JPH01256155A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH01256155A
JPH01256155A JP63084590A JP8459088A JPH01256155A JP H01256155 A JPH01256155 A JP H01256155A JP 63084590 A JP63084590 A JP 63084590A JP 8459088 A JP8459088 A JP 8459088A JP H01256155 A JPH01256155 A JP H01256155A
Authority
JP
Japan
Prior art keywords
film
semiconductor substrate
semiconductor
oxidation
etching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63084590A
Other languages
Japanese (ja)
Inventor
Masahiko Ito
政彦 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP63084590A priority Critical patent/JPH01256155A/en
Publication of JPH01256155A publication Critical patent/JPH01256155A/en
Pending legal-status Critical Current

Links

Landscapes

  • Local Oxidation Of Silicon (AREA)
  • Element Separation (AREA)

Abstract

PURPOSE:To enable a semiconductor to be highly integrated by a method wherein an oxide film is laid between the first antioxidant film corresponding to an element formation region of a semiconductor substrate and the semiconductor substrate while the oxide film and a semiconductor layer are laminated between the second antioxidant film left on the sidewall part of the first antioxidant film and the semiconductor substrate. CONSTITUTION:The first antioxidant film 13 is selectively formed on the part corresponding to the element formation region on an oxide film 12 on the surface of a semiconductor substrate 11 and then the second antioxidant film (Si3N4 film) 14 and an etching mask layer (SiO2 film) 22 are laminated so as to cover a semiconductor-layer 16 formed on the sides of the first antioxidant film 13. Then, the etching mask layer 22 is anisotropically etched away to leave an etching mask layer 22a on the part corresponding to the sidewall of the first oxide film 13 and then the second antioxidant film 14 is etched away using the layer 22a as a mask. Furthermore, the semiconductor substrate 11 is selectively oxidized using the first antioxidant film 13 and the second residual antioxidant film 14 as masks to form an element isolation region. Through the procedures, a semiconductor device can be highly integrated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、素子分離領域とこの素子分離領域に接してい
る素子形成領域とを有する半導体装置の製造方法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of manufacturing a semiconductor device having an element isolation region and an element formation region in contact with the element isolation region.

〔発明の(既要〕[Invention (already required)]

本発明は、上記の様な半導体装置の製造方法において、
半導体基体の素子形成領域に対応させた第1の耐酸化膜
と半導体基体との間に酸化膜を存在させ、且つ、第1の
耐酸化膜の側壁部に残した第2の耐酸化膜と半導体基体
との間に酸化膜と半導体層とを積層させることによって
、高品質且つ高集積度の半導体装置を製造することがで
きる様にしたものである。
The present invention provides a method for manufacturing a semiconductor device as described above.
An oxide film is present between the first oxidation resistant film corresponding to the element formation region of the semiconductor substrate and the semiconductor substrate, and a second oxidation resistant film is left on the side wall of the first oxidation resistant film. By stacking an oxide film and a semiconductor layer between the semiconductor substrate and the semiconductor substrate, it is possible to manufacture a high quality and highly integrated semiconductor device.

〔従来の技術〕[Conventional technology]

半導体装置の製造に際しては素子分離領域と素子形成領
域とを半導体基体に形成する必要があるが、この形成は
一般に半導体基体の選択酸化によって行われている。
When manufacturing a semiconductor device, it is necessary to form an element isolation region and an element formation region on a semiconductor substrate, and this formation is generally performed by selective oxidation of the semiconductor substrate.

