JPH05277681A - Continuous casting method - Google Patents

Continuous casting method

Info

Publication number
JPH05277681A
JPH05277681A JP7702892A JP7702892A JPH05277681A JP H05277681 A JPH05277681 A JP H05277681A JP 7702892 A JP7702892 A JP 7702892A JP 7702892 A JP7702892 A JP 7702892A JP H05277681 A JPH05277681 A JP H05277681A
Authority
JP
Japan
Prior art keywords
powder
continuous casting
viscosity
casting
solidification temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7702892A
Other languages
Japanese (ja)
Other versions
JP3101069B2 (en
Inventor
Mototatsu Sugisawa
元達 杉澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP04077028A priority Critical patent/JP3101069B2/en
Publication of JPH05277681A publication Critical patent/JPH05277681A/en
Application granted granted Critical
Publication of JP3101069B2 publication Critical patent/JP3101069B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE:To produce a slab having high quality by building up a numerical relation among the solidified temp. and the viscosity of powder for continuous casting and the aimed max. velocity. CONSTITUTION:At the time of executing the continuous casting, anyone among the solidified temp. and the viscosity of the powder for continuous casting and the aimed max. casting velocity is decided from the following equation. T=AXeta(V+ or -0.1)+B. Wherein, T: the solidified temp. of the powder for continuous casting ( deg.C), eta: the viscosity of the powder for continuous casting (poise), V: the aimed max. casting velocity (m/min), A, B: the fixed values. By this method, the high quality slab can easily be produced without developing the breakout.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、連続鋳造方法、特に連
続鋳造に用いるパウダーの凝固温度および粘度と目標最
大鋳造速度との関係においてその一つを決定する方法に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a continuous casting method, and more particularly to a method for determining one of them in the relationship between the solidification temperature and viscosity of powder used in continuous casting and the target maximum casting speed.

【0002】[0002]

【従来の技術】一般に、連続鋳造において、使用するパ
ウダー(フラックス)の凝固温度および粘度がスラブの
割れ防止とブレークアウトの防止の上から重要な因子で
あることは知られている。
2. Description of the Related Art Generally, in continuous casting, it is known that the solidification temperature and viscosity of the powder (flux) used are important factors in preventing slab cracking and breakout.

【0003】先ず、連続鋳造用パウダーの凝固温度は鋳
型内におけるスラブの冷却状態に大きな影響を有し、パ
ウダー凝固温度が高くなるほどスラブは緩冷却され、ス
ラブの割れ防止に効果的である(図1参照)。しかし、
パウダー凝固温度を上げると高温でもパウダーが再凝固
しやすくなるため、図3に示すように、鋳型1の内周壁
上に形成される再凝固パウダー層2の厚みが増大し、そ
の結果、鋳型1とシエル3との間の溶融パウダー4の流
入路5が狭くなり、溶融パウダー4の流入量が減少し、
高速鋳造時においては溶融パウダーの流入量不足、すな
わち、パウダー消費量不足によるスティッキング性のブ
レークアウトが発生するという問題があった(図4参
照)。
First, the solidification temperature of the powder for continuous casting has a great influence on the cooling state of the slab in the mold, and the higher the powder solidification temperature, the slower the slab is cooled, which is effective in preventing cracking of the slab (Fig. 1). But,
As the powder coagulation temperature is increased, the powder easily re-coagulates even at a high temperature. Therefore, as shown in FIG. 3, the thickness of the re-coagulated powder layer 2 formed on the inner peripheral wall of the mold 1 increases, and as a result, the mold 1 And the inflow path 5 of the molten powder 4 between the shell 3 and the shell 3 is narrowed, the inflow amount of the molten powder 4 is reduced,
At the time of high speed casting, there is a problem that the inflow amount of the molten powder is insufficient, that is, the sticking out breakout occurs due to the insufficient powder consumption amount (see FIG. 4).

