JPS61226154A - Method for predicting breakout in continuous casting - Google Patents

Method for predicting breakout in continuous casting

Info

Publication number
JPS61226154A
JPS61226154A JP6554985A JP6554985A JPS61226154A JP S61226154 A JPS61226154 A JP S61226154A JP 6554985 A JP6554985 A JP 6554985A JP 6554985 A JP6554985 A JP 6554985A JP S61226154 A JPS61226154 A JP S61226154A
Authority
JP
Japan
Prior art keywords
temperature
temp
breakout
mold
relative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6554985A
Other languages
Japanese (ja)
Inventor
Yasutaka Teramae
寺前 泰孝
Masami Nakamura
雅巳 中村
Masatoshi Tokuda
徳田 将敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP6554985A priority Critical patent/JPS61226154A/en
Publication of JPS61226154A publication Critical patent/JPS61226154A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE:To predict precisely breakout by excluding factors by a change of casting speed from the measured temp. values of the wall in a mold and making the judgement for prediction on the basis of the relative temp. determined from the ratio between the temp. at the prescribed measuring point and the entire measuring point. CONSTITUTION:The temp. Ti of the inside wall of the mold is measured by the plural temp. measuring elements provided in the mold of a continuous casting device. The factors by the change of the casting speed are excluded from the measured temp. Ti in accordance with the preliminarily determined relation between the temp. at each measuring point and casting speed. The ratio between the temp. T3 at the prescribed measuring point and the entire average temp. is determined as the relative temp. F(T3). The breakout is predicted when the relative temp. F(T3) deviates from the preset upper and lower limit values A, B. The precise prediction of the breakout is thus made possible.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、連続鋳造時におけるブレークアウトを予知す
る方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for predicting breakout during continuous casting.

〔従来の技術〕[Conventional technology]

鋳片の抜熱不足等によって生じるブレークアウトは、操
業率を低下させ、また事故の原因ともなる。したがって
、これを確実に予知する方法が強く望まれている。
Breakouts caused by insufficient heat removal from slabs reduce operating efficiency and can also cause accidents. Therefore, a method for reliably predicting this is strongly desired.

従来の予知法は、モールドの巾方向に熱電対からなる測
温素子を密な間隔で埋込み、そこから得られるモールド
温度が定常水準から低温側への偏倚または高温側への偏
倚をそれぞれ鋳片の表面割れ発生および鋳片の凝固シェ
ルの破断の指揮としてブレークアウトの発生を予知する
ものである。
The conventional prediction method involves embedding temperature measuring elements consisting of thermocouples at close intervals in the width direction of the mold, and detecting the deviation of the mold temperature from the steady level to the lower or higher temperature side, respectively. The occurrence of breakout is predicted by the occurrence of surface cracks and the rupture of the solidified shell of the slab.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、モールドの温度は、鋳込速度が早くなる
と、高くなシ、遅くなれば低くなるので、モールド温度
の上下動(変動)のみで判断するのは、予知法として確
実でない。
However, the temperature of the mold increases as the pouring speed increases, and decreases as the pouring speed decreases, so it is not reliable as a predictive method to judge only by vertical fluctuations (fluctuations) in the mold temperature.

そこで、本発明は、正確にブレークアウトを予知できる
方法を提供することを目的としている。
Therefore, an object of the present invention is to provide a method that can accurately predict breakout.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点を解決するために、本発明連続鋳造装置のモ
ールド内に設けた複数の測温素子により各測温点のモー
ルド内壁温度を測温し、予め求めておいた各測温点にお
ける温度と鋳込速度の関係により、前記測温した温度か
ら鋳込速度変化による要因を取除いた後、所定の測定点
の温度と全測定点との比を相対温度として求め、この相
対温度が予め設定された上下限値を外れるときブレーク
アウトとして予知することとしている。
In order to solve the above problems, the mold inner wall temperature at each temperature measurement point is measured by a plurality of temperature measurement elements provided in the mold of the continuous casting apparatus of the present invention, and the temperature at each temperature measurement point determined in advance is According to the relationship between the temperature and the casting speed, after removing the factor due to the change in the casting speed from the measured temperature, the ratio of the temperature at a predetermined measurement point to all measurement points is determined as a relative temperature, and this relative temperature is determined in advance. A breakout is predicted when the set upper and lower limits are exceeded.