選択酸化による酸化膜のバーズビークが小さければ高集
積度の半導体装置を製造することができるので、そのた
めの一つの方法として、オフセットLOGO3(O3E
L○)法がExtend Abstractof th
e 17th Conference on 5oli
d 5tate Devicesand Materi
als、Tokyo、1985.pp、337−340
において提案されている。
If the bird's beak of the oxide film due to selective oxidation is small, it is possible to manufacture highly integrated semiconductor devices. One method for this purpose is offset LOGO3 (O3E
L○) Law Extend Abstract of th
e 17th Conference on 5oli
d 5tate Devices and Materi
als, Tokyo, 1985. pp, 337-340
It has been proposed in

第3図は、この03ELO法の概略を示している。即ち
、第3A図に示す様に、Si基体11のうちで素子形成
領域とすべき部分に、パッド用の5i02膜12と第1
の耐酸化膜である5iJa膜13とをまず選択的に形成
する。
FIG. 3 shows an outline of this 03ELO method. That is, as shown in FIG. 3A, a 5i02 film 12 for a pad and a first
A 5iJa film 13, which is an oxidation-resistant film, is first selectively formed.

そして更に、5io211り12とSi3N4膜13と
の側壁に、第2の耐酸化膜である断面鉤形の5iJ4膜
14を形成する。
Furthermore, a 5iJ4 film 14, which is a second oxidation-resistant film and has a hook-shaped cross section, is formed on the sidewalls of the 5io211 film 12 and the Si3N4 film 13.

この状態でSi基体11を酸化すれば、Si3N、膜1
4の存在によって、第3B図に示す様に、LOCOS酸
化膜である5in2膜15のバーズビーク15aが小さ
い。
If Si substrate 11 is oxidized in this state, Si3N and film 1
4, the bird's beak 15a of the 5in2 film 15, which is a LOCOS oxide film, is small, as shown in FIG. 3B.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところが上述の05ELO法では、Si、N、膜14が
Si基体ll上に直接に形成されているために、バーズ
ビーク15aが小さい代わりに、このバーズビーク15
aの近傍つまり素子形成領域と素子分離領域との境界近
傍において、潜在応力が蓄積されたり結晶欠陥が発生し
たりする。
However, in the above-mentioned 05ELO method, since the Si, N, film 14 is formed directly on the Si substrate 11, the bird's beak 15a is small, but the bird's beak 15a is small.
In the vicinity of a, that is, in the vicinity of the boundary between the element formation region and the element isolation region, latent stress is accumulated and crystal defects occur.

この結果、半導体装置の完成後にPN接合でリーク電流
が増大したりして、高品質の半導体装置を製造すること
ができない。
As a result, leakage current increases at the PN junction after the semiconductor device is completed, making it impossible to manufacture a high-quality semiconductor device.

〔課題を解決するための手段〕[Means to solve the problem]

本発明による半導体装置の製造方法は、半導体基体11
の表面に酸化膜12を形成する工程と、前記酸化膜12
上のうちで素子形成領域に対応する部分に少な(とも第
1の耐酸化膜13を選択的に形成する工程と、前記第1
の耐酸化膜13の側部に形成した半導体層16.26を
覆う様に第2の耐酸化膜14とエツチングマスク層22
とを順次に積層させる工程と、前記エツチングマスク層
22を異方性エツチングして、前記第1の耐酸化膜13
の側壁に対応する部分に前記エツチングマスク層22a
を残す工程と、この残したエツチングマスク層22aを
マスクにして少なくとも前記第2の耐酸化膜14をエツ
チングする工程と、前記第1の耐酸化膜13と前記エツ
チングで残した前記第2の耐酸化膜14とをマスクにし
て前記半導体基体11を選択的に酸化して素子分離領域
を形成する工程とを夫々具備している。
In the method for manufacturing a semiconductor device according to the present invention, a semiconductor substrate 11
a step of forming an oxide film 12 on the surface of the oxide film 12;
A step of selectively forming a first oxidation-resistant film 13 on a portion corresponding to the element formation region;
A second oxidation resistant film 14 and an etching mask layer 22 are formed to cover the semiconductor layer 16.26 formed on the side of the oxidation resistant film 13.
and anisotropic etching of the etching mask layer 22 to form the first oxidation-resistant film 13.
The etching mask layer 22a is formed on a portion corresponding to the side wall of the etching mask layer 22a.
a step of etching at least the second oxidation-resistant film 14 using the remaining etching mask layer 22a as a mask; and a step of etching at least the second oxidation-resistant film 14 using the remaining etching mask layer 22a as a mask; and selectively oxidizing the semiconductor substrate 11 using the chemical film 14 as a mask to form an element isolation region.