【0004】また、パウダーの粘度も、鋳型1とシエル
3との間への溶融パウダー4の流入性に影響を有し、パ
ウダーの粘性が高い程、パウダーの流入量が減少して流
入量不足によるスティッキング性のブレークアウトが発
生しやすかった。しかし、使用するパウダーの粘性が低
すぎると図5に示すように、浸漬ノズル8からの溶鋼流
9によってスラブ6の表面に10で示すようにパウダーが
巻き込まれる等の問題が生じる。
The viscosity of the powder also affects the inflow property of the molten powder 4 between the mold 1 and the shell 3. The higher the viscosity of the powder, the smaller the inflow amount of the powder, and the insufficient inflow amount. It was easy for breakout due to sticking to occur. However, when the viscosity of the powder used is too low, as shown in FIG. 5, the molten steel flow 9 from the dipping nozzle 8 causes a problem that the powder is caught on the surface of the slab 6 as indicated by 10.

【0005】従来のパウダー設計技術では、図6に示す
ように、パウダー凝固温度が一定の場合には、鋳型との
摩擦力よりパウダーの粘度η×鋳造速度Vとパウダー消
費量Qとの間には逆比例の関係が成り立つことが知られ
ている。この関係から、従来は、パウダーの凝固温度が
一定の下では、パウダー粘性と使用可能最大鋳造速度V
max を計算することが可能であった。
In the conventional powder design technique, as shown in FIG. 6, when the powder coagulation temperature is constant, the powder viscosity η × the casting speed V and the powder consumption amount Q are determined by the frictional force with the mold. Is known to have an inversely proportional relationship. From this relationship, conventionally, when the solidification temperature of the powder is constant, the powder viscosity and the maximum usable casting speed V
It was possible to calculate max.

【0006】しかしながら、パウダーの凝固温度が変っ
た場合には、パウダー粘度を設定し、実際の連鋳機にお
いて試験を行なうことによって消費量を求め、所定のパ
ウダー流入量を確保できる使用可能最大鋳造速度を決定
しなければならなかった。
However, when the solidification temperature of the powder changes, the powder viscosity is set, the consumption is obtained by conducting a test in an actual continuous casting machine, and the maximum usable casting in which a predetermined powder inflow amount can be secured. I had to determine the speed.

【0007】したがって、従来技術では、スラブの品質
を向上させるために凝固温度および粘度を変えたパウダ
ーを作製して、実際の連鋳機による試験時に、パウダー
の最低流入量0.3kg/m2が確保できないために目標鋳造速
度で使用できない場合が生じていた。
Therefore, in the prior art, powder having different solidification temperatures and viscosities was produced in order to improve the quality of the slab, and the minimum inflow rate of the powder was 0.3 kg / m 2 when tested by an actual continuous casting machine. In some cases, it could not be used at the target casting speed because it could not be secured.

【0008】上述したように、パウダーを改良した場合
には、そのパウダーを実際の連鋳機で試験的に使用して
パウダーの物性値(粘性、凝固温度)を再設計しなくて
はならず、パウダー設計の能率が悪く、また、未知のパ
ウダーの使用に際して、設計ミスによるブレークアウト
の危険性が高いという問題があった。
As described above, when the powder is improved, the powder must be experimentally used in an actual continuous casting machine to redesign the physical properties (viscosity, solidification temperature) of the powder. However, there was a problem that the powder design was inefficient, and there was a high risk of breakout due to a design mistake when using an unknown powder.

【0009】[0009]

【発明が解決しようとする課題】本発明は、上述した従
来のパウダー設計上の問題をなくし、連続鋳造用パウダ
ーの凝固温度および粘度と目標最大速度との間の関係を
数値的に確立することによって、高品質のスラブを、ブ
レークアウトの発生なしに、容易に製造することを可能
にする連続鋳造方法を提供しようとするものである。
SUMMARY OF THE INVENTION The present invention eliminates the above-mentioned conventional powder design problems and numerically establishes the relationship between the solidification temperature and viscosity of continuous casting powder and the target maximum velocity. Therefore, it is intended to provide a continuous casting method that enables high quality slabs to be easily manufactured without occurrence of breakout.

