JPH01255250A - Forming method for multilayer interconnection - Google Patents

Forming method for multilayer interconnection

Info

Publication number
JPH01255250A
JPH01255250A JP8384888A JP8384888A JPH01255250A JP H01255250 A JPH01255250 A JP H01255250A JP 8384888 A JP8384888 A JP 8384888A JP 8384888 A JP8384888 A JP 8384888A JP H01255250 A JPH01255250 A JP H01255250A
Authority
JP
Japan
Prior art keywords
wiring
layer
alloy
interconnection
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8384888A
Other languages
Japanese (ja)
Inventor
Toshio Taniguchi
谷口 敏雄
Takahiko Mizutani
水谷 隆彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP8384888A priority Critical patent/JPH01255250A/en
Publication of JPH01255250A publication Critical patent/JPH01255250A/en
Pending legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To improve aluminium electromigration and stress migration resistance, and to obtain a forming method for multilayer interconnection, of Al-Si alloy for preventing the interconnection from disconnecting by covering Al-Si alloy interconnection of a lower layer with a cap layer made of Ti or Ti compound. CONSTITUTION:After low layer aluminium alloy interconnection 5 having a cap layer 9 on its upper face made of titanium or titanium compound is formed when a multilayer interconnections are formed of aluminium alloy interconnections containing silicon as lower and upper layer interconnections, an interlayer insulating film 6 is formed on the forming face of the interconnection 5 having the layer 9 on its upper face. Then, a contact window 7 for exposing the layer 9 on the interconnection 5 is formed at the film 6, the layer 9 exposed in the window 7 is removed to immediately expose the interconnection 5 in the window 7, upper layer aluminium alloy interconnection 8 in direct contact with the interconnection 5 is formed in the window 7 on the film 6.

Description

【発明の詳細な説明】 〔概 要〕 多層配線形成方法、特にシリコン(Si)を含むアルミ
ニウム(AI)合金よりなる上層及び下層の配線を用い
て多層配線を形成する方法の改良に関し、 八Iのエレクトロマイグレーション及びストレスマイグ
レーション耐性を大幅に向上して断線の発生を防止する
Al−Si合金による多層配線の形成方法の提供を目的
とし、 下層及び上層の配線にSiを含むへ1合金配線を用いて
多層配線を形成するに際して、チタン(Ti)若しくは
Ti化合物よりなるキャップ層を上面に有する下層A1
合金配線を形成した後、該キャップ層を上面に有する下
層AI合金配線形成面上に層間絶縁膜を形成し、該層間
絶縁膜に該下層^1合金配線上のキャップ層を表出する
コンタクト窓形成し、該コンタクト窓内に表出するキャ
ップ層を除去して該コンタクト窓内に下層へ1合金配線
を直に表出させ、しかる後、該層間絶縁膜上に該コンタ
クト窓部において該下層A1合金配線に直に接する上層
へ1合金配線を形成する工程を含んで構成する。
[Detailed Description of the Invention] [Summary] Regarding the improvement of a method for forming multilayer wiring, especially a method for forming multilayer wiring using upper and lower layer wiring made of an aluminum (AI) alloy containing silicon (Si), 8I. The purpose of this study is to provide a method for forming multilayer wiring using an Al-Si alloy that greatly improves electromigration and stress migration resistance and prevents the occurrence of disconnections. When forming a multilayer wiring, the lower layer A1 has a cap layer made of titanium (Ti) or a Ti compound on the upper surface.
After forming the alloy wiring, an interlayer insulating film is formed on the lower layer AI alloy wiring formation surface having the cap layer on the upper surface, and a contact window is formed in the interlayer insulating film to expose the cap layer on the lower layer ^1 alloy wiring. The cap layer exposed in the contact window is removed to directly expose the 1-alloy wiring to the lower layer in the contact window, and then the lower layer is formed on the interlayer insulating film in the contact window. The structure includes a step of forming a 1 alloy wiring in an upper layer directly in contact with the A1 alloy wiring.