〔作用〕[Effect]

本発明による半導体装置の製造方法では、半導体基体1
1の素子形成領域に対応させた第1の耐酸化膜13と半
導体基体11との間に酸化膜12を存在させているので
、素子形成領域における潜在応力の蓄積や結晶欠陥の発
生等が抑制される。
In the method for manufacturing a semiconductor device according to the present invention, a semiconductor substrate 1
Since the oxide film 12 is present between the first oxidation-resistant film 13 corresponding to the element formation region 1 and the semiconductor substrate 11, the accumulation of latent stress and the occurrence of crystal defects in the element formation region are suppressed. be done.

しかも、第1の耐酸化膜13の側壁部に残した第2の耐
酸化膜14と半導体基体11との間に酸化膜12と半導
体層16.26とを積層させているので、素子形成領域
と素子分離領域との境界近傍における潜在応力の蓄積や
結晶欠陥の発生等が特に抑制される。
Moreover, since the oxide film 12 and the semiconductor layer 16.26 are laminated between the second oxidation resistant film 14 left on the side wall portion of the first oxidation resistant film 13 and the semiconductor substrate 11, the element formation area The accumulation of latent stress and the occurrence of crystal defects near the boundary between the semiconductor device and the element isolation region are particularly suppressed.

また、第1の耐酸化膜13の側壁部に残した第2の耐酸
化膜14と半導体基体11との間に酸化膜12と半導体
層16.26とを積層させているが、酸素の拡散係数は
酸化膜12中よりも半導体層16.26中の方が小さい
ので、素子分離領域のバーズビーク15aが小さい。
Furthermore, although the oxide film 12 and the semiconductor layer 16.26 are laminated between the second oxidation-resistant film 14 left on the side wall of the first oxidation-resistant film 13 and the semiconductor substrate 11, oxygen diffusion Since the coefficient is smaller in the semiconductor layer 16.26 than in the oxide film 12, the bird's beak 15a in the element isolation region is smaller.

〔実施例〕〔Example〕

以下、MOSトランジスタの製造に適用した本発明の第
1及び第2実施例を、第1図及び第2図を参照しながら
説明する。
Hereinafter, first and second embodiments of the present invention applied to the manufacture of MOS transistors will be described with reference to FIGS. 1 and 2.

第1図が、第1実施例を示している。この第1実施例で
は、第1A図に示す様に、Si基体11の表面に厚さ5
0人程度の5iOz膜12を熱酸化によってまず形成す
る。
FIG. 1 shows a first embodiment. In this first embodiment, as shown in FIG. 1A, the surface of the Si substrate 11 has a thickness of 5.
First, a 5iOz film 12 having a thickness of approximately 0 is formed by thermal oxidation.

そして、厚さ550人程程度多結晶Si膜16と、7厚
さ1500人程度程度i3N4膜13と、厚さ2300
人程度程度ing膜17とを、夫々CVDによってSi
O2膜12上に順次に積層させる。なおSiO□膜17
は、SiO2膜22膜壁222a (第1D図)を形成
するために5iJ4膜13等の段差を大きくするための
ものであるので、必須ではない。
Then, a polycrystalline Si film 16 with a thickness of about 550 mm, an i3N4 film 13 with a thickness of about 1500 mm, and an i3N4 film 13 with a thickness of 2300 mm.
ing film 17 and Si film 17 by CVD, respectively.
They are sequentially laminated on the O2 film 12. Note that the SiO□ film 17
This step is not essential since it is used to increase the step of the 5iJ4 film 13, etc. in order to form the SiO2 film 22 film wall 222a (FIG. 1D).

