JP3501054B2 - Method for preventing constraining breakout in continuous casting - Google Patents

Method for preventing constraining breakout in continuous casting

Info

Publication number
JP3501054B2
JP3501054B2 JP34979299A JP34979299A JP3501054B2 JP 3501054 B2 JP3501054 B2 JP 3501054B2 JP 34979299 A JP34979299 A JP 34979299A JP 34979299 A JP34979299 A JP 34979299A JP 3501054 B2 JP3501054 B2 JP 3501054B2
Authority
JP
Japan
Prior art keywords
thermocouples
breakout
max
temperature
continuous casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP34979299A
Other languages
Japanese (ja)
Other versions
JP2001162358A (en
Inventor
昌樹 高士
仁 大杉
純 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP34979299A priority Critical patent/JP3501054B2/en
Publication of JP2001162358A publication Critical patent/JP2001162358A/en
Application granted granted Critical
Publication of JP3501054B2 publication Critical patent/JP3501054B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、連続鋳造時に拘束
性ブレークアウトを精度よく予知して、ブレークアウト
の発生を効果的に防止することができる、連続鋳造にお
ける拘束性ブレークアウトの防止方法に関するものであ
る。 【0002】 【従来の技術】従来、拘束性ブレークアウトを検知する
方法としては、例えば特公平5-75502号公報に開示のよ
うな、鋳型内の幅方向及び上下方向に複数の熱電対を配
設し、該熱電対の上段のいずれか1個と、この熱電対と
隣り合ういずれかの熱電対の温度が各前期測定のピーク
値に対してそれぞれ5℃以上に上昇し、かつ前期の上段
相当部位の下段熱電対が10秒以内に該下段熱電対の前期
測定ピーク値に対して5℃以上上昇した時点をブレーク
アウトと予知する方法が知られている。 【0003】その他、特公平1−26791 号公報には、連
続鋳造用鋳型の幅方向の温度を、予め定められた所定の
測定位置で検出し、これら測定位置での検出温度を比較
して鋳型温度の急変によってブレークアウトの兆候を予
知し、これに基づき鋳造速度を調整することによってブ
レークアウトを防止する方法が提案されている。 【0004】 【発明が解決しようとする課題】しかしながら、上記特
公平5-75502号公報に開示の方法は、上段の隣あった熱
電対の温度上昇しか考慮していないため、典型的な拘束
性ブレークアウトのV字状の破断線を識別することがで
きず、また上段と下段の熱電対の温度上昇時間差を(上
段と下段熱電対間距離/鋳造速度)としているが、実際
の温度上昇時間差は(上段と下段熱電対間距離/(α×
鋳造速度)ここで、α=0.5 〜0.9)であるため、ブレー
クアウトとして予知したものの実際には異常発生の無い
誤検知や、ブレークアウトが発生したにもかかわらず予
知することができない未検知等が、頻繁に発生する。 【0005】また、特公平1−26791 号公報に開示の方
法では、温度の測定を鋳型の幅方向に一列に配置した熱
電対のみで行っているため、上記と同様、拘束性ブレー
クアウトのV字状の破断線を正確に識別することができ
ず、その結果やはり精度良いブレークアウトの予知は望
めなかった。 【0006】本発明は、上記の問題を有利に解決するも
ので、従来に比較して格段に精度良くブレークアウトの
兆候を予知して、ブレークアウトの発生を効果的に防止
することができる、連続鋳造における拘束性ブレークア
ウトの防止方法を提案することを目的とする。 【0007】 【課題を解決するための手段】さて、発明者らは、上記
の目的を達成すべく拘束性ブレークアウトの発生形態に
ついて数多くの調査を行ったところ、拘束性ブレークア
ウトの破断線は必ずV字状となり、その伝播速度は鋳造
速度よりも遅くなるという事実を見出した。本発明は、
上記の知見に基づいて開発されたものである。 【0008】すなわち、本発明は、連続鋳造用鋳型に対
し上下2段の熱電対を幅方向に複数配置し、上段の隣り
合う3点の熱電対の互いに隣り合った熱電対間で下記
(1) 式を満足する時間(t1)内に温度の急変が検出さ
れ、かつ上記した上段3点の熱電対のうち、最初に温度
の急変が検出された熱電対の直下の下段熱電対が下記
(2)式を満足する時間(t2)内に温度の急変を生じた場
合に、鋳造速度を減じることを特徴とする連続鋳造にお
ける拘束性ブレークアウトの防止方法である。 記 W・ tanθmin / (αmax ・Vc)≦t1 ≦W・ tanθmax / (αmin ・Vc) --- (1) H/(αmax ・Vc)≦t2 ≦H/(αmin ・Vc) --- (2) ここで、W:隣り合った熱電対間の距離 (mm) H:上段熱電対と下段熱電対間の距離 (mm) Vc :鋳造速度 (m/min) αmin , αmax :拘束性ブレークアウト破断線の鋳造速
度に対する最小、最大の伝播速度比 θmin , θmax :拘束性ブレークアウト破断線の最小、
最大の伝播角度(°) なお、ここに拘束性ブレークアウト破断線の伝播角度と
は、該破断線と水平方向のなす角度をいう。 【0009】 【発明の実施の形態】以下、この発明を具体的に説明す
る。本発明において、上段の温度変化を検出する位置を
3点とする理由は、拘束性ブレークアウトの破断線であ
るV字状の破断線の通過を認識するには、図1に示すよ
うに、最低3点での測温が必要だからである。すなわ
ち、V字状の破断線が生じた場合には、まず最初にこの
例でAの位置で温度の急変(具体的には急激な温度上
昇)が生じたのち、その両側(BおよびCの位置)でも
所定の時間を経過したのち温度上昇が生じ、さらに必然
的にAの直下の下段位置すなわちa位置でも温度上昇が
生じることになる。そこで、本発明では、上段の隣り合
う3点の熱電対の互いに隣り合った熱電対間で所定の時
間内に拘束性ブレークアウトの破断線であるV字状の破
断線の通過と考えられる温度変化が検出され、かつ上記
した上段3点の熱電対のうち、最初に温度変化が検出さ
れた熱電対の直下の熱電対がやはり所定の時間内に同様
の温度変化を生じた場合に、ブレークアウトの前兆と判
断して鋳造速度を減じるわけである。 【0010】この点、凝固殻の破損が生じたとしても、