〔産業上の利用分野〕[Industrial application field]

本発明は多層配線形成方法、特にSiを含むAI合金よ
りなる上層及び下層の配線を用いて多層配線を形成する
方法の改良に関する。
The present invention relates to a method for forming multilayer wiring, particularly to an improvement in a method for forming multilayer wiring using upper and lower layer wiring made of an AI alloy containing Si.

LSI等高集積化される半導体ICにおいては、集積度
の向上及び高速化の目的によりMO3I−ランジスタの
ショートチャネル化が進んでおり、これに伴ってショー
トチャネル効果によるソース−ドレイン間耐圧の劣化を
防止するためにソース及びドレイン領域が極度に浅く形
成されるようになってきている。
In highly integrated semiconductor ICs such as LSIs, short channel MO3I transistors are being used to improve the degree of integration and increase speed. In order to prevent this, source and drain regions are becoming extremely shallow.

一方該半導体ICの配線には、抵抗が低く安価で且つ形
成が容易な純AIが主として用いられていたが、このA
Iに対するSiの固溶度が比較的大きいために、該AI
配線が接する部分のSi基匣がへ1配線に食われ、旧と
Siの界面が基板の深部側に移動するという問題があり
、前記のように半導体rcの高集積化が進んでソース・
ドレイン領域の接合が浅く形成されるようになると、上
記AI −5i界面の固溶反応によって接合が破壊され
素子特性が損なわれるという問題を生ずる。
On the other hand, pure AI, which has low resistance, is cheap, and is easy to form, has been mainly used for the wiring of semiconductor ICs;
Since the solid solubility of Si in I is relatively large, the AI
There is a problem that the Si base box in the part where the wiring contacts is eaten by the first wiring, and the interface between the old and Si moves to the deep side of the substrate.
If the junction in the drain region is formed shallowly, a problem arises in that the junction is destroyed by the solid solution reaction at the AI-5i interface and the device characteristics are impaired.

そこでAI配線とSi基板との接触部に生ずる固溶反応
を抑止するために、予めAI中にSiを1〜2%程度含
有させたAI −5i (1〜2%)合金が、上記純旧
に替わって、高集積度半導体ICの配線材料として多く
用いられるようになってきており、特にICの規模が拡
大して多層配線が形成される半導体ICにおいては、S
i面に直に接する下層の配線のみに限らず上層の配線も
共にAl−5i合金によって形成して、全配線中のSi
の含有比率を所要の値に確保し、これによって前記固溶
反応による接合破壊の防止がなされる。
Therefore, in order to suppress the solid solution reaction that occurs at the contact area between the AI wiring and the Si substrate, the AI-5i (1-2%) alloy containing approximately 1-2% Si in AI is used. S is increasingly being used as a wiring material for highly integrated semiconductor ICs instead of S.
Not only the lower layer wiring directly in contact with the i-plane, but also the upper layer wiring are formed of Al-5i alloy, and the Si in all wiring is
By ensuring the content ratio of is at a required value, joint breakdown due to the solid solution reaction can be prevented.

しかし上記のようにSiを含んだA1合金配線において
は、熱履歴や機械的応力によって固溶しているSiの析
出を生ずるという性質があり、高集積化と共に配線の微
細化が一層進んだ際には、上記Siの析出による該AI
配線の実効断面積の縮小によってエレクトロマイグレー
ションやストレスマイグレーションによる断線が発生し
易くなるという問題があり、改善が要望されている。
However, as mentioned above, A1 alloy wiring containing Si has the property of causing precipitation of solid solution Si due to thermal history and mechanical stress. In the above, the AI due to the precipitation of Si is
There is a problem in that the reduction in the effective cross-sectional area of wiring makes it easier for wire breakage to occur due to electromigration or stress migration, and improvements are desired.