その後、5iOz膜17上にレジスト膜21を塗布し、
このレジスト膜21を素子形成領域のパターンにパター
ニングする。
After that, a resist film 21 is applied on the 5iOz film 17,
This resist film 21 is patterned into the pattern of the element formation region.

次に、第1B図に示す様に、レジスト膜21をマスクに
して、5iOz膜17 、SiJ、膜13及び多結晶S
i膜16に対して、順次にRIEを行う。但し多結晶S
i膜16に対しては、200Å以上の厚さが残る様にR
IBを行う。これらのRIEが終了すれば、レジスト膜
21を除去する。
Next, as shown in FIG. 1B, using the resist film 21 as a mask, the 5iOz film 17, the SiJ film 13, and the polycrystalline S
RIE is sequentially performed on the i-film 16. However, polycrystalline S
For the i-film 16, R is applied so that a thickness of 200 Å or more remains.
Do IB. When these RIEs are completed, the resist film 21 is removed.

次に、第ic図に示す様に、厚さ500人程程度Si3
N4膜14と、厚さ3000人程度程度iO□膜22膜
壁2夫々CVDによって順次に積層させる。
Next, as shown in FIG.
The N4 film 14, the iO□ film 22 and the film wall 2 having a thickness of approximately 3000 layers are sequentially laminated by CVD.

次に、5iozl々22の全面をRIEによって異方的
にエッチハックすることによって、第1D図に示す様に
、Si3N4膜13やSiO□膜17の側壁部に、Si
O□膜22膜壁222aを形成する。
Next, by etching the entire surface of the 5iozl film 22 anisotropically by RIE, as shown in FIG.
A film wall 222a of the O□ film 22 is formed.

その後、壁部22aをマスクにしてSi:+Nn膜I4
をエツチングする。この結果、5izNn膜14は5i
xJ膜13やSin、膜17の側壁部にのみ断面鉤形の
形状で残る。
After that, using the wall portion 22a as a mask, the Si:+Nn film I4 is
etching. As a result, the 5izNn film 14 becomes 5i
It remains only on the side walls of the xJ film 13, the Sin film 17, and has a hook-shaped cross section.

その後、壁部22aをマスクにして更に多結晶Si膜1
6をエツチングするが、このエツチングは、第1D図に
示す様に露出している多結晶Si膜16の総てを除去し
てもよいし、露出している多結晶5illW 16を2
00人程程度での範囲内で残してもよい。
Thereafter, using the wall portion 22a as a mask, the polycrystalline Si film 1 is further
This etching may be performed by removing all of the exposed polycrystalline Si film 16 as shown in FIG.
You may leave it within the range of about 00 people.

次に、第1E図に示す様に、露出しているSiO□膜1
7.22.12をエツチングによって除去し、この状態
で、チャネルストップ用の不純物であるB゛ 23を3
QKeV程度のエネルギでイオン注入する。
Next, as shown in FIG. 1E, the exposed SiO□ film 1
7.22.12 is removed by etching, and in this state, B23, which is an impurity for channel stop, is removed by etching.
Ion implantation is performed with an energy of about QKeV.

なおり23のイオン注入は、第1D図の状態で行っても
よい。この場合は、壁部22aの厚さ程度だけ素子形成
領域からイオン注入領域がオフセットされ、狭チャネル
効果が抑制される。従って、イオン注入を第1E図の状
態で行うか第1D図の状態で行うかによって、素子形成
領域からのイオン注入領域のオフセット量を調整するこ
とができる。
The ion implantation 23 may be performed in the state shown in FIG. 1D. In this case, the ion implantation region is offset from the element formation region by about the thickness of the wall portion 22a, and the narrow channel effect is suppressed. Therefore, depending on whether the ion implantation is performed in the state shown in FIG. 1E or in the state shown in FIG. 1D, the amount of offset of the ion implantation region from the element formation region can be adjusted.

