JPH01183149A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH01183149A
JPH01183149A JP875488A JP875488A JPH01183149A JP H01183149 A JPH01183149 A JP H01183149A JP 875488 A JP875488 A JP 875488A JP 875488 A JP875488 A JP 875488A JP H01183149 A JPH01183149 A JP H01183149A
Authority
JP
Japan
Prior art keywords
type impurity
impurity layer
polysilicon
oxide film
voltage diode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP875488A
Other languages
Japanese (ja)
Other versions
JPH07120711B2 (en
Inventor
Daisaku Kobayashi
大作 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP63008754A priority Critical patent/JPH07120711B2/en
Publication of JPH01183149A publication Critical patent/JPH01183149A/en
Publication of JPH07120711B2 publication Critical patent/JPH07120711B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Bipolar Transistors (AREA)
  • Bipolar Integrated Circuits (AREA)

Abstract

PURPOSE:To eliminate the leakage of a constant-voltage diode by forming the N-type impurity layer of the constant-voltage diode through polysilicon, and again diffusing an N-type impurity in the N-type impurity layer of the diode simultaneously upon formation of the emitter of an N-P-N transistor. CONSTITUTION:Before the N-type impurity layer 18 of the emitter of an N-P-N transistor is formed, an N-type impurity layer 14 of a constant-voltage diode is formed through a polysilicon 11, and an N-type impurity is diffused in the layer 14 of the diode simultaneously upon formation of the emitter 18 of the transistor through the polysilicon 11. Accordingly, the N-type impurity layer of the diode can be deeply formed, and a P-N junction is formed at a deep position. Thus, the leakage of the diode is reduced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体装置の製造方法に関し、特に高速バイ
ポーラICにおいて定電圧ダイオードに関する製造方法
である。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing a semiconductor device, and particularly to a method for manufacturing a constant voltage diode in a high-speed bipolar IC.

〔従来の技術〕[Conventional technology]

従来の技術としては、絶縁分離に用いたP型拡散層内に
ポリシリコンを通してN型不純物をNPNトランジスタ
のエミッタ拡散と同時に形成してPN接合の定電圧ダイ
オードを作っている。
As a conventional technique, a PN junction constant voltage diode is produced by simultaneously forming an N-type impurity through polysilicon in a P-type diffusion layer used for insulation isolation and diffusing the emitter of an NPN transistor.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

前述した、従来の定電圧ダイオードの製造方法で、高速
トランジスタのエミッタと同時に定電圧ダイオードを作
る場合、カソードのP型不純物層の濃度が高い為、ポリ
シリコンを通してNPN)ランジスタと同時に作る定電
圧パイオードのアノードのN型不純物層は、NPN)ラ
ンジスタのエミッタより接合が浅くなり定電圧ダイオー
ドのリークが生じやすくなる欠点が有る。
Using the conventional method for manufacturing a constant voltage diode described above, when making a constant voltage diode at the same time as the emitter of a high-speed transistor, because the concentration of the P-type impurity layer at the cathode is high, the constant voltage diode is made at the same time as an NPN transistor through polysilicon. The N-type impurity layer of the anode has a shallower junction than the emitter of the NPN transistor, which has the disadvantage that leakage from the constant voltage diode is likely to occur.

〔発明の従来技術に対する相違点〕[Differences between the invention and the prior art]

上述した従来の定電圧ダイオードの製造方法で、絶縁分
離のP型不純物層内に、ポリシリコンを通してNPN)
ランジスタとのエミッタと同時にN型不純物層を形成す
る場合、絶縁分離のP型不純物濃度が高い為、定電圧ダ
イオードのP−N接合が浅く形成されるのに対し、本発
明はエミッタのN型不純物層を形成する前に、定電圧ダ
イオードのN型不純物層をポリシリコンを通して形成し
た後、再びNPN)ランジスタのエミッタ形成と同時に
、定電圧ダイオードのN型不純物層にN型不純物を拡散
するために、定電圧ダイオードのN型不純物層を深く形
成でき、P−N接合が深い箇所で形成できるため、ダイ
オードのリークが少なくなる製造方法であるという相違
点を有する。
Using the conventional method for manufacturing a constant voltage diode described above, NPN (NPN) is passed through polysilicon into the P-type impurity layer for insulation isolation.
When an N-type impurity layer is formed at the same time as the emitter with the transistor, the P-N junction of the voltage regulator diode is formed shallowly due to the high concentration of P-type impurity in the insulation isolation. Before forming the impurity layer, the N-type impurity layer of the constant voltage diode is formed through polysilicon, and then the N-type impurity is diffused into the N-type impurity layer of the constant voltage diode at the same time as forming the emitter of the NPN transistor. Another difference is that the N-type impurity layer of the constant voltage diode can be formed deeply, and the P-N junction can be formed at a deep location, so the manufacturing method reduces leakage of the diode.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、NPN)ランジスタのエミッタ形成前に、ポ
リシリコンを通して定電圧ダイオードのN型不純物層を
形成し、再びNPN)ランジスタのエミッタ形成と同時
に、定電圧ダイオードのN型不純物層にN型不純物を拡
散することにより、定電圧ダイオードのN型不純物層の
濃度を高く、P−N接合を深くして、定電圧ダイオード
のリークをなくす製造方法である。
In the present invention, an N-type impurity layer of a constant voltage diode is formed through polysilicon before the emitter of the NPN) transistor is formed. In this manufacturing method, the concentration of the N-type impurity layer of the constant voltage diode is increased by diffusing the N-type impurity layer, and the P-N junction is deepened, thereby eliminating leakage of the constant voltage diode.