〔従来の技術〕[Conventional technology]

従来の上記半導体rc等におけるAl−5i合金配線に
よる多層配線は、以下に第合図(al〜(C)を参照即
ち、不純物拡散領域2が形成された半導体基板1上に形
成した下層絶縁膜3に前記不純物拡散領域2面を表出す
るコンタクト窓4を形成した後、該下層絶縁膜3上に前
記コンタクト窓4部において前記不純物拡散領域3に接
する下層Al−5i(1〜2%)合金配線5を形成する
Conventional multi-layer wiring using Al-5i alloy wiring in the above-mentioned semiconductor RC, etc., is described below with reference to figures (al to (C)). After forming a contact window 4 exposing the surface of the impurity diffusion region 2, a lower layer Al-5i (1 to 2%) alloy is formed on the lower layer insulating film 3 in contact with the impurity diffusion region 3 at the contact window 4. Wiring 5 is formed.

第合図(bl参照 次いで気相成長手段により上記下層へ1−5i合金配線
5の形成面上に層間絶縁膜6を形成し、次いで該層間絶
縁膜6に下層Al−5i合金配線5の上面を選択的に表
出するスルーホール7を形成する。
Next, an interlayer insulating film 6 is formed on the surface on which the 1-5i alloy wiring 5 is formed in the lower layer by vapor phase growth means, and then the upper surface of the lower Al-5i alloy wiring 5 is formed on the interlayer insulating film 6. A selectively exposed through hole 7 is formed.

第合図(C)参照 そして次ぎに核層間絶縁膜6上にスパッタ法等により上
層の配線材料であるAl−3i(1〜5%)合金膜を形
成し、通常のりソグラフィ技術により該Al−5i合金
膜をパターニングして核層間絶縁膜ll上に、スルーホ
ール7を介して下層AI −5i合金配’!1A 5上
に接続する上層Al−3i合金配線8を形成する方法で
あった。
Refer to Figure 1 (C). Next, an Al-3i (1 to 5%) alloy film, which is an upper layer wiring material, is formed on the core interlayer insulating film 6 by sputtering or the like, and the Al-5i The alloy film is patterned and the lower layer AI-5i alloy is deposited on the core interlayer insulating film ll through the through hole 7! This was a method of forming an upper layer Al-3i alloy wiring 8 connected to the 1A 5.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし上記従来方法によるAl−5i合金よりなる多層
配線構造においては、該配線形成後に受ける熱履歴や機
械的応力の履歴によって該AI −5i合金配線中に固
溶しているSiの結晶状析出を生じ、該配線における電
導及び耐応力に寄与するAI −5i合金の実効断面積
が減少し、電流密度の増大によって生ずるAI原子のエ
レクトロマイグレーション現象や、反復してかかる応力
によって生ずる旧原子のストレスマイグレーション現象
等によって該多層配線が断線を生じ易くなるという問題
が生じていた。
However, in the multilayer wiring structure made of Al-5i alloy formed by the above-mentioned conventional method, crystalline precipitation of Si dissolved in the Al-5i alloy wiring occurs due to the thermal history and mechanical stress history received after the wiring is formed. As a result, the effective cross-sectional area of the AI-5i alloy, which contributes to electrical conductivity and stress resistance in the wiring, decreases, resulting in electromigration of AI atoms caused by increased current density and stress migration of old atoms caused by repeated stress. A problem has arisen in that the multilayer wiring is susceptible to disconnection due to such phenomena.

そのため従来、A1のマイグレーション(移動)を抑え
る効果のある銅(Cu)を0.1〜1%程度上記Al−
5i合金に添加したAI −5i−Cu合金も多層配線
の材料として試みられたが、上記マイグレーションによ
る断線を防止する効果が充分であるとはいえなかった。
Therefore, conventionally, about 0.1 to 1% of copper (Cu), which has the effect of suppressing the migration (movement) of A1, was added to the Al-
An AI-5i-Cu alloy added to the 5i alloy was also tried as a material for multilayer wiring, but it could not be said to be sufficiently effective in preventing disconnection due to the migration.