【0010】[0010]

【課題を解決するための手段】本発明は、連続鋳造に際
し、連続鋳造用パウダーの凝固温度および粘度と、目標
最大鋳造速度の何れか一つを次式により決定することを
特徴とする。 T=A×η(V±0.1)+B 上式において、 T:連続鋳造用パウダーの凝固温度(℃) η:連続鋳造用パウダーの粘度(poise) V:目標最大鋳造速度(m/min) A:定数 B:定数
The present invention is characterized in that, in continuous casting, any one of the solidification temperature and viscosity of the powder for continuous casting and the target maximum casting speed is determined by the following equation. T = A × η (V ± 0.1) + B In the above formula, T: solidification temperature of continuous casting powder (° C) η: viscosity of continuous casting powder (poise) V: target maximum casting speed (m / min) A : Constant B: constant

【0011】[0011]

【作用】本発明は、パウダーの凝固温度が変化した場
合、溶融パウダーの流入路の断面積、したがって流入量
が変化することによって、パウダー粘度η×鋳造速度V
の逆数1/ηVとパウダー消費量(kg/m2)との関係が図
7に示すように変化する事実の認識に基づくものであ
る。
According to the present invention, when the solidification temperature of the powder changes, the cross-sectional area of the inflow path of the molten powder, and thus the inflow rate, changes, so that the powder viscosity η × the casting speed V
This is based on the recognition of the fact that the relationship between the reciprocal 1 / ηV and the powder consumption (kg / m 2 ) changes as shown in FIG.

【0012】これがため本発明は、上述の認識に基づ
き、パウダーの凝固温度および粘度と、パウダー消費量
とを求め、充分なパウダー消費量を確保するためのパウ
ダー凝固温度T、粘度η、使用可能最大鋳造速度Vmax
との間に操業条件のばらつきを考慮して T=A×η(Vmax ±0.1)+B の関係があることを確かめたものである。
Therefore, according to the present invention, based on the above recognition, the solidification temperature and viscosity of the powder and the powder consumption amount are obtained, and the powder solidification temperature T, the viscosity η, and the usable value for ensuring the sufficient powder consumption amount can be used. Maximum casting speed Vmax
It has been confirmed that there is a relation of T = A × η (Vmax ± 0.1) + B between and and in consideration of variations in operating conditions.

【0013】なお、式中のA,Bは鋳型の形状、材質、
操業条件等によって決まる連続機固有の定数である。ま
た、式中の数値0.1 は操業条件のばらつき、すなわち、
モールドレベル変動、鋳造内パウダー溶融層の厚さ変化
等によるパウダーの流入状態のばらつきを考慮したもの
である。
A and B in the formula are the shape and material of the mold,
It is a constant that is unique to continuous machines and is determined by operating conditions. Also, the numerical value 0.1 in the formula is the variation in operating conditions, that is,
This is due to consideration of variations in the powder inflow state due to changes in the mold level, changes in the thickness of the powder melting layer in casting, and so on.

【0014】本発明によれば、スラブの割れを防止する
ため、パウダーの凝固温度Tを所定値に設定すれば、目
標鋳造速度を与えることによって最適粘度を求めること
ができる。
According to the present invention, in order to prevent cracking of the slab, if the solidification temperature T of the powder is set to a predetermined value, the optimum viscosity can be obtained by giving the target casting speed.

【0015】また、本発明によれば、パウダーの巻き込
みを防止するため、パウダーの粘度ηを所定値に設定し
て、目標鋳造速度を与えることによって、最適パウダー
凝固温度を求めることができる。
Further, according to the present invention, in order to prevent the entrainment of powder, the optimum powder solidification temperature can be obtained by setting the viscosity η of the powder to a predetermined value and giving the target casting speed.

【0016】さらに、本発明によれば、新しい連続鋳造
用パウダーが開発された場合、そのパウダー凝固温度お
よび粘度を知ることによって、実際の連鋳機による試験
を行なうことなく、使用可能最大鋳造速度を計算により
求めることができ、新パウダー使用時のブレークアウト
の危険性を減少させることができる。
Furthermore, according to the present invention, when a new continuous casting powder is developed, the maximum casting speed that can be used without knowing the powder coagulation temperature and viscosity without actually conducting a continuous casting test. Can be calculated to reduce the risk of breakout when using the new powder.

【0017】[0017]

【実施例】図8は本発明によりパウダーの凝固温度Tお
よび粘度ηと使用可能最大鋳造速度Vmax を決定するた
めに用いられるグラフであり、はT=A×ηV+B、
はT=A×η(V+0.1)+B、 はT=A+η(V
−0.1)+B の関係を示す。
EXAMPLE FIG. 8 is a graph used to determine the freezing temperature T and viscosity η of powder and the maximum usable casting speed Vmax according to the present invention, where T = A × ηV + B,
Is T = A × η (V + 0.1) + B, is T = A + η (V
It shows the relationship of -0.1) + B.

