JPH01246863A - Semiconductor device and manufacture thereof - Google Patents
Semiconductor device and manufacture thereofInfo
- Publication number
- JPH01246863A JPH01246863A JP63075204A JP7520488A JPH01246863A JP H01246863 A JPH01246863 A JP H01246863A JP 63075204 A JP63075204 A JP 63075204A JP 7520488 A JP7520488 A JP 7520488A JP H01246863 A JPH01246863 A JP H01246863A
- Authority
- JP
- Japan
- Prior art keywords
- thin film
- gate insulating
- channel section
- insulating film
- dopant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 29
- 238000004519 manufacturing process Methods 0.000 title claims description 14
- 239000010409 thin film Substances 0.000 claims abstract description 36
- 238000000034 method Methods 0.000 claims abstract description 21
- 239000010408 film Substances 0.000 claims abstract description 20
- 239000000758 substrate Substances 0.000 claims abstract description 17
- 238000000151 deposition Methods 0.000 claims abstract description 15
- 230000005669 field effect Effects 0.000 claims abstract description 8
- 238000004518 low pressure chemical vapour deposition Methods 0.000 claims description 4
- 238000005268 plasma chemical vapour deposition Methods 0.000 claims description 4
- 238000005229 chemical vapour deposition Methods 0.000 claims description 3
- 238000000206 photolithography Methods 0.000 abstract description 9
- 238000005468 ion implantation Methods 0.000 abstract description 8
- 239000002184 metal Substances 0.000 abstract description 6
- 229910052751 metal Inorganic materials 0.000 abstract description 6
- 238000010276 construction Methods 0.000 abstract 1
- 230000000694 effects Effects 0.000 description 10
- 239000002019 doping agent Substances 0.000 description 9
- 239000011521 glass Substances 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- 238000005530 etching Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000003213 activating effect Effects 0.000 description 1
- 238000001505 atmospheric-pressure chemical vapour deposition Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 210000003127 knee Anatomy 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 229910021332 silicide Inorganic materials 0.000 description 1
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000002887 superconductor Substances 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
Landscapes
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
- Thin Film Transistor (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野1
本発明は液晶デイスプレィやエレクトロクロミックデイ
スプレィ等のフラットデイスプレィやイメージセンサや
SOI素子(Sem1conductorqn In5
ulator)等に用いる半導体装置及びその製造方法
に関する。[Detailed Description of the Invention] [Industrial Application Field 1] The present invention is applicable to flat displays such as liquid crystal displays and electrochromic displays, image sensors, and SOI devices.
The present invention relates to a semiconductor device used in a device such as an ulator, and a method for manufacturing the same.
〔従来の技術]
従来、例えばConference Record o
f the1985 International D
isplay Re5earchConference
、 P、 9−13 (1985)のように、絶縁性
基板上にCMO5構造(相補型MO3構造)を形成する
方法として、イオン注入法を用いるのが一般的であった
。[Prior art] Conventionally, for example, a conference record
f the1985 International D
isplayRe5earchConference
, P. 9-13 (1985), it has been common to use ion implantation as a method for forming a CMO5 structure (complementary MO3 structure) on an insulating substrate.
〔発明が解決しようとする課B]
しかし前述の従来技術は、イオン注入法を用いてドーパ
ントの導入を行うため、高価なイオン注入装置の使用が
不可欠であり、また処理能力も小さい。[Problem B to be Solved by the Invention] However, in the above-mentioned conventional technology, the dopant is introduced using an ion implantation method, so it is essential to use an expensive ion implantation device, and the processing capacity is also small.
また、イオン注入後にドーパントを活性化するために高
温に保持する必要があるために、絶縁性基板として高価
な石英ガラスの使用が不可欠であるという欠点を有して
いた。Furthermore, since it is necessary to maintain the temperature at a high temperature in order to activate the dopant after ion implantation, it has the disadvantage that expensive quartz glass must be used as the insulating substrate.
また、絶縁性基板上に素子が形成されているためにCM
OS素子、例えばインパーク(反転増幅器)の電源供給
電極間の寄生容量は小さく、電気的なノイズに弱かった
。又、この対策のための容量素子を新たに作ることは素
子の集積度を低下させ、工程を複雑にすることになる。In addition, since the elements are formed on an insulating substrate, CM
The parasitic capacitance between the power supply electrodes of an OS element, such as an impark (inverting amplifier), is small and is susceptible to electrical noise. Furthermore, creating a new capacitive element for this purpose lowers the degree of integration of the element and complicates the process.