A位置で温度上昇を検出後、BまたはC位置では、所定
の時間内に温度上昇が生じなかったり、またB,C位置
では温度上昇が検出されたものの下段のa位置では温度
上昇が検出されなかった場合には、ブレークアウトには
到らないとして、鋳造速度の調整は行わない。実際、か
ような場合には、破損部がその後に修復されて、ブレー
クアウトに到ることはほとんどない。また、上記のよう
にすれば、外乱による温度変化についても同様にして正
確な判断を下すことができ、誤検知は格段に低減する。 【0011】ここに、上段の熱電対間で温度変化を検出
する所定時間t1 としては、熱電対間の距離(W)、鋳
造速度(Vc)、拘束性ブレークアウト破断線の鋳造速度
に対する最小、最大の伝播速度比(αmin , αmax )お
よび拘束性ブレークアウト破断線の最小、最大の伝播角
度(θmin , θmax )を考慮して、次式(1) の範囲とし
た。 W・ tanθmin / (αmax ・Vc)≦t1 ≦W・ tanθmax / (αmin ・Vc) --- (1) 【0012】また、上段および下段の熱電対間の温度変
化を検出する所定時間t2 としては、さらに上段熱電対
と下段熱電対間の距離(H)を考慮して、次式(2) の範
囲とした。 H/(αmax ・Vc)≦t2 ≦H/(αmin ・Vc) --- (2) 【0013】さらに、図2に図解した、隣り合う熱電対
間の距離(W)は50〜300 mm程度、上段熱電対と下段熱
電対間の距離(H)は 100〜500 mm程度とすることが好
ましい。ここに、図2では、WおよびHを等ピッチとし
ているが、設計上の都合によっては必ずしも等ピッチで
ある必要はない。また、発明者らの調査した結果によれ
ば、垂直曲げ型スラブ連鋳機における破断線の伝播角度
(θ)および伝播速度比(α)は、それぞれθ=23〜45
°、α=0.5 〜0.9 程度であった。なお、θおよびα
は、個々の連続鋳造機によって若干相違する場合がある
ので、過去のブレークアウトマークを解析することによ
り、それぞれの連鋳機における最適な上下限を定めるの
が良い。 【0014】また、鋳造速度(Vc)は、通常 0.8〜2.5
m/min 程度であるが、ブレークアウトの兆候が予知され
た場合には、この速度を 0.3〜0.5 m/min 程度に減速し
て様子を見、その後凝固殻の破損が修復されたと判断さ
れた後に、元の速度まで復元すれば良い。 【0015】なお、モールドの形状、鋳造速度、幅方向
の熱電対間隔によってブレークアウト予知から破断線の
最下端がモールドの下端に到達しブレークアウトに至る
までに時間的な余裕がある場合には、幅方向4点の温度
上昇を予知の条件とすることによって、一層精度を上げ
ることができる。しかしながら、破断線は一般に中心か
ら離れるほど伝播角、伝播速度に乱れを生じるため、必
要以上に増やすことは得策ではない。また、ブレークア
ウト破断線が鋳造速度より遅い速度で伝播する理由は、
破断線は1回のオシレーションごとに新たに生成した凝
固殻内で破断し伝播するためである。 【0016】 【実施例】垂直曲げ型スラブ連鋳機(鋳型内寸、厚み:
260 mm、幅:1900mm)を用いて、中・低炭素鋼および極
低炭素鋼を鋳造するに当たり、約1ヶ月にわたって、本
発明法と従来法(特公平1−26791 号公報に開示の方
法)に従ってブレークアウト予知の比較実験を行った。
その際の、実際の検知数、未検知数および誤検知数を、
図3に比較して示す。なお、上記の実験において、上
段、下段に熱電対をそれぞれ鋳型全周にわたって25個づ
つ配置し、本発明法では上、下2段の熱電対を用いて、
一方従来法は上段一列の熱電対を用いて、それぞれの構
成に従ってブレークアウトの予知を行った。また、隣り
合う熱電対間の距離(W)は 150mm、上段熱電対と下段
熱電対間の距離(H)は 200mm、鋳造速度(Vc)は 1.0
〜2.0 m/min 、またαmin =0.5 、αmax =0.9 、θ
min =23°、θmax =45°とした。 【0017】図3に示したとおり、本発明に従えば、従
来法に比べ誤検知を格段に低減できるだけでなく、未検
知の発生を完全に防止することができ、極めて精度良い
ブレークアウトの予知の下に、ブレークアウトの発生を
効果的に防止できることが分かる。 【0018】 【発明の効果】かくして、本発明によれば、従来に比較
して極めて精度良くブレークアウトの兆候を予知するこ
とができ、ひいてはブレークアウトの発生を効果的に防
止することができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention can predict a constraining breakout accurately during continuous casting and can effectively prevent the occurrence of breakout. The present invention relates to a method for preventing constraining breakout in casting. Conventionally, as a method for detecting a constraining breakout, for example, as disclosed in Japanese Patent Publication No. 5-75502, a plurality of thermocouples are arranged in the width direction and the vertical direction in a mold. The temperature of any one of the upper thermocouples and any one of the thermocouples adjacent to the thermocouple rises to 5 ° C. or more with respect to the peak value of each previous measurement, and the upper There is known a method of predicting a breakout when the lower thermocouple of a corresponding portion has risen by 5 ° C. or more with respect to the previous measured peak value of the lower thermocouple within 10 seconds. In Japanese Patent Publication No. 1-26791, the temperature in the width direction of a continuous casting mold is detected at a predetermined measurement position, and the detected temperatures at these measurement positions are compared to determine the