そこで本発明は、AIのエレクトロマイグレーション及
びストレスマイグレーション耐性を大幅に向上して断線
の発生を防止するAI −3i合金による多層配線の形
成方法の提供を目的とする。
Therefore, an object of the present invention is to provide a method for forming a multilayer wiring using an AI-3i alloy, which greatly improves the electromigration and stress migration resistance of AI and prevents the occurrence of disconnection.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題は、下層及び上層の配線にSiを含む11合金
配線を用いて多層配線を形成するに際して、Ti若しく
はTi化合物よりなるキャンプ層を上面に有する下層A
1合金配線を形成した後、該キャップ層を上面に有する
下層へ1合金配線形成面上に層間絶縁膜を形成し、該層
間絶縁膜に該下層At合金配線上のキャップ層を表出す
るコンタクト窓形成し、該コンタクト窓内に表出するキ
ャップ層を除去して該コンタクト窓内に下層A1合金配
線を直に表出させ、しかる後、該層間絶縁膜上に該コン
タクト窓部において該下層前合金配線に直に接する上層
A1合金配線を形成する工程を含む本発明による多層配
線形成方法によって解決される。
The above problem is solved when forming a multilayer wiring using 11 alloy wiring containing Si for the lower layer and upper layer wiring.
After forming the No. 1 alloy wiring, an interlayer insulating film is formed on the No. 1 alloy wiring forming surface of the lower layer having the cap layer on the upper surface, and a contact is formed on the interlayer insulation film to expose the cap layer on the lower At alloy wiring. A window is formed, the cap layer exposed in the contact window is removed to expose the lower layer A1 alloy wiring directly in the contact window, and then the lower layer A1 alloy wiring is formed on the interlayer insulating film in the contact window portion. This problem is solved by a method of forming a multilayer wiring according to the present invention, which includes a step of forming an upper layer A1 alloy wiring in direct contact with a previous alloy wiring.

〔作 用〕[For production]

即ち本発明の多層配線形成方法においては、特に微細化
が図られる下層のAl−5i合金配線の上面にTi若し
くはTi化合物よりなるキャップ層を被着して該Al−
5i配線中をエレクトロマイグレーション或いはストレ
スマイグレーションによってAI原子が移動するのを押
さえ込み、該配線のマイグレーション耐性を向上して断
線を防止する。
That is, in the multilayer wiring forming method of the present invention, a cap layer made of Ti or a Ti compound is deposited on the upper surface of the lower layer Al-5i alloy wiring, which is particularly intended to be miniaturized.
The movement of AI atoms in the 5i wiring due to electromigration or stress migration is suppressed to improve the migration resistance of the wiring and prevent disconnection.

そして更に上層の配線とのコンタクト部の上記キャップ
層を選択的に除去することによって、該キャップ層配設
に伴う配線層間のコンタクト抵抗の増大を防止する。
Further, by selectively removing the cap layer at the contact portion with the upper layer wiring, an increase in contact resistance between the wiring layers due to the provision of the cap layer is prevented.

かくてマイグレーション耐性が大きくて断線しに<<、
且つ従来のAl−3i合金多層配線と同等の低い配線層
間コンタクト抵抗を有するAI −Si合金多層配線が
形成される。
In this way, migration resistance is high and wire breakage does not occur.
Moreover, an AI--Si alloy multilayer interconnection having a low interlayer contact resistance equivalent to that of a conventional Al-3i alloy multilayer interconnection is formed.

〔実施例〕〔Example〕

以下本発明を一実施例について、第1図(al〜(el
に示す工程断面図を参照して具体的に説明する。
The present invention will be described below with reference to FIGS.
This will be specifically explained with reference to the process cross-sectional diagram shown in FIG.

第1図(al参照 本発明の方法によりAl−3i合金による多層配線を形
成するに際しては、例えば不純物拡散領域2が形成され
ている半導体基板1上に、従来通り熱酸化或いは気相成
長手段により単層若しくは複数層よりなる厚さ0.5〜
1μm程度の下層絶縁膜3を形成し、次いで従来のフォ
トリソグラフィ技術により該下層絶縁膜3に上記不純物
拡散領域2を表出するコンタクト窓4を形成し、次いで
該基板上に従来通りスパッタリング法等により厚さ0.
5〜1μm程度の下層の例えばAl−5i(1〜2%)
合金膜105を形成し、次いで該Al−5i(1〜2%
)合金膜105上にスパッタリング法により例えば厚さ
100〜1000人程度の窒化チタン(TiN)キャッ
プ層9を形成する。
FIG. 1 (see al) When forming a multilayer wiring made of Al-3i alloy by the method of the present invention, for example, the semiconductor substrate 1 on which the impurity diffusion region 2 is formed is formed by conventional thermal oxidation or vapor growth means. Single layer or multiple layers, thickness 0.5~
A lower insulating film 3 of about 1 μm is formed, and then a contact window 4 exposing the impurity diffusion region 2 is formed in the lower insulating film 3 by conventional photolithography, and then a conventional sputtering method or the like is formed on the substrate. The thickness is 0.
For example, Al-5i (1-2%) in the lower layer of about 5-1 μm
An alloy film 105 is formed, and then the Al-5i (1 to 2%
) A titanium nitride (TiN) cap layer 9 having a thickness of, for example, about 100 to 1000 layers is formed on the alloy film 105 by sputtering.

第1図(b)参照 次いで通常のフォトプロセスにより該TiNキャフプN
109上に下層配線に対応するレジストパターン(図示
せず)を形成し、該レジストパターンをマスクにし例え
ば塩素系のガスによるリアクティブイオンエツチング(
RIE)処理によりTiNキャップ層9と下層Al−5
i(1〜2%)合金膜105をパターニングして、下層
絶縁膜3上に前記コンタクト窓4部において不純物拡散
領域2に接し且つ上面にTiNキャップ層9を有する下
層AI −3i(1〜2%)合金配線5を形成する。
Referring to FIG. 1(b), the TiN cap N is then
A resist pattern (not shown) corresponding to the lower layer wiring is formed on the 109, and using the resist pattern as a mask, reactive ion etching (
TiN cap layer 9 and lower layer Al-5 are formed by RIE) process.
i (1 to 2%) alloy film 105 is patterned to form a lower layer AI-3i (1 to 2 %) Form alloy wiring 5.

第1図(C)参照 次いで該基板−りに従来通り気相成長により燐珪酸ガラ
ス(PSG)等からなる厚さ0.5〜1μm程度の層間
絶縁膜6を形成し、次いでエツチング手段に3弗化メタ
ン(CIIFl)によるR11’i処理を用いる従来の
フォトリソグラフィ技術により上記層間絶縁膜6に下層
配線5上のTiNキャップ層9を表出するスルーポール
7を形成する。
Referring to FIG. 1(C), an interlayer insulating film 6 made of phosphosilicate glass (PSG) or the like with a thickness of about 0.5 to 1 μm is then formed on the substrate by vapor phase growth in the conventional manner. A through pole 7 exposing the TiN cap layer 9 on the lower wiring 5 is formed in the interlayer insulating film 6 by conventional photolithography using R11'i treatment using methane fluoride (CIIFl).

第1図(d)参照 そして引続き上記C旺、によるRICE処理によるオー
バエツチングを行って上記スルーホール7内に表出する
TfNキャップN9を除去し、該スルーポール7内に下
層Al−5i(1〜2%)合金配線5の上面を直に表出
させる。
Referring to FIG. 1(d), the TfN cap N9 exposed in the through hole 7 is removed by overetching by the RICE process using the above-mentioned carbon dioxide, and the lower layer Al-5i (1 ~2%) The upper surface of the alloy wiring 5 is directly exposed.

