface due to excessive pressing of the cast piece against the short side mold wall during width change. Next, even during the steady casting after the width change, due to unconfirmed contact, it causes leakage steel, breakout, damage to the mold, and surface defects of the slab.

このため、従来から種々の連続鋳造法および連続鋳造鋳
型が開発されており、例えば次のようなものがある。
Therefore, various continuous casting methods and continuous casting molds have been conventionally developed, for example, as follows.

連続鋳造用鋳型(特開昭58−145343号) 鋳型の長辺と短辺の組合せ部に絶縁物で被覆した熱電対
を埋設し、ブレークアウトの予知、湯面レベル制御、鋳
型内鋳片コーナー部温度管理、パウダー流れ管理、エア
ギヤツプの防止等の必要上、鋳型温度分布を把握し、併
せて鋳型寿命の延長を図つている。
Mold for continuous casting (JP-A-58-145343) A thermocouple covered with an insulator is embedded in the combination of the long side and the short side of the mold to predict breakout, control the level of the molten metal, and the corner of the cast slab. The temperature distribution of the mold is grasped and the life of the mold is extended in order to control the temperature of the parts, the flow of powder, and the prevention of air gear traps.

連続鋳造における鋳型短辺のテーパ量制御方法(特
開昭58−145344号) 鋳型短辺側壁に熱流束計を配設し、鋳型内溶鋼の凝固収
縮に伴なう鋳型内壁と鋳型内溶鋼との間隙を防止する目
的で、鋳型短辺の抜熱量に応じた熱流速を測定し、これ
によりテーパ量を制御するものである。
A taper amount control method for the short side of the mold in continuous casting (JP-A-58-145344) A heat flux meter is installed on the side wall of the short side of the mold, and the inner wall of the mold and the molten steel in the mold accompanying solidification shrinkage of the molten steel in the mold In order to prevent the gap between the two, the heat flow rate according to the heat removal amount of the short side of the mold is measured, and the taper amount is controlled by this.

連続鋳造における鋳片幅変更方法(特開昭59−7315
4号) 鋳込中の幅変更時において、平行移動速度(短辺幅替速
度)とテーパ変更速度を特定するもので、ブレークアウ
トを防止している。
Method of changing slab width in continuous casting (JP-A-59-7315)
No. 4) When changing the width during casting, the parallel movement speed (short side width changing speed) and taper changing speed are specified to prevent breakout.

鋼の高速連続鋳造方法(特開昭57−202948号) 鋳込中の幅変更時において、鋳造速度と幅替速度(短辺
移動速度)を特定し、ブレークアウトを防止している。
High-speed continuous casting method for steel (JP-A-57-202948) When changing the width during casting, the casting speed and width changing speed (short side moving speed) are specified to prevent breakout.

,の場合は、鋳型銅板に埋設した熱電対により温度
を検出する方式であり、銅板の熱伝導が非常に良いため
に、熱電対真近での鋳片と銅板が接触した温度も、この
熱電対よりかなり離れた所(100〜200mm)で鋳片と銅板
が接触した温度も、大差がなく、鋳片が銅板に接触ある
いは非接触していることの判断が非常に困難である。
In the case of, the temperature is detected by a thermocouple embedded in the mold copper plate, and the heat conduction of the copper plate is very good. The temperature at which the slab and the copper plate contacted at a considerable distance (100-200 mm) from the pair did not differ much, and it was very difficult to judge that the slab contacted or did not contact the copper plate.

したがつて、非接触に対する応答である短辺テーパ変更
の動きが遅れ、最も良テーパ(鋳片シエルとのソフトタ
ッチ)とされている鋳片シエルと銅板との接触が微妙な
状態にある時の制御が実際面では難しいという問題があ
る。
Therefore, when the movement of the short side taper change, which is a response to non-contact, is delayed, and the contact between the slab shell, which is the best taper (soft touch with the slab shell), and the copper plate is in a delicate state. There is a problem that is difficult to control in practice.

,の場合は、幅替速度とテーパ変更速度あるいは鋳
造速度と幅替速度の相関関係を特定したのみで、実際の
状態に応じて自動制御するものではない。
In the case of ,, only the correlation between the width changing speed and the taper changing speed or the casting speed and the width changing speed is specified, and the automatic control is not performed according to the actual state.

この発明は、このような事情に鑑みて提案されたもの
で、その目的は定常鋳込中および幅替時に、鋳片シエル
が鋳型と適正な接触状態を維持するように、短辺鋳型テ
ーパと鋳込速度と幅替速度を自動制御し、ブレークアウ
トおよび漏鋼を防止でき、幅替中の幅替速度および鋳込
速度が向上でき、さらに、鋳型の摩耗の減少、コスト低
減を図れる連続鋳造方法およびその鋳型を提供すること
にある。
This invention was proposed in view of such circumstances, and its purpose is to maintain a proper contact state with the casting mold shell during steady casting and width change, so that the short side mold taper and Continuous casting with automatic control of pouring speed and width changing speed to prevent breakout and steel leakage, improve width changing speed and pouring speed during width changing, and reduce mold wear and cost. To provide a method and a template thereof.