次に、第1E図の状態でSi基体11を熱酸化すること
によって、第1F図に示す様に、厚さ6000人程度程
度iO□膜15全15分離領域に形成する。なおSin
、膜15下には、B+ 23によるチャネルストッパ2
4が形成される。
Next, by thermally oxidizing the Si substrate 11 in the state shown in FIG. 1E, as shown in FIG. 1F, an iO□ film 15 of about 6,000 thickness is formed in a total of 15 isolated regions. Furthermore, Sin
, below the membrane 15 is a channel stopper 2 made of B+ 23.
4 is formed.

その後、Si:+N、膜13.14を除去し、更にKO
Hによるウェットエツチングによって多結晶Si膜16
を除去する。なお、多結晶Si膜16の除去に際してド
ライエツチングを用いると、5iOz膜12が薄いため
にSi基体11までもがエツチングされるので、好まし
くない。
After that, remove Si:+N, film 13.14, and further KO
The polycrystalline Si film 16 is etched by wet etching using H.
remove. Note that if dry etching is used to remove the polycrystalline Si film 16, since the 5iOz film 12 is thin, even the Si substrate 11 will be etched, which is not preferable.

以後はMO3I−ランジスタの通常の製造工程を実行し
て、第1G図に示す様に、ゲート電極となる多結晶S+
膜25等を形成する。
After that, the usual manufacturing process for MO3I- transistors is carried out to form a polycrystalline S+ which will become the gate electrode, as shown in Fig. 1G.
A film 25 and the like are formed.

第2図は第2実施例を示しているが、第1実施例と同一
の構成部分には同一の符号を付しである。
FIG. 2 shows a second embodiment, in which the same components as in the first embodiment are given the same reference numerals.

この第2実施例では、第1実施例と異なり多結晶Si膜
16を形成せず、第2A図に示す様に、SiO□膜12
上に5iJ4膜13を直接に形成し、このSi3N4膜
13を素子形成領域のパターンにバターニングする。
In this second embodiment, unlike the first embodiment, a polycrystalline Si film 16 is not formed, and as shown in FIG. 2A, a SiO□ film 12 is formed.
A 5iJ4 film 13 is directly formed thereon, and this Si3N4 film 13 is patterned into the pattern of the element formation region.

次に、第2B図に示す様に、多結晶Si膜26と5iJ
n膜14とSiO,膜22とを、夫々CVDによって順
次に積層させる。
Next, as shown in FIG. 2B, the polycrystalline Si film 26 and 5iJ
The n film 14, the SiO film 22, and the SiO film 22 are sequentially laminated by CVD.

次に、5iOz膜22の全面をRIEによって異方的に
エッチバックすることによって、第2C図に示す(茗に
、S:3Na膜13の側壁部に、SiO□膜22膜壁2
22aを形成する。
Next, the entire surface of the 5iOz film 22 is etched back anisotropically by RIE, as shown in FIG.
22a is formed.

次に、壁部22aをマスクにして5i3Nn膜14を工
、チングすることによって、第2D図に示す様に、5i
J4n@13の側壁部にのみ断面鉤形のSi3N4膜1
4を残す。
Next, by etching the 5i3Nn film 14 using the wall portion 22a as a mask, the 5i3Nn film 14 is etched, as shown in FIG. 2D.
Si3N4 film 1 with a hook-shaped cross section only on the side wall of J4n@13
Leave 4.

次に、第2E図に示す様に壁部22aを除去し、この第
2E図の状態でSi基体11を熱酸化することによって
、第2F図に示す様に5iOz膜15.27を形成する
Next, as shown in FIG. 2E, the wall portion 22a is removed, and the Si substrate 11 is thermally oxidized in the state shown in FIG. 2E, thereby forming a 5iOz film 15.27 as shown in FIG. 2F.