〔作用〕[Effect]

前述のように、測温温度は鋳込速度によりて変化する。 As mentioned above, the measured temperature changes depending on the casting speed.

そこで、鋳込速度変化による要因を取除いた後、「相対
温度」なる概念を持ち込んで、これに基いて予知の判断
基準としている。したがって、鋳込速度変化に左右され
ることなく、適確なブレークアウト予知を行うことがで
きる。
Therefore, after removing the factors caused by changes in pouring speed, we introduced the concept of "relative temperature" and used this as a criterion for prediction. Therefore, it is possible to accurately predict breakout without being affected by changes in casting speed.

〔発明の具体例〕[Specific examples of the invention]

以下本発明をさらに説明する。 The present invention will be further explained below.

本発明においては、第2図に示すよりに、従来法と同じ
くモールド1の内壁にその内壁面1aからたとえば18
5m離間してガイド管2を通した熱電対からなる測温素
子3t−多数埋込む。4は溶鋼、5はフレームである。
In the present invention, as shown in FIG. 2, for example, 18
A large number of temperature measuring elements 3t consisting of thermocouples passed through guide tubes 2 are embedded at a distance of 5 m. 4 is molten steel, and 5 is a frame.

一方、第3図は、モールド銅板上端よp250−下位置
における前記測温素子3から得られる温度Tiと、鋳込
速度Viとの関係を示したものである。
On the other hand, FIG. 3 shows the relationship between the temperature Ti obtained from the temperature measuring element 3 at a position p250 below the upper end of the molded copper plate and the casting speed Vi.

したがって、(1)式が成立する。Therefore, equation (1) holds true.

Ti= a iVi+b i−” (1)ただし、i:
各測温素子の番号 Ti:銅板(モールド内壁)の温度 vc:鋳込速度 al、J :モールドによって決まる各測温素子の定数 これにより、各測温素子の平均温度は、測温素子数をn
伺書へれば、次式によって表わすことができる。
Ti=a iVi+b i-” (1) However, i:
Number of each temperature measuring element Ti: Temperature of the copper plate (inner wall of the mold) vc: Casting speed al, J: Constant of each temperature measuring element determined by the mold As a result, the average temperature of each temperature measuring element is determined by the number of temperature measuring elements n
According to the inquiry, it can be expressed by the following formula.

一方、第4図のように、モールドに対する測温素子の位
置が変わっても、鋳込速度による温度の上昇の度合に変
化はない。
On the other hand, as shown in FIG. 4, even if the position of the temperature measuring element with respect to the mold changes, the degree of temperature rise due to the casting speed does not change.

したがって、測温素子の取付は位置の変化による要因b
Xを取シのぞき、測温素子Xにおける温度と全平均温度
との相対温度F(’rx)を求めると、となシ鋳込速度
の影響を取シのそくことができる。
Therefore, the mounting of the temperature measuring element is caused by the change in position b.
By excluding X and finding the relative temperature F('rx) between the temperature at the temperature measuring element X and the total average temperature, the influence of the casting speed can be eliminated.

そこで、これを用いて、鋳型の各点における相対温度F
(T工)を監視すれば、ブレークアウトの予知を的確に
行うことができる。具体的には、上記(2)式の関係を
用いて、基準値”(’rx)を求める。
Therefore, using this, the relative temperature F at each point of the mold is
By monitoring (T), breakouts can be accurately predicted. Specifically, the reference value "('rx)" is determined using the relationship in equation (2) above.

次に同様に上記(2)式に生測温データTiを代入しを
常温監視を行い、前記相対温度F(Tx)が基準値FI
<T工)よシ所定の上限値、下限値を超えた場合にブレ
ークアウトの警報を出力する。前記上限値、下限値は実
操業のブレークアウト時のF(T工)の推移より決定す
ればよい。
Next, in the same way, the raw temperature data Ti is substituted into the above equation (2), room temperature monitoring is performed, and the relative temperature F (Tx) is equal to the reference value FI.
<T engineering) A breakout alarm is output when the predetermined upper and lower limits are exceeded. The upper limit value and lower limit value may be determined from the transition of F (T work) at the time of breakout in actual operation.