第1図(nl参照 次いで従来通り上記層間絶縁Hり6を有する基板上にス
パッタリング法等により厚さ1μm程度の上層のAl−
5i(1〜2%)合金膜を形成し、エツチング手段に塩
素系のガスによるRIIE処理を用いる通常のフォトリ
ソグラフィにより該上層のAl−3i(1〜2%)合金
膜をパターニングし、該層間絶縁膜6上に前記スルーポ
ール7部において下層Al−3i(1〜2%)合金配線
5面に直に接する上qAI  St (L 〜2 %)
 合金膜vA8を形成し、本発明に係るAl−3i合金
多層配線が完成する。
FIG. 1 (see nl) Then, as before, an upper layer of Al--3 with a thickness of about 1 μm is deposited on the substrate having the interlayer insulation layer 6 by sputtering or the like.
5i (1-2%) alloy film is formed, and the upper Al-3i (1-2%) alloy film is patterned by normal photolithography using RIIE treatment using chlorine gas as an etching means, and the interlayer Al-3i (1-2%) alloy film is patterned. On the insulating film 6, there is an upper qAI St (L ~ 2%) directly in contact with the lower layer Al-3i (1~2%) alloy wiring 5 surface at the through pole 7 portion.
An alloy film vA8 is formed to complete the Al-3i alloy multilayer wiring according to the present invention.

上記実施例に示したように本発明に係るAt−3i合金
多層配線においては特に微細化され、AIのマイグレー
ションが発生し易い下層のAI −5i合金配線5の上
面には例えばTi化合物であるTiNよりなるキャップ
層9が被着されへ1原子の移動を抑止して八1のマイグ
レーションによる断線が防止され、且つスルーホール7
内の上層At−5i合金配線8とのコンタクト部のキャ
ップ層9は選択的に除去されて下層のへ1−5i合金配
線5と上層のAI −3i合金配線8とが直に接続せし
められて低いコンタクト抵抗が維持される。
As shown in the above embodiments, in the At-3i alloy multilayer wiring according to the present invention, the upper surface of the lower layer AI-5i alloy wiring 5, which is particularly miniaturized and where AI migration is likely to occur, is coated with, for example, TiN, which is a Ti compound. A cap layer 9 consisting of the through hole 7 is deposited to suppress the migration of one atom to prevent disconnection due to migration of the through hole 7.
The cap layer 9 at the contact portion with the upper layer At-5i alloy wire 8 is selectively removed, and the lower layer At-5i alloy wire 5 and the upper layer AI-3i alloy wire 8 are directly connected. Low contact resistance is maintained.

なお、上層のAl−5i合金配線にもAIマイグレーシ
ョン発生のおそれがある場合は、上層Al −3i合金
配線上にも勿論Ti若しくはTi化合物よりなる上記実
施例同様のキャップ層が形成される。
If there is a possibility that AI migration may occur in the upper layer Al-5i alloy wiring, a cap layer made of Ti or a Ti compound and similar to the above embodiment is of course formed on the upper layer Al-3i alloy wiring.

〔発明の効果〕〔Effect of the invention〕

以上説明のように本発明によれば、AI −3i合金よ
りなる多層配線のAIのマイグレーションによる断線が
防止され、且つ配線層間のコンタクト抵抗を低い値に維
持することができる。
As described above, according to the present invention, disconnection due to AI migration in a multilayer wiring made of an AI-3i alloy can be prevented, and the contact resistance between wiring layers can be maintained at a low value.