そこで、本発明は以上の欠点を解決するもので、その目
的とするところは、安価なガラス基板を絶縁性基板とし
て使用可能で、量産性に冨む製造方法で形成可能で、電
気的なノイズに対して強いCMO3構造を提供する点に
ある。Therefore, the present invention is intended to solve the above-mentioned drawbacks.The purpose of the present invention is to make it possible to use an inexpensive glass substrate as an insulating substrate, to form it by a manufacturing method that is suitable for mass production, and to reduce electrical noise. The point is that it provides a strong CMO3 structure.
又、他の目的は上記の目的を達成するための、信穎性の
窩い製造方法を提供する点にある。Another object is to provide a reliable manufacturing method for achieving the above object.
[課題を解決するための手段1
(1)、本発明の半導体装置は絶縁性基板上に設置され
たNチャンネル電界効果型薄膜トランジスタとPチャン
ネル電界効果型薄膜トランジスタがゲート電極を共有し
、少なくともその一部が重り合う様に構成された構造を
含むことを特徴とする。[Means for Solving the Problems 1 (1) In the semiconductor device of the present invention, an N-channel field-effect thin film transistor and a P-channel field-effect thin film transistor disposed on an insulating substrate share a gate electrode, and at least one of them shares a gate electrode. It is characterized by including a structure configured such that the parts overlap.
(2)、本発明の製造方法は第1項記載の半導体装置の
構成要素であるN型半導体薄膜、P型半導体薄膜を形成
する製膜方法として減圧CVD法、常圧CVD法、プラ
ズマCVD法等のデポジション法を用いることを特徴と
する。(2) The manufacturing method of the present invention includes a low pressure CVD method, an ordinary pressure CVD method, and a plasma CVD method as a film forming method for forming an N-type semiconductor thin film and a P-type semiconductor thin film that are constituent elements of the semiconductor device described in item 1. It is characterized by using a deposition method such as
[実 施 例]
第1図は本発明による構造及び製造方法を用いたl実施
例として、インパーク(反転増幅器)を示したもので、
(a)は上視図、(b)は(a)のAA′における断面
図である。[Embodiment] FIG. 1 shows an impark (inverting amplifier) as an embodiment using the structure and manufacturing method according to the present invention.
(a) is a top view, and (b) is a sectional view taken along line AA' in (a).
絶縁性基板lの上にN型半導体からなるNチャンネル電
界効果型薄膜トランジスタ(NchTFT)のドレイン
電極部2、ソース電極部3が形成されている。画電極部
2.3間を結ぶ様にドーパントを含まない半導体薄膜に
よりチャンネル部4が形成されている。その上部にはゲ
ート絶縁膜5が形成されており、さらにその上部には、
N型又はP型の半導体、又は高融点金属より成るゲート
電極6が形成されている。さらにその上部に前記したゲ
ート絶縁膜とは別のゲート絶縁膜7が形成されている。A drain electrode part 2 and a source electrode part 3 of an N-channel field effect thin film transistor (NchTFT) made of an N-type semiconductor are formed on an insulating substrate l. A channel section 4 is formed of a semiconductor thin film containing no dopant so as to connect between the picture electrode sections 2 and 3. A gate insulating film 5 is formed on top of it, and further on top of it,
A gate electrode 6 made of an N-type or P-type semiconductor or a high-melting point metal is formed. Furthermore, a gate insulating film 7 different from the gate insulating film described above is formed on top of the gate insulating film.
その上部にP型半導体からなるPチャンネル電界効果型
薄膜トランジスタ(PchTFT)のドレイン電極部8
とソース電極部9が形成され、画電極8.9間を結ぶ様
にドーパントを含まない半導体薄膜によりチャンネル部
lOが形成されている。金属配線12.13.14.1
5によりコンタクトホール11を通じて各電極間を結ぶ
ことにより、CMOSインバータが構成されている。A drain electrode portion 8 of a P-channel field effect thin film transistor (PchTFT) made of a P-type semiconductor is disposed on the top thereof.
and a source electrode portion 9 are formed, and a channel portion lO is formed of a semiconductor thin film containing no dopant so as to connect between the picture electrodes 8 and 9. Metal wiring 12.13.14.1
A CMOS inverter is constructed by connecting each electrode through a contact hole 11.