mold. There has been proposed a method for preventing breakout by predicting a breakout sign due to a sudden change in temperature and adjusting the casting speed based on this. [0004] However, the method disclosed in the above Japanese Patent Publication No. 5-75502 only considers the temperature rise of the thermocouple adjacent to the upper stage, so that the typical restraint property is limited. The V-shaped break line of the breakout cannot be identified, and the temperature rise time difference between the upper and lower thermocouples is (the distance between the upper and lower thermocouples / casting speed), but the actual temperature rise time difference Is (distance between upper and lower thermocouples / (α ×
Casting speed) Here, α = 0.5 to 0.9), so it was predicted as a breakout, but it was not detected in spite of the occurrence of a breakout or a false detection that did not actually occur. However, it occurs frequently. In the method disclosed in Japanese Examined Patent Publication No. 1-26791, the temperature is measured only by the thermocouples arranged in a line in the width direction of the mold. As a result, it was not possible to accurately predict the breakout. [0006] The present invention advantageously solves the above problems, and can predict the sign of a breakout with much higher accuracy than before, and can effectively prevent the occurrence of a breakout. The purpose is to propose a method for preventing constraining breakout in continuous casting. Means for Solving the Problems Now, the inventors conducted a number of investigations on the form of occurrence of the constraining breakout in order to achieve the above object. We have found the fact that it is always V-shaped and its propagation speed is slower than the casting speed. The present invention
It was developed based on the above findings. That is, in the present invention, a plurality of upper and lower two-stage thermocouples are arranged in the width direction with respect to the continuous casting mold, and the following three thermocouples adjacent to each other between the thermocouples adjacent to each other are
The lower thermocouple directly below the thermocouple in which the sudden change in temperature is detected within the time (t 1 ) satisfying the equation (1) and the first three sudden changes in temperature are detected. Is
This is a method for preventing a constraining breakout in continuous casting, wherein the casting speed is reduced when a sudden change in temperature occurs within a time (t 2 ) that satisfies equation (2). W · tanθ min / (α max · Vc) ≤ t 1 ≤ W · tan θ max / (α min · Vc) --- (1) H / (α max · Vc) ≤ t 2 ≤ H / (α min・ Vc) --- (2) where W: distance between adjacent thermocouples (mm) H: distance between upper and lower thermocouples (mm) Vc: casting speed (m / min) α min , α max : Minimum and maximum propagation speed ratio of constraining breakout break line to casting speed θ min , θ max : Minimum constraining breakout break line,