従って本発明はAl−5i合金による多層配線を用いる
半導体rc等の性能及び信顛性の向上に有効である。
Therefore, the present invention is effective in improving the performance and reliability of semiconductor RCs and the like that use multilayer wiring made of Al-5i alloy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(al〜(81は本発明の一実施例の工程断面図
、第2図(8)〜(C+は従来方法の工程断面図である
。 図において、 lは半導体基板、 2は不純物拡散領域、 3は下層絶縁膜、 4はコンタクト窓、 5は下層Al−3i(1〜2%)合金配線、6は層間絶
縁膜、 7はスルーホール、 8は上層旧−5i(1〜2%)合金配線、9はTiNキ
ャンプ層、 105は下層のAI −5i (1〜2%)合金膜を示
す。
FIG. 1 (al~(81) is a process cross-sectional view of an embodiment of the present invention, FIG. 2 (8)~(C+ is a process cross-sectional view of a conventional method. In the figure, l is a semiconductor substrate, 2 is an impurity 3 is a lower layer insulating film, 4 is a contact window, 5 is a lower layer Al-3i (1~2%) alloy wiring, 6 is an interlayer insulating film, 7 is a through hole, 8 is an upper layer old-5i (1~2%) %) alloy wiring, 9 indicates the TiN camp layer, and 105 indicates the lower layer AI-5i (1-2%) alloy film.

Claims (1)

【特許請求の範囲】  下層及び上層の配線にシリコンを含むアルミニウム合
金配線を用いて多層配線を形成するに際して、 チタン若しくはチタン化合物よりなるキャップ層を上面
に有する下層アルミニウム合金配線を形成した後、 該キャップ層を上面に有する下層アルミニウム合金配線
形成面上に層間絶縁膜を形成し、 該層間絶縁膜に該下層アルミニウム合金配線上のキャッ
プ層を表出するコンタクト窓形成し、該コンタクト窓内
に表出するキャップ層を除去して該コンタクト窓内に下
層アルミニウム合金配線を直に表出させ、 しかる後、該層間絶縁膜上に該コンタクト窓部において
該下層アルミニウム合金配線に直に接する上層アルミニ
ウム合金配線を形成する工程を含むことを特徴とする多
層配線形成方法。
[Claims] When forming a multilayer wiring using aluminum alloy wiring containing silicon for the lower layer and upper layer wiring, after forming the lower layer aluminum alloy wiring having a cap layer made of titanium or a titanium compound on the upper surface, An interlayer insulating film is formed on a lower aluminum alloy wiring formation surface having a cap layer on the upper surface, a contact window is formed in the interlayer insulating film to expose the cap layer on the lower aluminum alloy wiring, and a contact window is formed in the interlayer insulating film to expose the cap layer on the lower aluminum alloy wiring. The cap layer to be exposed is removed to directly expose the lower aluminum alloy wiring within the contact window, and then the upper aluminum alloy wiring is placed on the interlayer insulating film in direct contact with the lower aluminum alloy wiring at the contact window. A method for forming multilayer wiring, the method comprising the step of forming wiring.
JP8384888A 1988-04-05 1988-04-05 Forming method for multilayer interconnection Pending JPH01255250A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8384888A JPH01255250A (en) 1988-04-05 1988-04-05 Forming method for multilayer interconnection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8384888A JPH01255250A (en) 1988-04-05 1988-04-05 Forming method for multilayer interconnection

Publications (1)

Publication Number Publication Date
JPH01255250A true JPH01255250A (en) 1989-10-12

Family

ID=13814121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8384888A Pending JPH01255250A (en) 1988-04-05 1988-04-05 Forming method for multilayer interconnection

Country Status (1)

Country Link
JP (1) JPH01255250A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0287555A (en) * 1988-09-26 1990-03-28 Hitachi Ltd Semiconductor device
US5082801A (en) * 1989-03-10 1992-01-21 Fujitsu Limited Process for producing multilayer interconnection for semiconductor device with interlayer mechanical stress prevention and insulating layers
JPH04122050A (en) * 1990-09-12 1992-04-22 Mitsubishi Electric Corp Semiconductor device
JPH0574951A (en) * 1991-09-18 1993-03-26 Nec Corp Manufacture of semiconductor device
US5635763A (en) * 1993-03-22 1997-06-03 Sanyo Electric Co., Ltd. Semiconductor device having cap-metal layer
US5637534A (en) * 1992-12-25 1997-06-10 Kawasaki Steel Corporation Method of manufacturing semiconductor device having multilevel interconnection structure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5186985A (en) * 1975-01-29 1976-07-30 Hitachi Ltd TASOHAISENKOZONOSEIHO
JPS5572059A (en) * 1978-11-25 1980-05-30 Toshiba Corp Preparation of semiconductor device
JPS5956743A (en) * 1982-09-27 1984-04-02 Toshiba Corp Manufacture of semiconductor device
JPS59148350A (en) * 1983-02-14 1984-08-25 Fujitsu Ltd Manufacture of semiconductor device
JPS6343349A (en) * 1986-08-08 1988-02-24 Matsushita Electric Ind Co Ltd Multilayer thin-film interconnection