本発明によるCMOSインパークの構造の特徴はゲート
電極部6がNchTFTとPchTFTの両方のTPT
のゲート電極となっている点である。The feature of the structure of the CMOS Impark according to the present invention is that the gate electrode part 6 is TPT of both Nch TFT and Pch TFT.
This is the point where the gate electrode is used.
又、別の特徴はNchTFTのソース電極部3とPch
TFTのソース電極部9及び2つのゲート絶縁膜5.7
からなる容量が作られている点である。Another feature is that the source electrode part 3 of the Nch TFT and the Pch
TFT source electrode section 9 and two gate insulating films 5.7
The point is that a capacity consisting of is created.
第1図に示した構造からなる半導体装置の製造工程の1
例の1部を第2図に示して、さらに詳しく説明する。1 of the manufacturing process of a semiconductor device having the structure shown in Fig. 1
A portion of an example is shown in FIG. 2 and will be described in more detail.
まず絶縁性基板1に減圧CVD法、常圧CVD法、プラ
ズマCVD法等のデポジション法を用いてN型S1薄膜
を付着させ、フォトリソグラフィー法を用いて該薄膜を
島状に加工し、NchTFTのドレイン電極部2及びソ
ース電極部3を形成する。(第2図a)
次にNchTFTのチャンネル部4を形成するために、
前記デポジション法を用いて、ドーパントを含まないS
i薄膜を付着させ、フォトリソグラフィー法を用いる。First, an N-type S1 thin film is deposited on an insulating substrate 1 using a deposition method such as a low pressure CVD method, an ordinary pressure CVD method, or a plasma CVD method, and the thin film is processed into an island shape using a photolithography method. A drain electrode portion 2 and a source electrode portion 3 are formed. (Fig. 2a) Next, in order to form the channel part 4 of the Nch TFT,
Using the above deposition method, dopant-free S
i Deposit the thin film and use photolithography method.
(第2図b)
次にゲート絶縁膜5となるS i O2膜を前記デポジ
ション法を用いて形成する。さらに前記デポジション法
を用いてN型Si薄膜又はP型S iR膜を付着させる
か、又はCr、Co、Mo、Ni、Ta、Ti、W等の
高融点金属又はシリサイドをスパッタリング法等により
付着させ、フォトリソグラフィー法を用いてゲート電極
6を形成する。(第2図C)
以上の工程でNchTFTが構成される。以下の工程で
はPchTFTが構成されるが、本発明の特徴として前
工程(C)で形成したゲート電極6がそのまま以下の工
程で構成されるPchTFTのゲート電極となっている
。(FIG. 2b) Next, a SiO2 film which will become the gate insulating film 5 is formed using the deposition method described above. Furthermore, an N-type Si thin film or a P-type SiR film is deposited using the above deposition method, or a high-melting point metal such as Cr, Co, Mo, Ni, Ta, Ti, W, or silicide is deposited by a sputtering method or the like. Then, a gate electrode 6 is formed using a photolithography method. (FIG. 2C) An Nch TFT is constructed through the above steps. A PchTFT is constructed in the following steps, and a feature of the present invention is that the gate electrode 6 formed in the previous step (C) serves as the gate electrode of the PchTFT that is constructed in the following steps.
まず前記工程(a)〜(c)で製造したNchTFTの
上にゲート絶縁膜7を前記デポジション法で形成する。First, the gate insulating film 7 is formed by the deposition method on the Nch TFT manufactured in the steps (a) to (c).
(第2図d)
次に前記デポジション法を用いてP型Si薄膜を付着し
、フォトリソグラフィー法を用いて該薄膜を加工し、P
chTFTのドレイン電極部8、ソース電極部9を形成
する。(第2図e)前工程で形成した絶縁膜7はこの工
程で以下の様な役割りをはたす。(Fig. 2 d) Next, a P-type Si thin film is deposited using the deposition method, and the thin film is processed using a photolithography method.
A drain electrode portion 8 and a source electrode portion 9 of the chTFT are formed. (FIG. 2e) The insulating film 7 formed in the previous step plays the following role in this step.
(I)、前記デポジション法を用いてP型Si薄膜を付
着させる際に、N型Si薄膜中にP型ドーパントが、P
型Si薄膜中にN型ドーパントが相互拡散することを防
止する働きをし、相互拡散によるN型Si薄膜、P型S
i薄膜の高抵抗化を防ぐことが可能になる。(I) When depositing a P-type Si thin film using the above deposition method, a P-type dopant is added to the N-type Si thin film.
It functions to prevent interdiffusion of N-type dopants in the Si thin film, and the N-type Si thin film and P-type S dopant due to interdiffusion.
It becomes possible to prevent the resistance of the i-thin film from increasing.
(II)、P型Si薄膜をフォトリソグラフィー法によ
り加工する際に、エツチングストッパーとして働き、大
面積基板全面で安定したエツチングを行うことが可能と
なる。(II) When processing a P-type Si thin film by photolithography, it acts as an etching stopper, making it possible to perform stable etching over the entire surface of a large-area substrate.
(Ill)、基板の大面積化が容易である点が、ガラス
基板を用いる理由の1つであるが、(I)、(II)の
効果により安定して、大面積にわたりTPTを形成でき
、ガラス基板を用いることが可能になる。(Ill) One of the reasons for using a glass substrate is that it is easy to increase the area of the substrate, but due to the effects of (I) and (II), TPT can be stably formed over a large area. It becomes possible to use a glass substrate.
第2図eで形成された該ソース電極部9と第2図aで形
成された該ソース電極部3と2つのゲート絶縁膜5.7
により容量が構成されている。The source electrode portion 9 formed in FIG. 2e, the source electrode portion 3 formed in FIG. 2a, and the two gate insulating films 5.7
The capacity is made up of:
次の工程で前記デポジション法を用いて付着させたドー
パントを含まないSi薄膜をフォトリソグラフィー法を
用い加工しチャンネル部10を得ることによりPchT
FTも構成される。In the next step, the dopant-free Si thin film deposited using the deposition method is processed using the photolithography method to obtain the channel portion 10.
FT is also configured.
以上の工程で共通のゲート電極を持ったNchT F’
TとPchTFTが構成された0次に所定の位置にコン
タクトホール11をフォトリソグラフィー法により形成
した後にスパッタリング法により付着させた金属薄膜を
フォトリソグラフィー法により加工した配線12.13
.14を形成することによりNchTFTとPchTF
Tを電気的に形成し、第1図に示したインバータを得る
。NchT F' with a common gate electrode in the above process
Wiring 12.13 made by forming a contact hole 11 at a predetermined position in the 0th order where T and Pch TFTs are formed by photolithography, and then processing a metal thin film deposited by sputtering by photolithography.
.. NchTFT and PchTF by forming 14
T is electrically formed to obtain the inverter shown in FIG.
尚、以上の製造工程では、PchTFTがNchTFT
の上部に構成されているが、逆の順に構成されても同様
な効果を示すのは明らかである。In addition, in the above manufacturing process, the PchTFT is replaced by the NchTFT.
It is clear that the same effect can be obtained even if the structure is arranged in the reverse order.
又、ゲート絶縁膜として5iOiを他の方法、例えばス
パッタリング法を用いて形成してもかまわないし、Si
O□以外の絶縁性物質を用いてもかまわない。Furthermore, 5iOi may be formed as the gate insulating film using other methods, such as sputtering, or Si
Insulating substances other than O□ may be used.
さらに、Si薄膜を半導体として用いた例を示したがP
型及びN型の半導体が前記デポジションによって形成で
きる化合物、例えばGe等を用いてもかまわない。Furthermore, although we have shown an example of using a Si thin film as a semiconductor, P
It is also possible to use a compound such as Ge, which can form a type and N type semiconductor through the deposition.
又、配線として、金属以外でも十分率さな抵抗を有する
半導体、超伝導体等を用いても同様な効果を示すことは
明らかである。Furthermore, it is clear that the same effect can be obtained even if a material other than metal, such as a semiconductor or superconductor having a sufficiently high resistance, is used as the wiring.
第1図に示したCMOSインバータの等価図を第3図に
示した。NchTFTのドレイン電極部2とPchTF
Tのドレイン電極部8の間に容量が付加されているのが
特徴である。この容量により3つの効果が生じる。1つ
目の効果は電源からのノイズに対してCMOSインバー
タの誤動作に対する耐性が大きくなることである。2つ
目の効果はCMOSインバータ間の配線が長い距離にお
よぶ場合、配線抵抗が増大し、スイッチング時における
電源電圧の降下を防ぐ点である。3つ目の効果はこうし
た効果を示す容量を小さな素子占有面積で実現できる点
である。An equivalent diagram of the CMOS inverter shown in FIG. 1 is shown in FIG. Drain electrode part 2 of NchTFT and PchTF
A feature is that a capacitance is added between the drain electrode portions 8 of the T. This capacitance has three effects. The first effect is that the CMOS inverter becomes more resistant to malfunction due to noise from the power supply. The second effect is that when the wiring between CMOS inverters extends over a long distance, the wiring resistance increases, which prevents the power supply voltage from dropping during switching. The third effect is that a capacitance exhibiting these effects can be realized with a small device occupation area.
〔発明の効果1
本発明は以上述べた様に、量産性に冨む減圧CVD法、
常圧CVD法、プラズマCVD法等のデポジション法を
用いてドーパントの導入された半導体薄膜を形成してい
るので、高価で生産性の低いイオン注入装置を使用せず
にCMO5構造の形成が可能であるという特徴を有する
。[Effect of the invention 1] As described above, the present invention provides a low-pressure CVD method that is highly productive in mass production.
Since the semiconductor thin film into which dopants are introduced is formed using deposition methods such as atmospheric pressure CVD and plasma CVD, it is possible to form a CMO5 structure without using expensive and low-productivity ion implantation equipment. It has the characteristic that
又、以上のCMO3構造の製造工程は、P型半導体薄膜
とN型半導体薄膜の間の絶縁膜の作用により、大面積に
わたり、安定した高性能の半導体装置の製造を可能にす
る特徴を持つ。Furthermore, the above-described manufacturing process for the CMO3 structure has a feature that it is possible to manufacture a stable high-performance semiconductor device over a large area due to the effect of the insulating film between the P-type semiconductor thin film and the N-type semiconductor thin film.
又、電気的ノイズに対する耐性を強めるための電源供給
電極間の容量は自動的に、かつ小さな素子占有面積で作
り込まれているという特徴を持つ。Another feature is that the capacitance between the power supply electrodes, which increases resistance to electrical noise, is created automatically and in a small area occupied by the device.
又、イオン注入後のドーパントの活性化に必要な高温工
程を必要としないために絶縁性基板として安価なガラス
基板の使用が可能になる特徴を持つ。Furthermore, since there is no need for a high-temperature process necessary for activating dopants after ion implantation, an inexpensive glass substrate can be used as the insulating substrate.
第1図(a)、(b)は本発明による半導体装置の1例
としてインバータ(反転増幅器)を示した図である。(
a)は上視図、(b)は(a)のAA’ における断面
を示した図である。
第2図(a)〜(e)は第1図で示した本発明による半
導体装置の製造工程の1例を示した断面図である。
第3図は第1図で示した本発明による半導体装置の等節
回路を示した図である。
1・・・・・絶縁性基板
2・・・・・NchTFTのソース電極部3・・・・・
NchTFTのドレイン電極部4・・・・・NchTF
Tのチャンネル部5・・・・・NchTFTのゲート絶
縁膜6・・・・・ゲート電極部
7・・・・・PchTFTのゲート絶縁膜8・・・・・
PchTFTのソース電極部9・・・・・PchTFT
のドレイン電極部10・・・・・PchTFTのチャン
ネル部11・・・・・コンタクトホール
12・・・・・入力信号配線
13・・・・・出力信号配線
14.15・・電源電圧供給配線
以上
出願人 セイコーエプソン株式会社
代理人 弁理士 最 上 務−(他1名)4+、;+
”\
、:’、r ′
、+ニー
(α)
を
藁1旧FIGS. 1(a) and 1(b) are diagrams showing an inverter (inverting amplifier) as an example of a semiconductor device according to the present invention. (
FIG. 3(a) is a top view, and FIG. 3(b) is a cross-sectional view taken along AA' in FIG. FIGS. 2(a) to 2(e) are cross-sectional views showing one example of the manufacturing process of the semiconductor device according to the present invention shown in FIG. 1. FIG. 3 is a diagram showing an equinodal circuit of the semiconductor device according to the present invention shown in FIG. 1. 1...Insulating substrate 2...Nch TFT source electrode part 3...
Drain electrode part 4 of NchTFT...NchTF
T channel part 5... Gate insulating film 6 of Nch TFT... Gate electrode part 7... Gate insulating film 8 of Pch TFT...
Source electrode part 9 of PchTFT...PchTFT
Drain electrode part 10...Pch TFT channel part 11...Contact hole 12...Input signal wiring 13...Output signal wiring 14.15...More than power supply voltage supply wiring Applicant Seiko Epson Co., Ltd. Agent Patent Attorney Tsumugi Mogami - (1 other person) 4+, ;+
”\ , :', r ′, + knee (α) is 1 old
Claims (2)
果型薄膜トランジスタとPチャンネル電界効果型薄膜ト
ランジスタがゲート電極を共有し、少くともその一部が
重り合う様に構成された構造を含むことを特徴とする半
導体装置。(1) Includes a structure in which an N-channel field-effect thin film transistor and a P-channel field-effect thin film transistor installed on an insulating substrate share a gate electrode and are configured such that at least a portion thereof overlaps. Characteristic semiconductor devices.
膜方法として、減圧CVD法、常圧CVD法、プラズマ
CVD法等のデポジション法を用いることを特徴とする
請求項1記載の半導体装置の製造方法。(2) The method according to claim 1, wherein a deposition method such as a low pressure CVD method, an ordinary pressure CVD method, or a plasma CVD method is used as a film forming method for forming the N-type semiconductor thin film and the P-type semiconductor thin film. A method for manufacturing a semiconductor device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63075204A JPH01246863A (en) | 1988-03-29 | 1988-03-29 | Semiconductor device and manufacture thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63075204A JPH01246863A (en) | 1988-03-29 | 1988-03-29 | Semiconductor device and manufacture thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01246863A true JPH01246863A (en) | 1989-10-02 |
Family
ID=13569430
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63075204A Pending JPH01246863A (en) | 1988-03-29 | 1988-03-29 | Semiconductor device and manufacture thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01246863A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2693034A1 (en) * | 1992-06-30 | 1993-12-31 | Gold Star Co | Thin-film transistor and its manufacturing process |
US5567959A (en) * | 1993-12-27 | 1996-10-22 | Nec Corporation | Laminated complementary thin film transistor device with improved threshold adaptability |
KR100513654B1 (en) * | 1998-10-27 | 2006-05-25 | 비오이 하이디스 테크놀로지 주식회사 | CMOS inverter structure made of polysilicon-thin film transistor |
US8470688B2 (en) | 2007-07-11 | 2013-06-25 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and method for manufacturing the same |
US8907392B2 (en) | 2011-12-22 | 2014-12-09 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor memory device including stacked sub memory cells |
US8981367B2 (en) | 2011-12-01 | 2015-03-17 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device |
CN104576755A (en) * | 2014-12-30 | 2015-04-29 | 深圳市华星光电技术有限公司 | Thin film transistor, array substrate and display device |
JP2015179838A (en) * | 2014-02-28 | 2015-10-08 | 株式会社半導体エネルギー研究所 | semiconductor device |
US10002968B2 (en) | 2011-12-14 | 2018-06-19 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and display device including the same |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4830851B1 (en) * | 1968-07-23 | 1973-09-25 | ||
JPS53144156A (en) * | 1977-05-23 | 1978-12-15 | Duskin Franchise Co | Mop and mop and holder assembly |
JPS578060U (en) * | 1980-06-03 | 1982-01-16 | ||
JPS58181366U (en) * | 1982-05-27 | 1983-12-03 | 近藤 武志 | Motupu for waxing |
JPS6119869A (en) * | 1984-07-03 | 1986-01-28 | ユニチカ株式会社 | Production of cloth for mop canvas |
JPS61164538A (en) * | 1985-01-18 | 1986-07-25 | 株式会社ダスキン | Mop excellent in antistaining property |
-
1988
- 1988-03-29 JP JP63075204A patent/JPH01246863A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4830851B1 (en) * | 1968-07-23 | 1973-09-25 | ||
JPS53144156A (en) * | 1977-05-23 | 1978-12-15 | Duskin Franchise Co | Mop and mop and holder assembly |
JPS578060U (en) * | 1980-06-03 | 1982-01-16 | ||
JPS58181366U (en) * | 1982-05-27 | 1983-12-03 | 近藤 武志 | Motupu for waxing |