【0018】図8を用いることにより、例えば、bパウ
ダーを通常操業に使用していた場合に、スラブ割れ対策
として凝固温度をx(1100 ℃) からyに上げるには、η
・Vmax をXからYに変更すれば良いことが判る。この
場合、Vmax を変更しないとすれば、η′=Y/Vmax
で求められる。
By using FIG. 8, for example, when the b powder was used in the normal operation, to increase the solidification temperature from x (1100 ° C.) to y as a countermeasure against slab cracking, η
・ It turns out that it is sufficient to change Vmax from X to Y. In this case, if Vmax is not changed, η '= Y / Vmax
Required by.

【0019】[0019]

【発明の効果】本発明によれば、前述した目標鋳造速度
に対するパウダーの凝固温度および粘度の設定または新
しいパウダーに対する使用可能最大鋳造速度の設定が、
実際の連鋳機による試験を行なうことなしに、容易に可
能であり、高品質のスラブをブレークアウトの発生なし
に製造することが容易である。
According to the present invention, the setting of the solidification temperature and viscosity of the powder with respect to the above-mentioned target casting speed or the setting of the maximum usable casting speed for the new powder is
This is easily possible without the actual continuous caster testing, and it is easy to produce high quality slabs without breakouts.

【図面の簡単な説明】[Brief description of drawings]

【図1】連続鋳造用パウダーの凝固温度の違いによる鋳
造速度と鋳型抜熱量の関係を示すグラフである。
FIG. 1 is a graph showing a relationship between a casting speed and a heat removal amount of a mold depending on a difference in solidification temperature of powder for continuous casting.

【図2】使用パウダーの凝固温度が適正である場合のパ
ウダー流入量を示す鋳型上部の線図的部分縦断面図であ
る。
FIG. 2 is a diagrammatic partial vertical cross-sectional view of the upper part of the mold showing the powder inflow amount when the solidification temperature of the powder used is appropriate.

【図3】使用パウダーの凝固温度が図2の場合より、高
い場合のパウダー流入量を示す鋳型上部の線図的部分縦
断面図である。
3 is a diagrammatic partial vertical cross-sectional view of the upper part of the mold showing the powder inflow when the solidification temperature of the powder used is higher than in the case of FIG.

【図4】パウダー流入量とブレークアウトとの関係を示
すグラフである。
FIG. 4 is a graph showing the relationship between powder inflow and breakout.

【図5】使用パウダーの粘度が低い場合における溶融パ
ウダーの巻き込みを示す鋳型上部の線図的部分縦断面図
である。
FIG. 5 is a diagrammatic partial vertical cross-sectional view of the upper part of the mold showing the entrainment of molten powder when the viscosity of the powder used is low.

【図6】パウダー粘度・鋳造速度とパウダー消費量との
関係を示すグラフである。
FIG. 6 is a graph showing the relationship between powder viscosity / casting speed and powder consumption.

【図7】パウダー消費量に及ぼすパウダー凝固温度の変
化の影響を示すグラフである。
FIG. 7 is a graph showing the effect of changes in powder coagulation temperature on powder consumption.

【図8】本発明によるパウダー凝固温度とパウダー粘度
・使用可能最大鋳造速度との関係を示すグラフである。
FIG. 8 is a graph showing the relationship between powder coagulation temperature, powder viscosity and maximum usable casting speed according to the present invention.

【符号の説明】[Explanation of symbols]

1 鋳型 2 パウダー再凝固層 3 シエル 4 溶融パウダー 5 溶融パウダー流入路 6 溶鋼 7 未溶融パウダー 8 浸漬ノズル 9 溶鋼流 10 巻き込まれた溶融パウダー 1 mold 2 powder re-solidification layer 3 shell 4 molten powder 5 molten powder inflow path 6 molten steel 7 unmelted powder 8 immersion nozzle 9 molten steel flow 10 molten powder entrained