尚、以上の説明では測温点をモールド内壁の垂直方向に
設けた場合について述べたが、その他に水平方向、斜め
方向またはそれらの組合せでも同様の効果を発揮できる
ことは言9までもない。
In the above description, the case where the temperature measuring point is provided in the vertical direction of the inner wall of the mold has been described, but it goes without saying that the same effect can be achieved by placing the temperature measuring point in a horizontal direction, an oblique direction, or a combination thereof.

〔実施例〕〔Example〕

第1図に本発明の実施例による相対温度F(’rx)の
変化状況と、ブレークアウトの予知警報出力を示すO 同図横軸は鋳込開始後の時間、縦軸は相対温度および第
3番目の測温素子温度である。また同図中、線(A)t
i基準値F”(T )、! (B) ハ上限値、線(C
’)ハ下限値、線(ロ)は相対温度F(T3) 、線(
ト)は生測温素子温度T5で1、この例では上限値およ
び下限値を基準値F”(Ts)の±30%に設定して行
った。
Figure 1 shows changes in relative temperature F('rx) and breakout prediction alarm output according to an embodiment of the present invention. This is the third temperature measuring element temperature. Also, in the same figure, line (A) t
i Reference value F” (T),! (B) C upper limit value, line (C
') C lower limit value, line (B) is relative temperature F(T3), line (
g) was carried out by setting the raw temperature measuring element temperature T5 to 1, and in this example, the upper and lower limits were set to ±30% of the reference value F'' (Ts).

鋳込開始後約450秒までの間、F(T3 ) (7)
 値ハ上下限値の範囲におさまっているが、プレークア
ウド直前に下限値以下になっておシ、警報出力の直後に
ブレークアウトが発生している。この図から明らかなよ
うに、本発明に従って、相対温度F(Tx)が所定の上
下限値の範囲を超えた時点で警報出力することにより、
ブレークアウトを正確に予知することができる。
F(T3) (7) for approximately 450 seconds after the start of casting.
The value is within the upper and lower limits, but it drops below the lower limit just before the breakout occurs, and a breakout occurs immediately after the alarm is output. As is clear from this figure, according to the present invention, by outputting an alarm when the relative temperature F(Tx) exceeds the predetermined upper and lower limit range,
Breakouts can be predicted accurately.

〔発明の効果〕〔Effect of the invention〕

以上の通シ、本発明によれば、鋳込速度の影響を受ける
ことなく、適確なブレークアウト予知が可能となる。ま
た、予知法として、格別な手段を揮る必要もないから、
実用的でもある。
In summary, according to the present invention, it is possible to accurately predict breakout without being affected by the casting speed. Also, as a method of prediction, there is no need to use special means,
It's also practical.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明法に従う予知法の下で行った操業を示す
経時変化図、第2図は測温素子の取付例の断面図、第3
図は鋳込速度と熱電対(モールド内壁)温度との相関図
、第4図はモールド位置の変化による鋳込速度によるモ
ールド温度上昇の度合を示す関係図である。 1・・・モールド、3・・・測温素子。 第3図 栖込遺ノ輝−島) −4図
Fig. 1 is a time course diagram showing the operation carried out under the prediction method according to the method of the present invention, Fig. 2 is a sectional view of an example of mounting the temperature measuring element, and Fig. 3
The figure is a correlation diagram between the casting speed and the thermocouple (mold inner wall) temperature, and FIG. 4 is a relationship diagram showing the degree of rise in mold temperature depending on the casting speed due to changes in mold position. 1...Mold, 3...Temperature measuring element. Figure 3 (Sugome Inoki Island) Figure 4

Claims (1)

【特許請求の範囲】[Claims] (1)連続鋳造装置のモールド内に設けた複数の測温素
子により各測温点のモールド内壁温度を測温し、予め求
めておいた各測温点における温度と鋳込速度の関係によ
り、前記測温した温度から鋳込速度変化による要因を取
除いた後、所定の測定点の温度と全測定点との比を相対
温度として求め、この相対温度が予め設定された上下限
値を外れるときブレークアウトとして予知することを特
徴とする連続鋳造におけるブレークアウト予知方法。
(1) The inner wall temperature of the mold at each temperature measurement point is measured by multiple temperature measurement elements installed in the mold of the continuous casting device, and based on the relationship between the temperature at each temperature measurement point and the casting speed determined in advance, After removing the factor caused by the change in pouring speed from the measured temperature, the ratio of the temperature at a predetermined measurement point to all measurement points is determined as a relative temperature, and this relative temperature is outside the preset upper and lower limits. A method for predicting a breakout in continuous casting, characterized in predicting a breakout when the breakout occurs.
JP6554985A 1985-03-29 1985-03-29 Method for predicting breakout in continuous casting Pending JPS61226154A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6554985A JPS61226154A (en) 1985-03-29 1985-03-29 Method for predicting breakout in continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6554985A JPS61226154A (en) 1985-03-29 1985-03-29 Method for predicting breakout in continuous casting