〈問題点を解決するための手段〉 この発明に係る連続鋳造方法は、鋳込中の鋳型内鋳片と
前記短辺鋳型内壁面との接触状態を、鋳型内鋳片と短辺
鋳型内壁面との導通・不導通により検出する検知手段に
より検出し、前記鋳型内での鋳込み作業を制御する制御
系内に入力し、前記検出結果と前記制御系に先行して入
力された鋳込み指示情報と後行して入力された鋳込み指
示情報との比較演算結果とに基づき、定常鋳込中および
短辺鋳型幅替中に、短辺鋳型内壁と鋳型内鋳片とが接触
状態を保持するように短辺鋳型のテーパ量を変更し、あ
るいは鋳込み指示情報の変動により短辺鋳型のテーパ量
を変更すると共に、このテーパ量の変動量に応じて鋳込
み速度を変更し、短辺鋳型幅替実施中に鋳込み指示情報
が変更されると鋳込み速度および短辺鋳型のテーパ量を
変更しつつ鋳片幅替速度を変更し、鋳込中および幅替時
に、鋳片シェルが短辺鋳型と適正な接触状態を維持しつ
つ鋳込みが行えるようにしたものである。
<Means for Solving Problems> The continuous casting method according to the present invention, the contact state between the cast piece in the mold during casting and the inner wall surface of the short side mold, the cast piece in the mold and the short side mold inner wall surface. Detected by the detecting means for detecting by conduction / non-conduction with, input into the control system for controlling the casting operation in the mold, and the detection result and the pouring instruction information inputted prior to the control system. Based on the comparison calculation result with the casting instruction information that was input afterwards, during the steady casting and during the short side mold width change, the short side mold inner wall and the in-mold slab are kept in contact with each other. The taper amount of the short side mold is changed, or the taper amount of the short side mold is changed by changing the casting instruction information, and the casting speed is changed according to the fluctuation amount of the taper amount, and the short side mold width is being changed. If the pouring instruction information is changed to By changing the slab width changing speed while changing the taper amount of the mold, it is possible to perform casting while maintaining the proper contact state of the slab shell with the short side mold during casting and during width changing. .

次に、この発明に係る連続鋳造鋳型は、短辺鋳型の上下
にそれぞれ接続され、この短辺鋳型を鋳型内鋳片に対し
て進退させ得るとともにそのテーパ量を調整し得る上部
駆動機構および下部駆動機構と、 前記短辺鋳型内に埋設され先端部が鋳型内鋳片表面に接
触し得るようにされた通電(電極板)センサを有し、鋳
型内鋳片と短辺鋳型内壁との導通・不導通を検出し得る
検出機構と、 この検出機構からの出力信号と鋳込み指示情報に基づい
て、前記上部駆動機構および下部駆動機構および鋳込速
度調整機構を制御する制御機構を備え、比較的簡単な構
成で信頼性の高いシステム構成で自動制御を行えるよう
にしたものである。
Next, the continuous casting mold according to the present invention is connected to the upper and lower sides of the short side mold, respectively, and the upper side drive mechanism and the lower part capable of advancing and retracting the short side mold with respect to the in-mold slab and adjusting the taper amount thereof. It has a drive mechanism and a current-carrying (electrode plate) sensor embedded in the short-side mold so that the tip of the short-side mold can come into contact with the surface of the mold inside the mold, and the conduction between the mold inside the mold and the short-side mold inner wall. A comparatively equipped with a detection mechanism capable of detecting the non-conduction, and a control mechanism for controlling the upper drive mechanism, the lower drive mechanism and the pouring speed adjusting mechanism based on the output signal from this detection mechanism and the pouring instruction information, This is a simple configuration that enables automatic control with a highly reliable system configuration.

〈実施例〉 以下この発明を図示する一実施例に基づいて説明する。<Example> Hereinafter, the present invention will be described based on an illustrated example.

第1図に示すように、この発明に係る連続鋳造鋳型1
は、上部駆動機構2、下部駆動機構3、検出機構4、制
御機構5を備えている。
As shown in FIG. 1, a continuous casting mold 1 according to the present invention
Is provided with an upper drive mechanism 2, a lower drive mechanism 3, a detection mechanism 4, and a control mechanism 5.

上部駆動機構2および下部駆動機構3は、それぞれ短辺
鋳型1Aの上部、下部に接続され、この短辺鋳型1Aを鋳型
内鋳辺Sに対して進退させるとともにそのテーパ量を調
整できるようにされている。
The upper drive mechanism 2 and the lower drive mechanism 3 are connected to the upper part and the lower part of the short-side mold 1A, respectively, so that the short-side mold 1A can be moved forward and backward with respect to the in-mold casting side S and the taper amount thereof can be adjusted. ing.

この駆動機構2,3は例えばモータ6、駆動軸7などから
構成されている。
The drive mechanisms 2 and 3 are composed of, for example, a motor 6 and a drive shaft 7.

検出機構4は、短辺鋳型1Aに多数設けられ、先端面が銅
板1B表面と面一とされ鋳型内鋳辺S表面に接触し得る電
極板センサー8と、電源9、電流計10および警報器11を
有し電極板センサー8と銅板1B上端とを接続する配線12
からなる。
A large number of detection mechanisms 4 are provided in the short side mold 1A, and the tip surface is flush with the surface of the copper plate 1B, and an electrode plate sensor 8 that can contact the surface of the casting side S in the mold, a power supply 9, an ammeter 10 and an alarm Wiring 12 that has 11 and connects the electrode plate sensor 8 and the upper end of the copper plate 1B
Consists of.

銅板1Bの上部に電極板センサ8Aを絶縁体を介して埋設し
た検出機構4Aを溶鋼オーバーフロー用とし、銅板1Bの略
中央部、下部に電極板センサー8B,8Cを埋設し、あるい
は電極板センサー8Dを銅板1Bの下面に取付けた検出機構
4B,4Cあるいは4Dを鋳型内鋳片と短片鋳型内壁との接触
・非接触の検出用としてある。
The detection mechanism 4A in which the electrode plate sensor 8A is embedded in the upper part of the copper plate 1B via the insulator is used for molten steel overflow, and the electrode plate sensors 8B and 8C are embedded in the substantially central part and the lower part of the copper plate 1B, or the electrode plate sensor 8D. Detection mechanism with the copper plate 1B attached to the bottom surface
4B, 4C or 4D is for detecting contact / non-contact between the cast piece in the mold and the inner wall of the short piece mold.

電流計10の出力は制御機構5へ入力される。The output of the ammeter 10 is input to the control mechanism 5.

制御機構5はマイクロコンピュータMCを有し、駆動機構
2,3の位置検出器13,14からの鋳型位置情報が位置変換器
15,16を介して入力される。さらに、主コンピュータ指
示による鋳込み指示情報17および短辺鋳型テーパ寸法設
定値18が入力される。
The control mechanism 5 has a microcomputer MC and has a drive mechanism.
The mold position information from the position detectors 13 and 14 of the position 2 and 3 is the position converter.
Input via 15,16. Further, the casting instruction information 17 and the short side mold taper dimension setting value 18 by the instruction of the main computer are input.

マイクロコンピュータMCからは上部駆動制御器19、下部
駆動制御器20、鋳込速度制御器21、接触異常警報器22、
短辺鋳型テーパ表示器23へ出力され、鋳込速度制御器21
はピンチロール駆動装置24を駆動する。
From the microcomputer MC, the upper drive controller 19, the lower drive controller 20, the pouring speed controller 21, the contact abnormality alarm 22,
Output to the short side mold taper display 23, casting speed controller 21
Drives the pinch roll driving device 24.

以上のような構成において、接触状態を検出し、この検
出結果と先行して入力された鋳込み指示情報と後行して
入力された鋳込み指示情報とに基づき、鋳込中における
短辺鋳型テーパ量、鋳込み速度、鋳片幅替速度を自動制
御する。
In the above-described configuration, the contact state is detected, and based on the detection result, the casting instruction information that was input in advance and the casting instruction information that was input afterward, the short side mold taper amount during casting , Automatic control of casting speed and slab width changing speed.

なお、検出機構の検出ピツチは とする。The detection pitch of the detection mechanism is And

次に、これらの制御量について説明する。Next, these control amounts will be described.

短片鋳型テーパ量 これは、鋳型内壁と鋳片がソフトタツチの状態が最も良
テーパとされるが、テーパ量の変動要因としては、溶鋼
温度、パウダ種類と量、スラブ幅、鋳造速度、鋳型内湯
面レベル(これはまた注入量、鋳造速度、鋳片の幅と厚
み、幅替速度)により変動する。
Short piece mold taper amount This is the best taper when the inner wall of the mold and the slab are in the soft touch state.The factors that cause the taper amount to change are the molten steel temperature, the type and amount of powder, the slab width, the casting speed, and the molten metal level inside the mold Levels (which also vary with injection rate, casting speed, slab width and thickness, width change rate).

したがつて、テーパ量が小さい場合、鋳型内壁と鋳片と
の非接触により、冷却不十分によるシエルの不均一、漏
鋼ブレークアウトを招く。
Therefore, when the taper amount is small, non-contact between the inner wall of the mold and the slab leads to non-uniform shell due to insufficient cooling and steel breakout.

テーパ量が大きい場合、鋳片引抜き抵抗増大によるブレ
ークアウト、鋳型摩耗、鋳型の異常振動により鋳片シエ
ルが不均一となる。
When the taper amount is large, the cast shell becomes non-uniform due to breakout due to increased cast pull resistance, mold wear, and abnormal vibration of the mold.

鋳込み速度 これは、鋳型内より鋳片を引抜く速度であるが、大き過
ぎる場合、鋳片の内部欠陥(割れや偏析)、鋳片の幅変
動、ブレークアウト、表面欠陥の要因となる。小さ過ぎ
る場合、鋳型内焼付や生産能率低下の要因となる。
Casting speed This is the speed at which the slab is pulled out from the mold, but if it is too large, it causes internal defects (cracks and segregation) in the slab, fluctuations in the width of the slab, breakout, and surface defects. If it is too small, it will cause seizure in the mold and decrease in production efficiency.

幅替速度 これは鋳片幅の変動に伴ない、短片鋳型壁を狭めるか、
拡大する場合の移動速度であるが、例えば広幅から狭幅
にする場合において、大き過ぎる場合、鋳片引抜き抵抗
増大によるブレークアウト、漏鋼、モールド摩耗、オシ
レーシヨンに追随しないため表面欠陥の要因となる。
Width change speed This is because the wall of the short piece mold is narrowed as the width of the slab changes.
It is the moving speed when expanding, but for example, when changing from wide to narrow, if it is too large, it does not follow breakout due to increase in slab drawing resistance, steel leakage, mold wear, oscillation, which causes surface defects. .

小さ過ぎる場合、鋳型内焼付や生産能率低下の要因とな
る。特に、幅替中の鋳造速度は重要である。この場合、
定常鋳込中の鋳造速度より、鋳造速度を小さくする。
If it is too small, it will cause seizure in the mold and decrease in production efficiency. In particular, the casting speed during width change is important. in this case,
The casting speed is made lower than the casting speed during steady casting.

次に、制御方法を詳細に説明する。Next, the control method will be described in detail.

鋳込前に、テーパ量T1をマイコンMCに与える。した
がつて、この時のテーパ量は ただし、h1 :上部駆動点高さ h2 :下部駆動点高さ Wp1 :上部駆動点幅方向位置 Wp2 :下部駆動点幅方向位置 となり、他方の短辺鋳型のテーパ量も値は異なるが同様
にして表わせる。なお、以下、一方の短辺鋳型について
説明する。
A taper amount T 1 is given to the microcomputer MC before casting. Therefore, the taper amount at this time is However, h 1 : Upper drive point height h 2 : Lower drive point height Wp 1 : Upper drive point width direction position Wp 2 : Lower drive point width direction position, and the taper amount of the other short side mold also differs Can be expressed in the same way. Note that one of the short-side molds will be described below.

テーパ量T1を与えられると、マイコンMCは先にセツトさ
れていたテーパ量T0との差|T1−T0|=|ΔT1|を算出
し、制御器19,20を介して駆動機構2,3を駆動させるとと
もにテーパ量T1を表示器23に表示する。
When the taper amount T 1 is given, the microcomputer MC calculates the difference | T 1 −T 0 | = | ΔT 1 | from the previously set taper amount T 0, and drives it via the controllers 19 and 20. The taper amount T 1 is displayed on the display 23 while the mechanisms 2 and 3 are driven.

ここで、例えばΔT1が正の時は短辺鋳型1Aの下部を前進
させ、ΔT1が負の時には上部を前進させる。
Here, for example, when ΔT 1 is positive, the lower part of the short-side mold 1A is advanced, and when ΔT 1 is negative, the upper part is advanced.

なお、鋳型移動時間は となる。The mold moving time is Becomes

ただし、R:モータ6の回転数(rpm) i:モータの回転により伝達機構を介して駆動軸
が回転する時の減速比 S:駆動軸のピツチ(mm) さらに、Wp1とWp2は、位置検出器13,14により検出さ
れ、位置変換器15,16により出力信号に変換されてマイ
コンMCに入力される。
However, R: Number of rotations of the motor 6 (rpm) i: Reduction ratio when the drive shaft rotates via the transmission mechanism due to rotation of the motor S: Pitch of drive shaft (mm) Furthermore, Wp 1 and Wp 2 are Detected by the position detectors 13 and 14, converted into output signals by the position converters 15 and 16 and input to the microcomputer MC.

鋳込前に鋳込指示情報17をマイコンMCに与える。こ
の情報17は、鋳片幅、鋳片厚、溶鋼温度、溶鋼成分、溶
鋼注入量、湯面レベル、鋳込速度、鋳型冷却水量、パウ
ダ種類、パウダ量、鋳型オツシレーシヨン量などであ
る。
Before pouring, pouring instruction information 17 is given to the microcomputer MC. This information 17 includes the slab width, the slab thickness, the molten steel temperature, the molten steel component, the molten steel injection amount, the molten metal level, the casting speed, the mold cooling water amount, the powder type, the powder amount, and the mold oscillating amount.

鋳込開始、即ち、鋳型内上方のタンデイツシユ(図
示せず)より鋳型内に溶鋼が注湯される。
The casting is started, that is, molten steel is poured into the mold from a tandem (not shown) above the mold.

したがつて、この時のテーパ量はT1、鋳込速度はVc1
あり、ピンチロール(図示せず)回転数はP1とする。
Therefore, the taper amount at this time is T 1 , the casting speed is V c1 , and the pinch roll (not shown) rotation speed is P 1 .

鋳込中、検出機構4A〜4Dにより鋳片と鋳型内壁との
接触状態を検知し、マイコンMCに与える。
During the casting, the detection mechanisms 4A to 4D detect the contact state between the slab and the inner wall of the mold, and give it to the microcomputer MC.

の結果により、非接触の場合、電流が流れないこ
とから、マイコンMCからの信号により異常警報を発す
る。
As a result, in the case of non-contact, since no current flows, an abnormality alarm is issued by a signal from the microcomputer MC.

さらに、の結果により非接触の場合、マイコンに
より、押込み量ΔT2(マイコン内一定値)を与える。
と同様にテーパは変動し、T2となる。(T1<T2) 非接触が解消されない場合には、これを繰り返す。
Further, according to the result of (3), when there is no contact, the microcomputer gives a pushing amount ΔT 2 (a constant value in the microcomputer).
Similar to, the taper fluctuates to T 2 . (T 1 <T 2 ) If non-contact is not resolved, repeat this.

次に、テーパがT2となつたことにより鋳込速度Vc1
をVc2に変更する(Vc1>Vc2)。これはマイコンよりΔT
2を制御器21に与えてピンチロールの回転数P1をP2に変
更(P1>P2)することで実施されるが、予め計算式によ
りテーパ変動量(例えばΔT2)とピンチロールの標準回
転数P0との関係を求め、定数kpを定めておき、 ΔT2=P/kp P2=Po+ΔT2 を実行する。
Next, since the taper became T 2 , the casting speed V c1
To V c2 (V c1 > V c2 ). This is ΔT from the microcomputer
2 is given to the controller 21 and the rotational speed P 1 of the pinch roll is changed to P 2 (P 1 > P 2 ), but the taper fluctuation amount (eg ΔT 2 ) and the pinch roll are calculated in advance by a calculation formula. obtained relation between the standard rotational speed P 0 of previously determined constants kp, executes ΔT 2 = P / kp P 2 = P o + ΔT 2.

次に、鋳込中、新たな鋳込指示情報17′が入力され
る。これによりテーパT2が変動し、T3となる。
Next, during casting, new casting instruction information 17 'is input. As a result, the taper T 2 changes and becomes T 3 .

テーパ変動量|ΔT3|の算出は各情報17と17′との差に
予め求められた定数kを乗じることによりなされる。
The amount of taper variation | ΔT 3 | is calculated by multiplying the difference between each piece of information 17 and 17 'by a constant k determined in advance.

以下、〜と同様のことを繰返す。Hereinafter, the same as the above is repeated.

以上〜により、定常鋳込中の鋳型内壁と鋳片との接
触状態および鋳込指示情報の変動によるテーパ量および
鋳込速度が自動的に制御される。
As described above, the taper amount and the casting speed are automatically controlled by the contact state between the inner wall of the mold and the slab and the fluctuation of the casting instruction information during the steady casting.

次に鋳込中の鋳片幅替について説明する。Next, changing the width of the slab during casting will be described.

第1図において、鋳片上部幅をW1からW3に、下部幅
をW2からW4に変更することを決定する。
In FIG. 1, it is decided to change the upper width of the slab from W 1 to W 3 and the lower width from W 2 to W 4 .

モータ回転数Rと幅替速度Vwの関係を予め求め、定
数kwを決定しておく。
Previously obtained relationship between the motor rotational speed R and the width exchange rate V w, previously determined constant kw.

次に、両方の短片鋳型を速度Vwで幅替を開始する。 Next, the width change of both short piece molds is started at a speed V w .

次に、と同様に、ピンチロールの回転数をP3から
P4に変更し、鋳込速度をVc3からVc4に変更する。(P3
P4,Vc3>Vc4) すなわち、 とし、 |ΔT4|=|P0/kp′| P4=P0+|ΔT4| とする。
Then, as with the rotational speed of the pinch rolls from P 3
Change to P 4 and change casting speed from V c3 to V c4 . (P 3>
P 4 , V c3 > V c4 ) That is, And | ΔT 4 | = | P 0 / kp ′ | P 4 = P 0 + | ΔT 4 |.

鋳込速度がVc3からVc4に変更になつたことから、鋳
込指示情報が17″に変動するため、と同様のことを実
行し、テーパをT3からT4に変更する(T3<T4)。
Since the casting speed is changed from V c3 to V c4 , the casting instruction information changes to 17 ″, and the same operation is performed to change the taper from T 3 to T 4 (T 3 <T 4 ).

さらに、幅替中、前記〜は継続して実施する。 Further, during the width change, the above items 1 to 3 are continuously performed.

以上により、鋳込中の鋳片幅替は接触状況を確認しつつ
実施できるので、幅替速度を落す必要もなく(一定)、
鋳片幅替中のテーパ量および鋳込速度は自動制御され
る。
From the above, the slab width change during casting can be performed while checking the contact status, so there is no need to reduce the width change speed (constant),
The taper amount and the casting speed during the width change of the slab are automatically controlled.

次に、鋳込中における鋳片幅替中の幅替速度を変動する
場合について説明する。
Next, a case where the width changing speed during changing the width of the cast piece during casting is changed will be described.

幅替速度Vmで幅替を実施中、鋳込指示情報が17に
変更になつたことにより、前述と同様の変更計算し、鋳
込速度をVc4からVc5、ピンチロール回転数をP5からP
6に、さらにテーパもT4からT5に変更する。
While changing the width at the width changing speed V m , the casting instruction information was changed to 17, so the same change calculation as above was performed, and the casting speed was changed from V c4 to V c5 and the pinch roll speed was set to P. 5 to P
Change to 6 and taper from T 4 to T 5 .

幅替速度変動量|ΔVm|も前述のような比較演算し
て算出する。
The width change speed variation amount | ΔV m | is also calculated by the comparison calculation as described above.

|ΔVm|によりVmをVm′に変更する。Change V m to V m ′ by | ΔV m |.

以上よりテーパ量と鋳込速度および幅替速度は相関関係
を保持しつつ自動制御される。
From the above, the taper amount, the casting speed and the width changing speed are automatically controlled while maintaining the correlation.

〈具体的な実施例〉 本発明法 成分(0.06%C,0.2%Si,0.3%Mn,0.015%P,0.01%S)
の鋼を鋳込温度1570℃でスラブ寸法220mm(厚)×1200m
m(幅)、短辺鋳型テーパ片側4.2mm(テーパ)/750mm
(短片鋳型高さ)、鋳込速度1.4m/分で鋳造中、スラブ
幅を1300mmに変更する幅替を短片鋳型移動速度35mm/分
で3分間実施し、テーパも(4.6mm/750mm)同時に変更
した。この時の鋳込速度は1.0m/分に落した。検出機構
は第2図に示すように配置した。
<Specific Examples> Inventive Method Components (0.06% C, 0.2% Si, 0.3% Mn, 0.015% P, 0.01% S)
Slab size 220mm (thickness) × 1200m at casting temperature 1570 ℃
m (width), short side mold taper 4.2mm (taper) / 750mm on one side
(Short piece mold height) During casting at a casting speed of 1.4 m / min, the width change to change the slab width to 1300 mm was performed for 3 minutes at a short piece mold moving speed of 35 mm / min, and the taper (4.6 mm / 750 mm) simultaneously changed. The casting speed at this time was reduced to 1.0 m / min. The detection mechanism was arranged as shown in FIG.

比較法 成分(0.05%C,0.2%Si,0.2%Mn,0.020%P,0.015%S)
の鋼を鋳込温度1570℃でスラブ寸法220mm×1200mm、テ
ーパ(4.2mm/750mm)、鋳込速度1.4mm/分で鋳造中、ス
ラブ幅を1300mmに変更する幅替を鋳型移動速度18mm/分
で8分間実施した。この場合、本発明法とは異なり、短
辺鋳型をまず平行移動させた後にテーパを(4.6mm/750m
m)に変更した。この時の鋳込速度は0.6m/分に落した。
定常鋳込中および幅替中の短辺鋳型内壁と鋳片の接触状
態は一切検出しなかつた。
Comparative method composition (0.05% C, 0.2% Si, 0.2% Mn, 0.020% P, 0.015% S)
Steel at a casting temperature of 1570 ℃, slab dimensions 220mm × 1200mm, taper (4.2mm / 750mm), casting speed 1.4mm / min. During casting, changing the slab width to 1300mm changes the mold moving speed 18mm / min. For 8 minutes. In this case, unlike the method of the present invention, the taper (4.6 mm / 750 m
changed to m). The casting speed at this time was reduced to 0.6 m / min.
No contact between the inner wall of the short side mold and the slab was detected during steady casting and width change.

以上の,の結果より、本発明法は、幅替中における
鋳片と鋳型内壁との接触状況を確認しつつ、幅替とテー
パ変更を同時に実施でき、かつ幅替速度および鋳込速度
が上げられることから以下の効果が生じることが明らか
になつた。
From the results of the above, the method of the present invention, while confirming the contact state between the slab and the mold inner wall during width changing, can perform width changing and taper change at the same time, and increase the width changing speed and casting speed. As a result, it has become clear that the following effects occur.

(a)漏鋼、ブレークアウト、不良スラブがなくなり、
歩留向上が図れる。
(A) Steel leaks, breakouts, and defective slabs are eliminated,
Yield can be improved.

(b)良テーパ、冷却水量や鋳込速度が適切なため、鋳
片品質が向上する。
(B) Since the good taper, the amount of cooling water, and the casting speed are appropriate, the quality of the cast piece is improved.

(c)鋳込速度および幅替速度を上げられるため生産性
が向上する。
(C) Since the casting speed and the width changing speed can be increased, the productivity is improved.

(d)鋳込速度および幅替速度を上げられるため鋳片の
熱ロスを防止できる。
(D) Since the casting speed and the width changing speed can be increased, the heat loss of the slab can be prevented.

(e)鋳型の摩耗を減少できる。(E) Wear of the mold can be reduced.

さらに、定常鋳込中も前述の効果が期待できる。Furthermore, the above-mentioned effects can be expected even during steady casting.

なお、前記実施例では1チヤージのみの比較であるが、
接触状態を検知しない比較法では、数チヤージ実施すれ
ば、特にブレークアウト、漏鋼は免れない。
In addition, in the above-mentioned Example, only one charge was compared,
In the comparative method that does not detect the contact state, breakout and steel leakage are inevitable if a few charges are carried out.

〈発明の効果〉 前述のとおりこの発明に係る連続鋳造方法によれば、凝
固中の鋳型内溶鋼と鋳型内壁との接触状況を検出器を用
いて検知するとともに、鋳込条件変動による定常鋳込中
および幅替中の短辺鋳型テーパと鋳込速度と幅替速度と
を自動制御するようにしたため、漏鋼、ブレークアウ
ト、不良スラブを防止できるとともに、幅替中の幅替速
度および鋳込速度を向上させることができる。これによ
り歩留向上、品質向上、生産性向上、熱ロス防止を図れ
る。さらに、鋳型の摩耗が減少し、コスト低減を図れ
る。
<Effects of the Invention> As described above, according to the continuous casting method of the present invention, the contact state between the molten steel in the mold and the inner wall of the mold during solidification is detected using a detector, and steady casting due to fluctuations in casting conditions is performed. The short side mold taper during medium and width changing and automatic control of the casting speed and width changing speed can prevent steel leaks, breakouts, defective slabs, and the width changing speed and casting during width changing. The speed can be improved. As a result, yield improvement, quality improvement, productivity improvement, and heat loss prevention can be achieved. Further, the wear of the mold is reduced, and the cost can be reduced.

また、この発明に係る連続鋳造鋳型によれば比較的簡単
な構成により前述の効果を奏する。
Further, the continuous casting mold according to the present invention exhibits the above-mentioned effects with a relatively simple structure.

【図面の簡単な説明】[Brief description of drawings]

第1図、第2図はこの発明に係る連続鋳造鋳型を示す全
体概略図、斜視図、第3図、第4図は検出機構を示す部
分断面概略図、概略図である。 1……連続鋳造鋳型、1A,1B……短辺鋳型、2……上部
駆動機構、3……下部駆動機構、4,4A,4B,4C,4D……検
出機構、5……制御機構、6……モータ、7……駆動
軸、8,8A,8B,8C,8D……電極板センサー、9……電源、1
0……電流計、11……警報器、12……配線、13,14……位
置検出器、15,16……位置変換器、17……鋳込み指示情
報、18……短辺鋳型テーパ寸法設定値、19……上部駆動
制御器、20……下部駆動制御器、21……鋳込速度制御
器、22……接触異常警報器、23……短辺鋳型テーパ表示
器、24……ピンチロール駆動装置。
1 and 2 are an overall schematic view showing a continuous casting mold according to the present invention, a perspective view, FIG. 3 and FIG. 4 are a partial sectional schematic view and a schematic view showing a detection mechanism. 1 ... Continuous casting mold, 1A, 1B ... Short side mold, 2 ... Upper drive mechanism, 3 ... Lower drive mechanism, 4,4A, 4B, 4C, 4D ... Detection mechanism, 5 ... Control mechanism, 6 ... motor, 7 ... driving shaft, 8,8A, 8B, 8C, 8D ... electrode plate sensor, 9 ... power supply, 1
0 …… ammeter, 11 …… alarm, 12 …… wiring, 13,14 …… position detector, 15,16 …… position converter, 17 …… casting instruction information, 18 …… short side mold taper dimension Set value, 19 ... Upper drive controller, 20 ... Lower drive controller, 21 ... Pouring speed controller, 22 ... Contact abnormality alarm, 23 ... Short side mold taper display, 24 ... Pinch Roll drive device.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】短辺鋳型が可動の連続鋳造鋳型を使用する
連続鋳造方法において、 鋳込中の鋳型内鋳片と前記短辺鋳型内壁面との接触状態
を、鋳型内鋳片と短辺鋳型内壁面との導通・不導通によ
り検出する検知手段により検出し、前記鋳型内での鋳込
み作業を制御する制御系内に入力し、前記検出結果と前
記制御系に先行して入力された鋳込み指示情報と後行し
て入力された鋳込み指示情報との比較演算結果とに基づ
き、定常鋳込中および短辺鋳型幅替中に、短辺鋳型内壁
と鋳型内鋳片とが接触状態を保持するように短辺鋳型の
テーパ量を変更し、あるいは鋳込み指示情報の変動によ
り短辺鋳型のテーパ量を変更すると共に、このテーパ量
の変動量に応じて鋳込み速度を変更し、短辺鋳型幅替実
施中に鋳込み指示情報が変更されると鋳込み速度および
短辺鋳型のテーパ量を変更しつつ鋳片幅替速度を変更す
ることを特徴とする連続鋳造方法。
1. A continuous casting method using a continuous casting mold in which the short side mold is movable, in which the contact state between the cast piece in the mold and the short side mold inner wall surface during casting is Detected by the detection means for detecting by conduction / non-conduction with the inner wall surface of the mold, input into the control system that controls the casting operation in the mold, and the detection result and the casting that is input prior to the control system. Based on the comparison calculation result of the instruction information and the casting instruction information that was input afterwards, the inner wall of the short side mold and the in-mold slab maintain contact with each other during steady casting and during changing of the short side mold width. To change the taper amount of the short side mold, or to change the taper amount of the short side mold by changing the casting instruction information, and change the casting speed according to the amount of change in the taper amount If the pouring instruction information is changed during the replacement, the pouring speed And a continuous casting method, characterized in that the slab width changing speed is changed while changing the taper amount of the short side mold.
【請求項2】短辺鋳型が可動とされた連続鋳造鋳型であ
って、 前記短辺鋳型の上下にそれぞれ接続され、この短辺鋳型
を鋳型内鋳片に対して進退させ得るとともにそのテーパ
量を調整し得る上部駆動機構および下部駆動機構と、 前記短辺鋳型内に埋設され先端部が鋳型内鋳片表面に接
触し得るようにされた通電センサを有し、鋳型内鋳片と
短辺鋳型内壁との導通・不導通を検出し得る検出機構
と、 この検出機構からの出力信号と鋳込み指示情報に基づい
て、前記上部駆動機構および下部駆動機構および鋳込速
度調整機構を制御する制御機構を備えていることを特徴
とする連続鋳造鋳型。
2. A continuous casting mold in which a short side mold is movable, which are respectively connected to the upper and lower sides of the short side mold and which can move the short side mold forward and backward with respect to a cast piece in the mold and its taper amount. An upper drive mechanism and a lower drive mechanism that can be adjusted, and has an energization sensor that is embedded in the short side mold so that the tip can contact the surface of the in-mold slab, and the in-mold slab and the short side A detection mechanism that can detect conduction / non-conduction with the inner wall of the mold, and a control mechanism that controls the upper drive mechanism, the lower drive mechanism, and the pouring speed adjustment mechanism based on the output signal from this detection mechanism and the pouring instruction information. A continuous casting mold comprising:
JP60121133A 1985-06-04 1985-06-04 Continuous casting method and its mold Expired - Lifetime JPH0747199B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60121133A JPH0747199B2 (en) 1985-06-04 1985-06-04 Continuous casting method and its mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60121133A JPH0747199B2 (en) 1985-06-04 1985-06-04 Continuous casting method and its mold

Publications (2)

Publication Number Publication Date
JPS61279351A JPS61279351A (en) 1986-12-10
JPH0747199B2 true JPH0747199B2 (en) 1995-05-24

Family

ID=14803688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60121133A Expired - Lifetime JPH0747199B2 (en) 1985-06-04 1985-06-04 Continuous casting method and its mold

Country Status (1)

Country Link
JP (1) JPH0747199B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100627451B1 (en) * 1998-12-30 2006-09-25 주식회사 포스코 Device and method for setting the casting width and taper of mould narrow face of continuous casting machine
DE10027324C2 (en) * 1999-06-07 2003-04-10 Sms Demag Ag Process for casting a metallic strand and system therefor
KR100469295B1 (en) * 2000-06-24 2005-01-31 주식회사 포스코 filler ladle safe arrival signal sensing apparatus
KR20050015577A (en) * 2003-08-06 2005-02-21 주식회사 포스코 Apparatus for controlling taper and width of mold using laser sensor
JP5042785B2 (en) * 2007-11-16 2012-10-03 新日本製鐵株式会社 Short side taper control method for continuous casting mold.
US20150343530A1 (en) * 2014-05-30 2015-12-03 Elwha Llc Systems and methods for monitoring castings

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50149537A (en) * 1974-05-23 1975-11-29
JPS56119646A (en) * 1980-02-22 1981-09-19 Kawasaki Steel Corp Mold controlling method of continuous casting machine

Also Published As

Publication number Publication date
JPS61279351A (en) 1986-12-10

Similar Documents

Publication Publication Date Title
Park et al. Continuous casting of steel billet with high frequency electromagnetic field
JPH0747199B2 (en) Continuous casting method and its mold
JP2727887B2 (en) Horizontal continuous casting method
JPS6243783B2 (en)
JP2016215236A (en) Method for predicting breakout in continuous casting, breakout prevention method, method for measuring thickness of solidifying shell, breakout prediction device, and breakout prevention device
JP3101069B2 (en) Continuous casting method
JPH01170551A (en) Mold for continuously casting steel
JP2004276050A (en) Method for starting continuous casting
JPS60137562A (en) Continuous casting method for thin sheet
JP3216476B2 (en) Continuous casting method
JPS6153143B2 (en)
JP3044789B2 (en) Level control method for continuous casting machine
JP2003053491A (en) Method for changing width of cast slab in continuous casting and mold for continuous casting
JPS60238071A (en) Electromagnetic stirring method in secondary cooling zone of continuous casting machine
JP4735269B2 (en) Manufacturing method of continuous slab
JPH0126791B2 (en)
KR20030052425A (en) Control method for mold taper of short side plate in continuous casting of slab
JPS60191642A (en) Horizontal and continuous casting method of metal
KR101377484B1 (en) Method for estimating carbon-increasing of molten steel
JPH01237055A (en) Method for continuously casting strip
JPH0413455A (en) Method for continuously casting steel
JPS60191641A (en) Horizontal and continuous casting method of metal
JPH0347945B2 (en)
JPH08238541A (en) Method of making supplying quantity definite of molten metal and alloy to cooling base board
JPH06170511A (en) Continuous casting method and tundish