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5186985A (en) * 1975-01-29 1976-07-30 Hitachi Ltd TASOHAISENKOZONOSEIHO
JPS5572059A (en) * 1978-11-25 1980-05-30 Toshiba Corp Preparation of semiconductor device
JPS5956743A (en) * 1982-09-27 1984-04-02 Toshiba Corp Manufacture of semiconductor device
JPS59148350A (en) * 1983-02-14 1984-08-25 Fujitsu Ltd Manufacture of semiconductor device
JPS6343349A (en) * 1986-08-08 1988-02-24 Matsushita Electric Ind Co Ltd Multilayer thin-film interconnection

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0287555A (en) * 1988-09-26 1990-03-28 Hitachi Ltd Semiconductor device
US5082801A (en) * 1989-03-10 1992-01-21 Fujitsu Limited Process for producing multilayer interconnection for semiconductor device with interlayer mechanical stress prevention and insulating layers
JPH04122050A (en) * 1990-09-12 1992-04-22 Mitsubishi Electric Corp Semiconductor device
JPH0574951A (en) * 1991-09-18 1993-03-26 Nec Corp Manufacture of semiconductor device
US5637534A (en) * 1992-12-25 1997-06-10 Kawasaki Steel Corporation Method of manufacturing semiconductor device having multilevel interconnection structure
US5952723A (en) * 1992-12-25 1999-09-14 Kawasaki Steel Corporation Semiconductor device having a multilevel interconnection structure
US5635763A (en) * 1993-03-22 1997-06-03 Sanyo Electric Co., Ltd. Semiconductor device having cap-metal layer
US5895265A (en) * 1993-03-22 1999-04-20 Sanyo Electric Co., Ltd. Semiconductor device having cap-metal layer

Similar Documents

Publication Publication Date Title
US5266519A (en) Method for forming a metal conductor in semiconductor device
JPH01202841A (en) Semiconductor integrated circuit device and manufacture thereof
JPH01255250A (en) Forming method for multilayer interconnection
US5759912A (en) Method of manufacturing a semiconductor device having multi-layered wiring without hillocks at the insulating layers
JPS618971A (en) Semiconductor device
JPH10284437A (en) Method for forming metal interconnection layer of semiconductor device
JPH05121727A (en) Semiconductor device and manufacturing method thereof
JPH0587144B2 (en)
JPH0621236A (en) Semiconductor device and manufacture thereof
KR100415095B1 (en) Method for manufacturing semiconductor device
JPS59189657A (en) Manufacture of semiconductor device
JPH05347358A (en) Semiconductor device and manufacture thereof
JP2714847B2 (en) Method for manufacturing semiconductor device
JPS63299250A (en) Manufacture of semiconductor device
JP2998454B2 (en) Method for manufacturing semiconductor device
KR100247645B1 (en) Method for forming metal interconnection layer of semiconductor device
JPH02271628A (en) Semiconductor device
JPS61120442A (en) Semiconductor device
JPH03262125A (en) Semiconductor device
JPH0547764A (en) Semiconductor device and its manufacture
JPH03250627A (en) Semiconductor device and manufacture thereof
JPS6216521A (en) Manufacture of semiconductor device
JP3533022B2 (en) Semiconductor integrated circuit device and method of manufacturing the same
JPH0341732A (en) Manufacture of semiconductor device
JPH10163323A (en) Manufacture of semiconductor device