その後、SiO□膜27全27し、更にMOS)ランジ
スタの通常の製造工程を実行する。なおこの第2実施例
でも、第1実施例と同様な段階でB゛23のイオン注入
を行う。
Thereafter, the SiO□ film 27 is completely coated, and the usual manufacturing process for a MOS transistor is then carried out. In this second embodiment as well, B'23 ions are implanted at the same stage as in the first embodiment.

この様な第2実施例では、SiO2膜12と5iJn膜
13との間に第1実施例の様に多結晶Si膜16が存在
しておらず、Si3N4とSiとはエツチング時の選択
比が大きいので、5iiNa膜13のエツチング時にS
i基板11もエツチングされることはない。
In the second embodiment, unlike the first embodiment, there is no polycrystalline Si film 16 between the SiO2 film 12 and the 5iJn film 13, and the etching selectivity between Si3N4 and Si is Since it is large, when etching the 5iiNa film 13, S
The i-substrate 11 is also not etched.

しかも、多結晶5ilEt16のエツチング時のKOH
を使用する必要がないので、KによるSi基板11等の
汚染もない。
Moreover, KOH during etching of polycrystalline 5ilEt16
Since there is no need to use K, there is no contamination of the Si substrate 11 etc. with K.

〔発明の効果〕〔Effect of the invention〕

本発明による半導体装置の製造方法では、半纏体基体の
素子形成領域のみならず素子形成領域と素子分″JAt
 領域との境界近傍においても潜在応力の蓄積や結晶欠
陥の発生等が抑制されるので、高品質の半導体装置を製
造することができる。
In the method for manufacturing a semiconductor device according to the present invention, not only the element formation region of the semi-integrated substrate but also the element formation region and the element portion "JAt"
Since the accumulation of latent stress and the occurrence of crystal defects are suppressed even near the boundaries between the regions, a high quality semiconductor device can be manufactured.

また、素子分離領域のバーズビークが小さいので 高集
積度の半導体装置を製造することができる。
Furthermore, since the bird's beak in the element isolation region is small, highly integrated semiconductor devices can be manufactured.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明の夫々第1及び第2実施例を
順次に示す側断面図である。 第3図は本発明の一従来例の概略を順次に示ず側断面図
である。 なお図面に用いた符号において、 11−・−・・−−−一−−・−・−Si基体12−−
−−・−・−・・・・・−5iO□膜13−・・−−−
一−−・・−・−一−−5i 3 N s膜14−・−
−−−−−−−−−−−・−5i3N4膜15a・・・
・−・−−−−−−−−−バーズビーク16−−−−−
・−・・−・−・−・・−多結晶Si膜22−・・−・
−−一−−−−・・−・・SiO2膜22a−・〜−−
−−−−−−−−−・壁部26−−−・・・−・・−・
−・−多結晶Si膜である。
1 and 2 are side sectional views sequentially showing first and second embodiments of the present invention, respectively. FIG. 3 is a schematic side sectional view of a conventional example of the present invention, not shown sequentially. In addition, in the symbols used in the drawings, 11------1----Si substrate 12--
−−・−・−・・−5iO□ film 13−・・−−−
1--・---1--5i 3 Ns film 14--
------------5i3N4 film 15a...
・−・−−−−−−−−−Bird's Beak 16−−−−−
・−・・−・−・−・・−Polycrystalline Si film 22−・・−・
---1-----...SiO2 film 22a----
−−−−−−−−−・Wall part 26−−−・・・−・・−・
-.- It is a polycrystalline Si film.