Maximum propagation angle (°) Here, the propagation angle of the constraining breakout break line refers to an angle formed by the break line and the horizontal direction. DETAILED DESCRIPTION OF THE INVENTION The present invention will be specifically described below. In the present invention, the reason for setting the upper temperature change detection position to three points is to recognize the passage of the V-shaped break line, which is the break line of the constraining breakout, as shown in FIG. This is because it is necessary to measure temperature at least three points. That is, when a V-shaped break line occurs, first, in this example, a sudden temperature change (specifically, a rapid temperature rise) occurs at the position A, and then both sides (B and C Position), the temperature rises after a predetermined time, and inevitably, the temperature rises also at the lower position directly under A, that is, the a position. Therefore, in the present invention, the temperature considered to pass the V-shaped break line that is the break line of the constraining breakout within a predetermined time between the adjacent thermocouples of the three adjacent thermocouples in the upper stage. When a change is detected and the thermocouple directly below the thermocouple where the temperature change is first detected among the above three thermocouples, the same temperature change occurs within the predetermined time. The casting speed is reduced as a sign of out. In this respect, even if the solidified shell is broken,
After the temperature rise is detected at the A position, the temperature rise does not occur within a predetermined time at the B or C position, or the temperature rise is detected at the lower a position although the temperature rise is detected at the B and C positions. If not, the breakout is not reached and the casting speed is not adjusted. In fact, in such a case, the damaged part is repaired after that and hardly reaches a breakout. Moreover, if it does as mentioned above, the exact judgment can be similarly made about the temperature change by disturbance, and false detection will be reduced markedly. Here, as the predetermined time t 1 for detecting the temperature change between the upper thermocouples, the distance (W) between the thermocouples, the casting speed (Vc), the minimum with respect to the casting speed of the constraining breakout break line. In consideration of the maximum propagation velocity ratio (α min , α max ) and the minimum and maximum propagation angles (θ min , θ max ) of the constraining breakout break line, the range of the following equation (1) was adopted. W · tanθ min / (α max · Vc) ≦ t 1 ≦ W · tanθ max / (α min · Vc) --- (1) [0012], for detecting the temperature change between the upper and lower thermocouples The predetermined time t 2 is set in the range of the following equation (2) in consideration of the distance (H) between the upper and lower thermocouples. H / ( αmax · Vc) ≦ t 2 ≦ H / ( αmin · Vc) --- (2) Further, the distance (W) between adjacent thermocouples illustrated in FIG. About 300 mm, the distance (H) between the upper and lower thermocouples is preferably about 100 to 500 mm. Here, in FIG. 2, W and H are equal pitches, but they are not necessarily equal pitches depending on design convenience. Further, according to the results of investigations by the inventors, the propagation angle (θ) and propagation speed ratio (α) of the fracture line in the vertical bending slab continuous casting machine are θ = 23 to 45, respectively.
°, α = about 0.5 to 0.9. Θ and α
However, it may be slightly different depending on individual continuous casting machines. Therefore, it is preferable to determine the optimum upper and lower limits in each continuous casting machine by analyzing past breakout marks. The casting speed (Vc) is usually 0.8 to 2.5.
Although it was about m / min, but when signs of breakout were predicted, the speed was reduced to about 0.3 to 0.5 m / min and the situation was observed. You can restore it back to its original speed later. If there is a time margin from the breakout prediction until the bottom end of the break line reaches the bottom end of the mold until the breakout occurs due to the mold shape, casting speed, and thermocouple spacing in the width direction. The accuracy can be further improved by setting the temperature increase at four points in the width direction as a condition for prediction. However, since the break line generally becomes more disturbed in the propagation angle and propagation speed as the distance from the center increases, it is not a good idea to increase it more than necessary. The reason why the breakout break line propagates at a speed slower than the casting speed is
This is because the breaking line breaks and propagates in the newly formed solidified shell for each oscillation. [Embodiment] Vertical bending type slab continuous casting machine (inner mold size, thickness:
When casting medium / low carbon steel and ultra-low carbon steel using 260 mm, width: 1900 mm), the method of the present invention and the conventional method (the method disclosed in Japanese Examined Patent Publication No. 1-26791) for about one month. A comparative experiment for predicting breakout was performed.
At that time, the actual number of detections, the number of undetected and the number of false detections,
This is shown in comparison with FIG. In the above experiment, 25 thermocouples are arranged in the upper and lower stages over the entire circumference of the mold, respectively. In the method of the present invention, the upper and lower two thermocouples are used.
On the other hand, the conventional method used the upper row of thermocouples to predict breakout according to each configuration. The distance (W) between adjacent thermocouples is 150 mm, the distance (H) between the upper and lower thermocouples is 200 mm, and the casting speed (Vc) is 1.0.
~ 2.0 m / min, also α min = 0.5, α max = 0.9, θ
min = 23 ° and θ max = 45 °. As shown in FIG. 3, according to the present invention, it is possible not only to significantly reduce false detections compared to the conventional method, but also to completely prevent the occurrence of undetected, and to predict breakouts with extremely high accuracy. It can be seen that breakout can be effectively prevented. Thus, according to the present invention, a sign of a breakout can be predicted with extremely high accuracy as compared with the prior art, and the occurrence of a breakout can be effectively prevented.

【図面の簡単な説明】 【図1】 拘束性ブレークアウトの破断線であるV字状
の破断線の通過状況(a)および各測定点における温度変
化(b) を示した図である。 【図2】 熱電対の設置状況を示した図である。 【図3】 本発明法と従来法によって、ブレークアウト
の兆候を予知した際の実際の検知数、未検知数および誤
検知数を比較して示したグラフである。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram showing a passage state (a) of a V-shaped break line, which is a break line of a restrictive breakout, and a temperature change (b) at each measurement point. FIG. 2 is a diagram showing the installation status of thermocouples. FIG. 3 is a graph comparing the actual number of detections, the number of undetections, and the number of false detections when predicting a breakout sign by the method of the present invention and the conventional method.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平7−112259(JP,A) 特開 平1−143748(JP,A) (58)調査した分野(Int.Cl.7,DB名) B22D 11/16 B22D 11/16 104 B22D 11/20 ──────────────────────────────────────────────────── ─── Continuation of front page (56) References Japanese Patent Laid-Open No. 7-112259 (JP, A) Japanese Patent Laid-Open No. 1-143748 (JP, A) (58) Fields studied (Int.Cl. 7 , DB name) B22D 11/16 B22D 11/16 104 B22D 11/20

Claims (1)

(57)【特許請求の範囲】 【請求項1】 連続鋳造用鋳型に対し上下2段の熱電対
を幅方向に複数配置し、上段の隣り合う3点の熱電対の
互いに隣り合った熱電対間で下記(1) 式を満足する時間
(t1)内に温度の急変が検出され、かつ上記した上段3
点の熱電対のうち、最初に温度の急変が検出された熱電
対の直下の下段熱電対が下記(2) 式を満足する時間(t
2)内に温度の急変を生じた場合に、鋳造速度を減じるこ
とを特徴とする連続鋳造における拘束性ブレークアウト
の防止方法。 記 W・ tanθmin / (αmax ・Vc)≦t1 ≦W・ tanθmax / (αmin ・Vc) --- (1) H/(αmax ・Vc)≦t2 ≦H/(αmin ・Vc) --- (2) ここで、W:隣り合った熱電対間の距離 (mm) H:上段熱電対と下段熱電対間の距離 (mm) Vc :鋳造速度 (m/min) αmin , αmax :拘束性ブレークアウト破断線の鋳造速
度に対する最小、最大の伝播速度比 θmin , θmax :拘束性ブレークアウト破断線の最小、
最大の伝播角度(°)
(57) [Claims] [Claim 1] A plurality of upper and lower two-stage thermocouples are arranged in the width direction with respect to a continuous casting mold, and the upper three adjacent thermocouples are adjacent to each other. A sudden change in temperature is detected within the time (t 1 ) that satisfies the following equation (1), and the upper 3
Among the thermocouples at the point, the time (t) when the lower thermocouple directly under the thermocouple where the sudden temperature change is detected first satisfies the following equation (2)
2 ) A method for preventing a constraining breakout in continuous casting, wherein the casting speed is reduced when a sudden change in temperature occurs. W · tanθ min / (α max · Vc) ≤ t 1 ≤ W · tan θ max / (α min · Vc) --- (1) H / (α max · Vc) ≤ t 2 ≤ H / (α min・ Vc) --- (2) where W: distance between adjacent thermocouples (mm) H: distance between upper and lower thermocouples (mm) Vc: casting speed (m / min) α min , α max : Minimum and maximum propagation speed ratio of constraining breakout break line to casting speed θ min , θ max : Minimum constraining breakout break line,
Maximum propagation angle (°)
JP34979299A 1999-12-09 1999-12-09 Method for preventing constraining breakout in continuous casting Expired - Lifetime JP3501054B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34979299A JP3501054B2 (en) 1999-12-09 1999-12-09 Method for preventing constraining breakout in continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34979299A JP3501054B2 (en) 1999-12-09 1999-12-09 Method for preventing constraining breakout in continuous casting

Publications (2)

Publication Number Publication Date
JP2001162358A JP2001162358A (en) 2001-06-19
JP3501054B2 true JP3501054B2 (en) 2004-02-23

Family

ID=18406154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34979299A Expired - Lifetime JP3501054B2 (en) 1999-12-09 1999-12-09 Method for preventing constraining breakout in continuous casting

Country Status (1)

Country Link
JP (1) JP3501054B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107096899A (en) * 2017-05-17 2017-08-29 安徽工业大学 The crystallizer bleedout prediction electric thermo system that a kind of logic-based judges
CN107159862A (en) * 2017-05-17 2017-09-15 安徽工业大学 A kind of crystallizer bleedout prediction electric thermo method that logic-based judges
CN110523941A (en) * 2019-08-06 2019-12-03 北京数钰科技发展有限公司 Continuous casting bonding steel leakage multistage risk control method and control device

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008028752A1 (en) * 2008-06-17 2009-12-24 Sms Siemag Aktiengesellschaft Apparatus and method for detecting the risk of breakage of a steel strand in the continuous casting of steel
JP2013052431A (en) * 2011-09-06 2013-03-21 Jfe Steel Corp Method for measuring temperature in mold for continuous casting
JP5906814B2 (en) * 2012-03-01 2016-04-20 Jfeスチール株式会社 Method and apparatus for predicting constraining breakout in continuous casting equipment
CN102825234A (en) * 2012-09-25 2012-12-19 鞍钢股份有限公司 Bonded bleed-out judging and alarming method
JP6347236B2 (en) * 2015-08-04 2018-06-27 Jfeスチール株式会社 Breakout prediction method, breakout prediction apparatus, and continuous casting method
JP6421774B2 (en) * 2016-03-02 2018-11-14 Jfeスチール株式会社 Restraint breakout monitoring device and monitoring method using the same
JP7001074B2 (en) 2019-02-26 2022-01-19 Jfeスチール株式会社 Prediction method of restrictive breakout and continuous casting method of steel
CN110523968B (en) * 2019-08-06 2021-07-27 北京数钰科技发展有限公司 Early warning judgment method and early warning judgment device for bonding breakout

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107096899A (en) * 2017-05-17 2017-08-29 安徽工业大学 The crystallizer bleedout prediction electric thermo system that a kind of logic-based judges
CN107159862A (en) * 2017-05-17 2017-09-15 安徽工业大学 A kind of crystallizer bleedout prediction electric thermo method that logic-based judges
CN107159862B (en) * 2017-05-17 2018-09-11 安徽工业大学 A kind of crystallizer bleedout prediction electric thermo method that logic-based judges
CN110523941A (en) * 2019-08-06 2019-12-03 北京数钰科技发展有限公司 Continuous casting bonding steel leakage multistage risk control method and control device

Also Published As

Publication number Publication date
JP2001162358A (en) 2001-06-19

Similar Documents

Publication Publication Date Title
JP3501054B2 (en) Method for preventing constraining breakout in continuous casting
JP5673100B2 (en) Breakout prediction method
JP6950860B1 (en) Breakout prediction method, continuous casting machine operation method, and breakout prediction device
JP5407987B2 (en) Method for detecting longitudinal cracks in slabs
EP3909703B1 (en) Method for continuous casting of slab
JP2012218039A (en) Method for detection of breakout in continuous casting
JP5906814B2 (en) Method and apparatus for predicting constraining breakout in continuous casting equipment
JP6347236B2 (en) Breakout prediction method, breakout prediction apparatus, and continuous casting method
JPS5929353B2 (en) Breakout prediction method
JPH0575502B2 (en)
JP3103498B2 (en) Predicting and preventing breakouts in continuous casting.
JPS6347545B2 (en)
JPS61176456A (en) Predict method of breakout caused by entrainment of inclusion
WO2024070088A1 (en) Casting mold, control equipment, and continuous casting method for steel
JPH0126791B2 (en)
JP3508540B2 (en) Steel plate cooling equipment
JPS6044163A (en) Method for predicting breakout in continuous casting
JP2661380B2 (en) Method for preventing short side vertical cracking and breakout of continuous cast slab
JP2661375B2 (en) Method for predicting longitudinal cracks in continuous cast slabs
JPH03138059A (en) Method for predicting constrained breakout in continuous casting
JPS6138763A (en) Method for predicting breakout in continuous casting
JP2022010944A (en) Breakout prediction method in continuous casting
JPH01284470A (en) Method of controlling continuous casting of round ingot
JP2003053491A (en) Method for changing width of cast slab in continuous casting and mold for continuous casting
JP2002361382A (en) Detecting method for restraining breakout

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R150 Certificate of patent or registration of utility model

Ref document number: 3501054

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071212

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081212

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091212

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091212

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101212

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101212

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131212

Year of fee payment: 10

EXPY Cancellation because of completion of term