Publications (1)

Publication Number Publication Date
JPS61226154A true JPS61226154A (en) 1986-10-08

Family

ID=13290202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6554985A Pending JPS61226154A (en) 1985-03-29 1985-03-29 Method for predicting breakout in continuous casting

Country Status (1)

Country Link
JP (1) JPS61226154A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0310420A2 (en) * 1987-10-02 1989-04-05 Kawasaki Steel Corporation Process of continuous casting with detection of possibility of break out
US5293925A (en) * 1990-12-26 1994-03-15 Kawasaki Jukogyo Kabushiki Kaisha Method of and apparatus for withdrawing strand in horizontal continuous casting installation
JP2013128946A (en) * 2011-12-21 2013-07-04 Jfe Steel Corp Method of predicting constrained breakout of cast slab in continuous casting

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0310420A2 (en) * 1987-10-02 1989-04-05 Kawasaki Steel Corporation Process of continuous casting with detection of possibility of break out
US4949777A (en) * 1987-10-02 1990-08-21 Kawasaki Steel Corp. Process of and apparatus for continuous casting with detection of possibility of break out
US5293925A (en) * 1990-12-26 1994-03-15 Kawasaki Jukogyo Kabushiki Kaisha Method of and apparatus for withdrawing strand in horizontal continuous casting installation
JP2013128946A (en) * 2011-12-21 2013-07-04 Jfe Steel Corp Method of predicting constrained breakout of cast slab in continuous casting

Similar Documents

Publication Publication Date Title
JPH02280951A (en) Method for detecting blowoff in continuous casting and apparatus therefor
US4304290A (en) Method of adjusting the setting speed of the narrow sides of plate molds
KR20200127034A (en) Continuous casting ingot mold for metal, breakout detection system and method in continuous metal casting machine
US5242010A (en) Method for controlling the taper of narrow faces of a liquid-cooled mold
KR100752693B1 (en) Automation of a high-speed continuous casting plant
JPS59225858A (en) Mold for continuous casting
US20220241850A1 (en) Mold for continuous casting of metals, temperature measurement system and system and method for detecting breakthrough in a facility for continuous casting of metals
JPS61226154A (en) Method for predicting breakout in continuous casting
JP2001239353A (en) Detecting method of abnormal casting condition inside mold in continuous casting
JPH01210160A (en) Method for predicting longitudinal crack in continuous casting
JPH01143748A (en) Continuous casting method
JP2000263203A (en) Method for predicting longitudinal crack on continuously cast slab
JP2016215236A (en) Method for predicting breakout in continuous casting, breakout prevention method, method for measuring thickness of solidifying shell, breakout prediction device, and breakout prevention device
JPS63115660A (en) Predicting method for breakout in continuous casting
JPH0242409B2 (en)
Mazza et al. The mold temperature mapping with ultrasonic contactless technology is the key for the real-time initial solidification process control tools
JPH01228658A (en) Method for predicting longitudinal crack in continuous casting
JPH0126791B2 (en)
KR970033269A (en) How to measure cast iron defects in continuous casting of steel small section billet
JPS6330162A (en) Measurement for shell thickness in continuous casting
JP2789211B2 (en) Method of detecting mold level in mold
JPS63256250A (en) Method for predicting breakout in continuous casting
EP4442387A1 (en) Continuous casting start timing determination method, continuous casting facility operation method, slab manufacturing method, determining device, continuous casting start determination system, and display terminal device
JPH02165856A (en) Method for discriminating abnormality of temperature measuring element in continuous casting apparatus
KR101177813B1 (en) Control Method for a Short Period Mold Level Hunting in Continuous Cast