Claims (1)

【特許請求の範囲】  素子分離領域とこの素子分離領域に接している素子形
成領域とを有する半導体装置の製造方法において、 半導体基体の表面に酸化膜を形成する工程と、前記酸化
膜上のうちで前記素子形成領域に対応する部分に少なく
とも第1の耐酸化膜を選択的に形成する工程と、 前記第1の耐酸化膜の側部に形成した半導体層を覆う様
に第2の耐酸化膜とエッチングマスク層とを順次に積層
させる工程と、 前記エッチングマスク層を異方性エッチングして、前記
第1の耐酸化膜の側壁に対応する部分に前記エッチング
マスク層を残す工程と、 この残したエッチングマスク層をマスクにして少なくと
も前記第2の耐酸化膜をエッチングする工程と、 前記第1の耐酸化膜と前記エッチングで残した前記第2
の耐酸化膜とをマスクにして前記半導体基体を選択的に
酸化して前記素子分離領域を形成する工程とを夫々具備
する半導体装置の製造方法。
[Claims] A method for manufacturing a semiconductor device having an element isolation region and an element formation region in contact with the element isolation region, comprising: forming an oxide film on the surface of a semiconductor substrate; selectively forming at least a first oxidation resistant film in a portion corresponding to the element formation region; and a second oxidation resistant film covering the semiconductor layer formed on the side of the first oxidation resistant film. a step of sequentially stacking a film and an etching mask layer; a step of anisotropically etching the etching mask layer to leave the etching mask layer in a portion corresponding to the sidewall of the first oxidation-resistant film; etching at least the second oxidation-resistant film using the remaining etching mask layer as a mask;
and a step of selectively oxidizing the semiconductor substrate using the oxidation-resistant film as a mask to form the element isolation region.
JP63084590A 1988-04-06 1988-04-06 Manufacture of semiconductor device Pending JPH01256155A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63084590A JPH01256155A (en) 1988-04-06 1988-04-06 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63084590A JPH01256155A (en) 1988-04-06 1988-04-06 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH01256155A true JPH01256155A (en) 1989-10-12

Family

ID=13834893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63084590A Pending JPH01256155A (en) 1988-04-06 1988-04-06 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH01256155A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5397733A (en) * 1993-05-21 1995-03-14 Hyundai Electronics Industries Co., Ltd. Method for the construction of field oxide film in semiconductor device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5850404Y2 (en) * 1978-12-14 1983-11-17 松下電器産業株式会社 slide knob
JPS6382906U (en) * 1986-11-19 1988-05-31

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5850404Y2 (en) * 1978-12-14 1983-11-17 松下電器産業株式会社 slide knob
JPS6382906U (en) * 1986-11-19 1988-05-31

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5397733A (en) * 1993-05-21 1995-03-14 Hyundai Electronics Industries Co., Ltd. Method for the construction of field oxide film in semiconductor device

Similar Documents

Publication Publication Date Title
JP3923214B2 (en) Method for isolating trench element in semiconductor device
JPH10199969A (en) Manufacture of semiconductor device having trench isolating structure
US20030211730A1 (en) Method for forming contact hole in semiconductor device
JPH10223747A (en) Manufacture of semiconductor device
JPH03145730A (en) Manufacture of ic semiconductor device
JPH05283519A (en) Manufacture of semiconductor device
JPS61214446A (en) Manufacture of semiconductor device
JPS61247051A (en) Manufacture of semiconductor device
JPH01256155A (en) Manufacture of semiconductor device
JPS6242382B2 (en)
JPH0555361A (en) Semiconductor device and manufacture thereof
JP2004296754A (en) Semiconductor device and its manufacturing method
JPS61137341A (en) Semiconductor device and manufacture thereof
JPH1126569A (en) Manufacture of semiconductor device
JPH03259564A (en) Manufacture of semiconductor device
JPS59177941A (en) Manufacture of element isolation region
JPH04267336A (en) Manufacture of semiconductor device
JP2002118263A (en) Method for fabricating semiconductor device
JPH05198567A (en) Manufacture of semiconductor device
JP3232161B2 (en) Method for manufacturing semiconductor device
KR100287916B1 (en) Method for manufacturing isolation layer of semiconductor device
JPH01223741A (en) Semiconductor device and manufacture thereof
JP2001244327A (en) Method for manufacturing semiconductor device
JPS6126223B2 (en)
JPS6017929A (en) Manufacture of semiconductor device