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 連続鋳造に際し、連続鋳造用パウダーの
凝固温度および粘度と、目標最大鋳造速度の何れか一つ
を次式により決定することを特徴とする連続鋳造方法。 T=A×η(V±0.1)+B 上式において、 T:連続鋳造用パウダーの凝固温度(℃) η:連続鋳造用パウダーの粘度(poise) V:目標最大鋳造速度(m/min) A:定数 B:定数
1. A continuous casting method, characterized in that during continuous casting, one of a solidification temperature and a viscosity of powder for continuous casting and a target maximum casting speed is determined by the following equation. T = A × η (V ± 0.1) + B In the above formula, T: solidification temperature of continuous casting powder (° C) η: viscosity of continuous casting powder (poise) V: target maximum casting speed (m / min) A : Constant B: constant
JP04077028A 1992-03-31 1992-03-31 Continuous casting method Expired - Fee Related JP3101069B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04077028A JP3101069B2 (en) 1992-03-31 1992-03-31 Continuous casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04077028A JP3101069B2 (en) 1992-03-31 1992-03-31 Continuous casting method

Publications (2)

Publication Number Publication Date
JPH05277681A true JPH05277681A (en) 1993-10-26
JP3101069B2 JP3101069B2 (en) 2000-10-23

Family

ID=13622296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04077028A Expired - Fee Related JP3101069B2 (en) 1992-03-31 1992-03-31 Continuous casting method

Country Status (1)

Country Link
JP (1) JP3101069B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008200721A (en) * 2007-02-21 2008-09-04 Jfe Steel Kk Mold flux for continuous casting of steel, and continuous casting method using the mold flux
JP2012206160A (en) * 2011-03-30 2012-10-25 Nippon Steel Corp Continuous casting method
JP2016168608A (en) * 2015-03-12 2016-09-23 Jfeスチール株式会社 Friction force estimation method for casting mold and casting piece when continuously casting steel and steel continuous casting method using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008200721A (en) * 2007-02-21 2008-09-04 Jfe Steel Kk Mold flux for continuous casting of steel, and continuous casting method using the mold flux
JP2012206160A (en) * 2011-03-30 2012-10-25 Nippon Steel Corp Continuous casting method
JP2016168608A (en) * 2015-03-12 2016-09-23 Jfeスチール株式会社 Friction force estimation method for casting mold and casting piece when continuously casting steel and steel continuous casting method using the same

Also Published As

Publication number Publication date
JP3101069B2 (en) 2000-10-23

Similar Documents

Publication Publication Date Title
KR100752693B1 (en) Automation of a high-speed continuous casting plant
JPH05277681A (en) Continuous casting method
JP2013111603A (en) Method of evaluating mold powder in continuous casting and continuous casting method using the same
KR20050002223A (en) Method for predicting the characteristics of solidfied hook in the continuous casting, using the maximum acceleration of mold and cooling index
JPH0747199B2 (en) Continuous casting method and its mold
JPH0366447A (en) Method for casting layered cast slab
JPS6243783B2 (en)
KR102277295B1 (en) Continuous casting process of steel material by controlling ends of refractory in submerged entry nozzle
JPH01143748A (en) Continuous casting method
JPH0857584A (en) Production of stainless steel cast slab having good surface quality and workability
JP2002011558A (en) Method for continuously casting steel
WO2020170563A1 (en) Control method for continuous casting machine, control device for continuous casting machine, and method for manufacturing slab
WO2020170836A1 (en) Control method for continuous casting machine, control device for continuous casing machine, and manufacturing method for cast slab
JPH0126791B2 (en)
JPH08174164A (en) Method for continuously casting stainless steel
KR19990050906A (en) Method for Reducing Slab Surface Defects by Optimizing Immersion Nozzle Depth
JPH06246404A (en) Tundish for continuous casting
JPH02207949A (en) Device for controlling temperature of molten metal in tundish
JPH04319056A (en) Method for continuously casting steel cast slab
JPH0857585A (en) Production of stainless steel cast slab having little edge seam flaw
KR20040037171A (en) Method and device for cooling the copper plates of a continuous casting ingot mould for liquid metals, especially liquid steel
JPH06246406A (en) Method for adjusting overheating degree of molten steel in continuous casting mold
JPH04178240A (en) Continuous casting method for stainless steel
JPH02258152A (en) Continuous casting method
JPH09277001A (en) Method for continuously casting stainless steel cast slab

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070818

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20080818

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080818

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090818

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees