JPH01235367A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH01235367A
JPH01235367A JP6384888A JP6384888A JPH01235367A JP H01235367 A JPH01235367 A JP H01235367A JP 6384888 A JP6384888 A JP 6384888A JP 6384888 A JP6384888 A JP 6384888A JP H01235367 A JPH01235367 A JP H01235367A
Authority
JP
Japan
Prior art keywords
region
type
forming
layer
zener diode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6384888A
Other languages
Japanese (ja)
Inventor
Daisaku Kobayashi
大作 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP6384888A priority Critical patent/JPH01235367A/en
Publication of JPH01235367A publication Critical patent/JPH01235367A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the leakage of a Zener diode by forming an element isolation layer, shaping a first region in the Zener diode so that impurity concentration in the first region is made lower than that in the element isolation layer and forming the first region in the Zener diode at the same time as an emitter region in a bipolar transistor through a polycrystalline silicon layer. CONSTITUTION:An N-type epitaxial layer 3 is formed onto a P-type semiconductor substrate 1, and P-type element isolation regions 5 are shaped to the epitaxial layer 3. A P-type cathode region 6, P-type impurity concentration of which is made lower than the element isolation regions 5, in a Zener diode and a P-type base region 11 in a bipolar transistor are formed into the epitaxial layer 3. A polycrystalline silicon layer 12 is shaped onto the whole surface, the ions of an N-type impurity are implanted through the polycrystalline silicon layer 12, and an N-type anode region 16A being in contact with a P-type cathode region 6 is formed while an N-type emitter region 16 is shaped into the P-type base region 11. Accordingly, a junction in a second region in the Zener diode can be formed more deeply, thus preventing the leakage of the constant voltage Zener diode.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置の製造方法に関し、特に高速バイポ
ーラトランジスタと定電圧ダイオードを有する半導体装
置の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of manufacturing a semiconductor device, and particularly to a method of manufacturing a semiconductor device having a high-speed bipolar transistor and a constant voltage diode.

〔従来の技術〕[Conventional technology]

従来、バイポーラトランジスタと定電圧ダイオードを有
する半導体装置においては、第3図に示すように、P型
素子分離層5と同時に形成するP型カソード領Vi6A
に、多結晶シリコン層12を通してN型不純物を導入し
、NPNトランジスタのN型エミッタ領域16と同時に
N型アノード領域16Aを形成して、PN接合の定電圧
ダイオードを形成していた。
Conventionally, in a semiconductor device having a bipolar transistor and a constant voltage diode, as shown in FIG.
Then, an N-type impurity was introduced through the polycrystalline silicon layer 12 to form an N-type anode region 16A at the same time as the N-type emitter region 16 of the NPN transistor, thereby forming a PN junction constant voltage diode.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来の半導体装置の製造方法で、NPNトラン
ジスタのエミッタ領域と同時に定電圧ダイオードのN型
アノード領域16Aを作る場合、カソード領域中のP型
不純物の濃度が高い為、N型アノード領域16AはN型
エミ・ツタ領域16より接合か浅くなるため、定電圧ダ
イオードにり−りが生じやすくなるという欠点が有る。
When forming the N-type anode region 16A of the constant voltage diode at the same time as the emitter region of the NPN transistor using the conventional semiconductor device manufacturing method described above, since the concentration of P-type impurities in the cathode region is high, the N-type anode region 16A Since the junction is shallower than the N-type emitter vine region 16, there is a drawback in that the constant voltage diode is more likely to cause leakage.

本発明の目的は、リークの少ない定電圧ダイオードを有
する半導体装置の製造方法を提供することにある。
An object of the present invention is to provide a method for manufacturing a semiconductor device having a constant voltage diode with little leakage.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の半導体装置の製造方法は、−導電型半導体基板
上に逆導電型エピタキシャル層を形成したのち該エピタ
キシャル層に一導電型素子分離領域を形成する工程と、
前記エピタキシャル層中に前記素子分離領域より一導電
型不純物濃度の低い定電圧ダイオードの第1の領域とバ
イポーラトランジスタの一導電型ベース領域とを形成す
る工程と、全面に多結晶シリコン層を形成したのち該多
結晶シリコン層を通して逆導電型不純物をイオン注入し
前記第1の領域に接する第2の領域を形成すると同時に
前記ベース領域にエミッタ領域を形成する工程とを含ん
で構成される。
The method for manufacturing a semiconductor device of the present invention includes the steps of: forming an opposite conductivity type epitaxial layer on a -conductivity type semiconductor substrate, and then forming a one conductivity type element isolation region in the epitaxial layer;
forming a first region of a constant voltage diode having a lower impurity concentration of one conductivity type than the element isolation region and a base region of one conductivity type of a bipolar transistor in the epitaxial layer, and forming a polycrystalline silicon layer on the entire surface. Thereafter, the method includes the steps of ion-implanting impurities of opposite conductivity type through the polycrystalline silicon layer to form a second region in contact with the first region, and at the same time forming an emitter region in the base region.

〔実施例〕〔Example〕

次に、本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図(a)〜(g>は本発明の第1の実施例を説明す
るための工程順に示した半導体チップの断面図である。
FIGS. 1A to 1G are cross-sectional views of a semiconductor chip shown in the order of steps for explaining a first embodiment of the present invention.

まず第1図(a)に示すようにP型半導体基板1にN+
型の埋込層2を形成したのち、全面にN型エピタキシャ
ル層3を成長する。次に熱酸化により、酸化膜4を表面
に形成したのちパターニングし、この酸化膜4をマスク
にP型素子分離層5を、たとえば1080’Cの温度で
、比抵抗ρSが10Ω/口になるように形成し、更に1
200°Cで押込み酸化を行なう。次にこの後酸化膜4
をマスクにP型不純物拡散を、たとえば1000°Cで
ρSが30Ω/口になるように行なった後、1200℃
で押込み酸化を行ない、P型素子分離層5より濃度の低
い定電圧ダイオードのP型カソード領域6を形成する。
First, as shown in FIG. 1(a), N+
After forming the type buried layer 2, an N type epitaxial layer 3 is grown on the entire surface. Next, an oxide film 4 is formed on the surface by thermal oxidation, and then patterned. Using this oxide film 4 as a mask, a P-type element isolation layer 5 is formed at a temperature of, for example, 1080'C, so that the specific resistance ρS becomes 10Ω/hole. and then 1
Indentation oxidation is carried out at 200°C. Next, after this oxide film 4
After diffusing P-type impurities using the mask as a mask, for example, at 1000°C so that ρS is 30Ω/mouth,
By performing push-in oxidation, a P-type cathode region 6 of a constant voltage diode having a lower concentration than the P-type element isolation layer 5 is formed.

次に第1図(b)に示すように、酸化膜4を除去した後
、再び薄い酸化膜7を形成し、この酸化膜7上に窒化ケ
イ素n8を成長させる。次でフォトレジストをマスクに
窒化ケイ素膜8をドライエツチング法でパターニングし
た後、フォトレジストを取り除く。
Next, as shown in FIG. 1(b), after removing the oxide film 4, a thin oxide film 7 is formed again, and silicon nitride n8 is grown on this oxide film 7. Next, the silicon nitride film 8 is patterned by dry etching using the photoresist as a mask, and then the photoresist is removed.

次に第1図(c)に示すように、窒化ケイ素膜8をマス
クに、エピタキシャル層を酸化して厚いフィールド酸化
膜9を形成する。
Next, as shown in FIG. 1(c), using the silicon nitride film 8 as a mask, the epitaxial layer is oxidized to form a thick field oxide film 9.

次に第1図(d)に示すように、窒化ケイ素膜8及び酸
化膜7を取り除いた後、フォトレジスト膜10をマスク
にして、P型不純物、たとえばボロンを加速電圧E−=
30key、ドーズ量Φ=7.5xlO13の条件でイ
オン注入して、NPNトランジスタのP型ベース領域1
1を形成する。
Next, as shown in FIG. 1(d), after removing the silicon nitride film 8 and the oxide film 7, using the photoresist film 10 as a mask, a P-type impurity, such as boron, is applied at an accelerating voltage E-=
The P-type base region 1 of the NPN transistor was
form 1.

次に第1図(e)に示すように、フォトレジスト膜10
を除去した後、全面に多結晶シリコン層12を成長し、
この上に窒化ケイ素膜8Aを成長した後、フォトレジス
トをマスクに窒化ケイ素膜8Aをパターニングする。次
でフォトレジストを除去した後、窒化ケイ素膜8Aをマ
スクに多結晶シリコン層12を酸化して酸化膜14を形
成し、この酸化膜14で多結晶シリコン層12を分離す
る。
Next, as shown in FIG. 1(e), the photoresist film 10
After removing, a polycrystalline silicon layer 12 is grown on the entire surface,
After growing a silicon nitride film 8A on this, the silicon nitride film 8A is patterned using a photoresist as a mask. Next, after removing the photoresist, the polycrystalline silicon layer 12 is oxidized using the silicon nitride film 8A as a mask to form an oxide film 14, and the polycrystalline silicon layer 12 is separated by this oxide film 14.

次に第1図(f)に示すように窒化ケイ素膜8Aを除い
たのち、酸化膜14及びフォトレジストをマスクにして
、P型不純物、たとえばボロンを拡散してコンタクト用
のP型不純物層15A。
Next, as shown in FIG. 1(f), after removing the silicon nitride film 8A, using the oxide film 14 and the photoresist as a mask, a P-type impurity such as boron is diffused into a P-type impurity layer 15A for contact. .

15Bを形成する。同様にP型不純物層15A。15B is formed. Similarly, the P-type impurity layer 15A.

15B上をマスクし、N型不純物、たとえばリンを拡散
してP型カソード領域6に接するN型アノード領域16
Aを形成して定電圧ダイオードを形成すると供に、P型
ベース領域11内にNPNトランジスタのN型エミッタ
領域16を形成する。
An N-type anode region 16 in contact with the P-type cathode region 6 is formed by masking the upper surface of the N-type anode region 15B and diffusing an N-type impurity, for example, phosphorus.
A is formed to form a constant voltage diode, and at the same time, an N-type emitter region 16 of an NPN transistor is formed in the P-type base region 11.

以下第1図(g)に示すように、多結晶シリコン層12
上に、たとえば白金膜17を形成した後、酸化膜18を
形成し、所望の箇所にスルーホールを形成した後、電極
19を形成して半導体装置を完成させる。
As shown in FIG. 1(g) below, the polycrystalline silicon layer 12
After forming, for example, a platinum film 17 thereon, an oxide film 18 is formed, through holes are formed at desired locations, and then electrodes 19 are formed to complete the semiconductor device.

このように本第1の実施例によれば、定電圧ダイオード
のカソード領域を素子分離層より不純物濃度を低く形成
することにより、アノード領域の接合が深くなるため、
定電圧ダイオードのリークは極めて少くなる。
As described above, according to the first embodiment, by forming the cathode region of the constant voltage diode to have a lower impurity concentration than the element isolation layer, the junction of the anode region becomes deeper.
Leakage from the constant voltage diode becomes extremely low.

第2図(a)〜(f>は本発明の第2の実施例を説明す
るための工程順に示した半導体チップの断面図である。
FIGS. 2(a) to 2(f) are cross-sectional views of a semiconductor chip shown in order of steps for explaining a second embodiment of the present invention.

よす第2図(a>に示すように、第1図(a)に示した
第1の実施例と同様に処理して、P型半導体基板1にN
+型の埋込層2を形成し、更にN型エピタキシャル層3
を成長した後、熱酸化により酸化膜4を表面に形成する
。次でこの酸化plA4に開口部を形成したのちP型不
純物を導入し、押込酸化を行ないP型素子分離層5及び
このP型素子分離層5より不純物濃度の低い定電圧ダイ
オードのP型カソード領域6を形成する。
As shown in FIG. 2 (a), N is added to the P-type semiconductor substrate 1 by processing in the same manner as in the first embodiment shown in FIG. 1 (a).
A + type buried layer 2 is formed, and an N type epitaxial layer 3 is formed.
After growing, an oxide film 4 is formed on the surface by thermal oxidation. Next, after forming an opening in this oxidized PLA4, a P-type impurity is introduced and forced oxidation is performed to form a P-type element isolation layer 5 and a P-type cathode region of a constant voltage diode having an impurity concentration lower than this P-type element isolation layer 5. form 6.

次に第2図(b)に示すように、酸化膜4の一部をフォ
トリングラフィで取り除いた後、この酸化膜4をマスク
にP型不純物、たとえばホウ素を加速電圧30kev、
 ドーズ量8 X 10 ”cm−2の条件でイオン注
入し、NPNトランジスタのP型ベース領域11Aを形
成する。
Next, as shown in FIG. 2(b), after removing a part of the oxide film 4 by photolithography, using this oxide film 4 as a mask, a P-type impurity, such as boron, is applied at an accelerating voltage of 30 keV.
Ion implantation is performed at a dose of 8.times.10" cm.sup.-2 to form a P-type base region 11A of an NPN transistor.

次に第2図(c)に示すように、酸化膜4を全面除去し
た後、薄い酸化膜7Aと窒化ケイ素膜8Bとを順次形成
した後、フォトリソグラフィで所望の位置の窒化ケイ素
M8Bを除去する。次で、再びフォトリソグラフィで、
N型不純物領域を形成する部分のみ窒化ケイ素膜8B下
の酸化M7Aを取り除く。
Next, as shown in FIG. 2(c), after removing the entire oxide film 4, a thin oxide film 7A and a silicon nitride film 8B are sequentially formed, and then silicon nitride M8B at a desired position is removed by photolithography. do. Next, by photolithography again,
Oxidized M7A under silicon nitride film 8B is removed only in the portion where an N-type impurity region is to be formed.

次に第2図(d)に示すように、多結晶シリコン層12
Aを全面に成長させた後、N型不純物としてたとえばヒ
素を加速電圧70kev、 ドーズN I X 101
6cm−2の条件でイオン注入する。
Next, as shown in FIG. 2(d), a polycrystalline silicon layer 12
After growing A on the entire surface, for example, arsenic is added as an N-type impurity at an acceleration voltage of 70keV and a dose of N I X 101.
Ion implantation is performed under the condition of 6 cm-2.

次に第2図(e)に示すように、たとえば950°Cの
N2雰囲気中で30分熱処理して、NPNトランジスタ
のN型エミッタ領域26と定電圧ダイオードのN型アノ
ード領域26Aを形成した後、これらN型不純物領域上
の多結晶シリコン層12Aを残し他を除去する0次で、
たとえばフッ素等の液で、窒化ケイ素膜8Bが取り除い
である部分の酸化膜7Aを収り除く。
Next, as shown in FIG. 2(e), heat treatment is performed for 30 minutes in an N2 atmosphere at, for example, 950°C to form the N-type emitter region 26 of the NPN transistor and the N-type anode region 26A of the constant voltage diode. , in a zero-order process in which the polycrystalline silicon layer 12A on these N-type impurity regions is left and the rest is removed.
For example, the oxide film 7A in the portion where the silicon nitride film 8B has been removed is removed using a liquid such as fluorine.

以下第2図(f)に示すように電極1つをP型不純物領
域上と多結晶シリコン層上に形成し半導体装置を完成さ
せる。
Thereafter, as shown in FIG. 2(f), one electrode is formed on the P-type impurity region and the polycrystalline silicon layer to complete the semiconductor device.

本第2の実施例においてもアノード領域の接合か深くな
るため、定電圧ダイオードのリークは少くなる。更に第
1の実施例に比ベニ程が簡単になるという利点がある。
In the second embodiment as well, since the junction in the anode region is deep, leakage from the constant voltage diode is reduced. Furthermore, the first embodiment has the advantage that it is simpler than the first embodiment.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、素子分MJWを形成後、
定電圧ダイオードの第1の領域を素子分離層の不純物濃
度より低く形成することにより、多結晶シリコン層を通
してバイポーラトランジスタのエミッタ領域と同時に形
成する、定電圧ダイオードの第2の領域の接合をより深
く形成できるため、定電圧ダイオードのリークをなくす
ことができる効果がある。
As explained above, in the present invention, after forming the element MJW,
By forming the first region of the constant voltage diode at a lower impurity concentration than the element isolation layer, the junction of the second region of the constant voltage diode, which is formed simultaneously with the emitter region of the bipolar transistor through the polycrystalline silicon layer, can be made deeper. Since it can be formed, it has the effect of eliminating leakage from the constant voltage diode.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は、本発明の第1及び第2の実施例を
説明するための半導体チップの断面図、第3図は従来の
半導体装置の断面図である。 1・・・P型半導体基板、2・・・N+型埋込層 3・
・・N型エピタキシャル層、4・・・酸化膜、5・・・
P型素子分離層、6・・・P型カソード領域、7,7A
・・・酸化膜、8.8A、8B・・・窒化ケイ素膜、9
・・・フィールド酸化膜、10・・・フォトレジスト膜
、11゜11A・・・P型ベース領域、12.12A・
・・多結晶シリコン層、14・・・酸化膜、15A、1
5B・・・P型不純物層、16・・・N型エミッタ領域
、16A・・・N型アノード領域、17・・・白金膜、
18・・・酸化膜、1つ・・電極、26・・・N型エミ
ッタ領域、26A・・・N型アノード領域。
1 and 2 are cross-sectional views of a semiconductor chip for explaining first and second embodiments of the present invention, and FIG. 3 is a cross-sectional view of a conventional semiconductor device. 1...P type semiconductor substrate, 2...N+ type buried layer 3.
...N-type epitaxial layer, 4...oxide film, 5...
P-type element isolation layer, 6...P-type cathode region, 7, 7A
...Oxide film, 8.8A, 8B...Silicon nitride film, 9
... Field oxide film, 10... Photoresist film, 11° 11A... P-type base region, 12.12A.
...Polycrystalline silicon layer, 14...Oxide film, 15A, 1
5B... P-type impurity layer, 16... N-type emitter region, 16A... N-type anode region, 17... Platinum film,
18... Oxide film, one... electrode, 26... N type emitter region, 26A... N type anode region.

Claims (1)

【特許請求の範囲】[Claims]  一導電型半導体基板上に逆導電型エピタキシャル層を
形成したのち該エピタキシャル層に一導電型素子分離領
域を形成する工程と、前記エピタキシャル層中に前記素
子分離領域より一導電型不純物濃度の低い定電圧ダイオ
ードの第1の領域とバイポーラトランジスタの一導電型
ベース領域とを形成する工程と、全面に多結晶シリコン
層を形成したのち該多結晶シリコン層を通して逆導電型
不純物をイオン注入し前記第1の領域に接する第2の領
域を形成すると同時に前記ベース領域にエミッタ領域を
形成する工程とを含むことを特徴とする半導体装置の製
造方法。
forming an epitaxial layer of opposite conductivity type on a semiconductor substrate of one conductivity type, and then forming an element isolation region of one conductivity type in the epitaxial layer; A step of forming a first region of a voltage diode and a base region of one conductivity type of a bipolar transistor, and a step of forming a polycrystalline silicon layer over the entire surface, and then implanting ions of an opposite conductivity type impurity through the polycrystalline silicon layer; A method of manufacturing a semiconductor device, comprising: forming a second region in contact with the region and simultaneously forming an emitter region in the base region.
JP6384888A 1988-03-16 1988-03-16 Manufacture of semiconductor device Pending JPH01235367A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6384888A JPH01235367A (en) 1988-03-16 1988-03-16 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6384888A JPH01235367A (en) 1988-03-16 1988-03-16 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH01235367A true JPH01235367A (en) 1989-09-20

Family

ID=13241163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6384888A Pending JPH01235367A (en) 1988-03-16 1988-03-16 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH01235367A (en)

Similar Documents

Publication Publication Date Title
JP3098848B2 (en) Self-aligned planar monolithic integrated circuit vertical transistor process
US4662062A (en) Method for making bipolar transistor having a graft-base configuration
JPH01235367A (en) Manufacture of semiconductor device
JPS624339A (en) Semiconductor device and manufacture thereof
JP2890509B2 (en) Method for manufacturing semiconductor device
JP2576513B2 (en) Method for manufacturing bipolar transistor
KR0154307B1 (en) Method of fabricating semiconductor device
JPH04213834A (en) Manufacture of bipolar integrated circuit
KR0135044B1 (en) Fabrication method of bjt
JPS5834939B2 (en) Hand tie souchi
JPS6245065A (en) Manufacture of semiconductor device
JPS63278347A (en) Semiconductor device and manufacture thereof
JPS63144567A (en) Manufacture of semiconductor device
JPH01183149A (en) Manufacture of semiconductor device
JPH061815B2 (en) Method for manufacturing semiconductor device
JPH0567623A (en) Manufacture of semiconductor device
JPS63104367A (en) Manufacture of semiconductor device
JPH0727916B2 (en) Semiconductor device manufacturing method
JPH07273186A (en) Ion implanting method and isolation region forming method
JPH0399434A (en) Manufacture of semiconductor device
JPS61202464A (en) Manufacture of semiconductor device
JPS62243361A (en) Manufacture of semiconductor device
JPS62291164A (en) Manufacture of semiconductor device
JPS63177513A (en) Manufacture of semiconductor device
JPH0132669B2 (en)