JPS6119869A (en) * | 1984-07-03 | 1986-01-28 | ユニチカ株式会社 | Production of cloth for mop canvas |
JPS61164538A (en) * | 1985-01-18 | 1986-07-25 | 株式会社ダスキン | Mop excellent in antistaining property |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2693034A1 (en) * | 1992-06-30 | 1993-12-31 | Gold Star Co | Thin-film transistor and its manufacturing process |
US5567959A (en) * | 1993-12-27 | 1996-10-22 | Nec Corporation | Laminated complementary thin film transistor device with improved threshold adaptability |
KR100513654B1 (en) * | 1998-10-27 | 2006-05-25 | 비오이 하이디스 테크놀로지 주식회사 | CMOS inverter structure made of polysilicon-thin film transistor |
US8470688B2 (en) | 2007-07-11 | 2013-06-25 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and method for manufacturing the same |
US8841730B2 (en) | 2007-07-11 | 2014-09-23 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and method for manufacturing the same |
US9472680B2 (en) | 2011-12-01 | 2016-10-18 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device |
US10043833B2 (en) | 2011-12-01 | 2018-08-07 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device |
US8981367B2 (en) | 2011-12-01 | 2015-03-17 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device |
US10002968B2 (en) | 2011-12-14 | 2018-06-19 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and display device including the same |
US10680110B2 (en) | 2011-12-14 | 2020-06-09 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and display device including the same |
US11302819B2 (en) | 2011-12-14 | 2022-04-12 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and display device including the same |
US12002886B2 (en) | 2011-12-14 | 2024-06-04 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and display device including the same |
US9368501B2 (en) | 2011-12-22 | 2016-06-14 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor memory device including stacked sub memory cells |
US8907392B2 (en) | 2011-12-22 | 2014-12-09 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor memory device including stacked sub memory cells |
JP2015179838A (en) * | 2014-02-28 | 2015-10-08 | 株式会社半導体エネルギー研究所 | semiconductor device |
WO2016106805A1 (en) * | 2014-12-30 | 2016-07-07 | 深圳市华星光电技术有限公司 | Thin film transistor, array substrate and display device |
CN104576755A (en) * | 2014-12-30 | 2015-04-29 | 深圳市华星光电技术有限公司 | Thin film transistor, array substrate and display device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2776083B2 (en) | Liquid crystal display device and manufacturing method thereof | |
JPH01291467A (en) | Thin film transistor | |
JPH01246863A (en) | Semiconductor device and manufacture thereof | |
JPH1195256A (en) | Active matrix substrate | |
JPH04219736A (en) | Manufacture of active matrix display device | |
JPH06167722A (en) | Active matrix substrate and its production | |
JPS625661A (en) | Thin film transistor | |
JPS6230379A (en) | Thin film transistor | |
JP2653092B2 (en) | Complementary thin film transistor and method of manufacturing the same | |
JP2001021920A (en) | Thin-film transistor substrate and liquid crystal display device | |
JP2776820B2 (en) | Method for manufacturing semiconductor device | |
JP2690067B2 (en) | Active matrix substrate | |
JPS6047467A (en) | Complementary thin film transistor | |
JPS61191072A (en) | Thin film transistor and manufacture thereof | |
JPH0279476A (en) | Film type transistor | |
JP2653572B2 (en) | Active matrix substrate manufacturing method | |
JPH01102525A (en) | Thin film transistor array and liquid crystal device using said array | |
JPS5846668A (en) | Semiconductor device | |
JPH0472769A (en) | Thin film transistor | |
JPS63142851A (en) | Semiconductor device | |
JP3011210B2 (en) | Active matrix substrate manufacturing method | |
JPS63193568A (en) | Thin film transistor | |
JP3147365B2 (en) | Method for manufacturing thin film transistor | |
JPH07115203A (en) | Thin film, manufacture of the thin film and thin-film transistor using the thin film | |
JP2699401B2 (en) | Complementary semiconductor device and method of manufacturing the same |