〔実施例〕〔Example〕

次に、本発明の製造方法について図面を参照して説明す
る。
Next, the manufacturing method of the present invention will be explained with reference to the drawings.

第1図は本発明の一実施例の縦断面図である。FIG. 1 is a longitudinal sectional view of an embodiment of the present invention.

P型サブストレート1にN+型埋込層2を形成し、N型
エピタキシャル3を成長した後、熱酸化により、酸化膜
4を表面に形成し、酸化膜4をマ  □スフにP型の絶
縁拡散をたとえばボロンを1080℃の温度で、ρSが
10Ω/口になるように行ない、1200℃で押込み、
酸化を行なってP型絶縁拡散層5aと定電圧ダイオード
のP型不純物層5bを形成する。〔第1図(a)〕 酸化膜4を除去した後、薄い酸化膜6を成長し、酸化膜
6上に窒化ケイ素膜7を成長する。この後フォトレジス
トをマスクに窒化ケイ素膜7をドライエッチでパターニ
ングした後、フォトレジストを取り除く。〔第1図(b
)〕 この後、窒化ケイ素膜7をマスクに、ウェハーを酸化し
て厚い酸化膜8を形成する。〔第1図(C)〕 窒化ケイ素膜7.酸化膜6を取り除いた後、フォトレジ
スト9をマスクにしてP型不純物たとえば、ボロンをE
=30KeV、Φ= 7.5 X 10”cm ”でイ
オン注入して1.NPN)ランジスタのベースP型不純
物層10を形成する。〔第1図(d)〕この後、フォト
レジスト9を除去した後、全面にポリシリコン11を約
8000人成長し、この上に窒化ケイ素膜12を成長し
た後、フォトレジストをマスクに窒化ケイ素膜12をパ
ターニングし、フォトレジストを除去した後、窒化ケイ
素膜12をマスクにポリシリコン11をたとえば100
0℃スチームで12時間酸化して、酸化膜13にし、酸
化膜13でポリシリコン11を分離する。〔第1図(e
)〕 この後、フォトレジストをマスクに、窒化ケイ素膜12
の一部を取り除き、フォトレジストを除去した後、残っ
た窒化ケイ素膜12をマスクにN型付順物たとえばリン
を1000℃で40分拡散して、定電圧ダイオードのP
型不純物層5bとP−N接合を形成するN型不純物層1
4を形成する。
After forming an N+ type buried layer 2 on a P type substrate 1 and growing an N type epitaxial layer 3, an oxide film 4 is formed on the surface by thermal oxidation, and the oxide film 4 is used as a mass to form a P type insulation layer. For example, boron is diffused at a temperature of 1080°C so that ρS is 10Ω/mouth, and then pushed at 1200°C.
Oxidation is performed to form a P-type insulating diffusion layer 5a and a P-type impurity layer 5b of a constant voltage diode. [FIG. 1(a)] After removing the oxide film 4, a thin oxide film 6 is grown, and a silicon nitride film 7 is grown on the oxide film 6. Thereafter, the silicon nitride film 7 is patterned by dry etching using the photoresist as a mask, and then the photoresist is removed. [Figure 1 (b
)] Thereafter, using the silicon nitride film 7 as a mask, the wafer is oxidized to form a thick oxide film 8. [Figure 1(C)] Silicon nitride film 7. After removing the oxide film 6, using the photoresist 9 as a mask, a P-type impurity such as boron is added to the E
Ion implantation was performed at =30KeV and Φ=7.5 x 10"cm".1. A base P-type impurity layer 10 of the (NPN) transistor is formed. [FIG. 1(d)] After this, after removing the photoresist 9, about 8,000 layers of polysilicon 11 are grown on the entire surface, and after growing a silicon nitride film 12 on this, a silicon nitride film is grown using the photoresist as a mask. After patterning the film 12 and removing the photoresist, the polysilicon 11 is coated with, for example, 100 nm using the silicon nitride film 12 as a mask.
Oxidation is performed using 0° C. steam for 12 hours to form an oxide film 13, and the polysilicon 11 is separated by the oxide film 13. [Figure 1 (e
)] After this, using the photoresist as a mask, the silicon nitride film 12 is
After removing a part of the photoresist, using the remaining silicon nitride film 12 as a mask, an N-type additive, such as phosphorus, is diffused at 1000°C for 40 minutes to form the P of the constant voltage diode.
N-type impurity layer 1 forming a P-N junction with type impurity layer 5b
form 4.

〔第1図(f)〕 この後、酸化してN型不純物層14上に酸化膜15を形
成した後、同様にフォトレジストをマスクに窒化ケイ素
膜12の一部を取り除いた後、フォトレジストを除去し
、窒化ケイ素膜12と酸化膜15をマスクにP型不純物
たとえばボロンを拡散し、酸化してP型不純物層1bと
酸化膜17を形成した後、同様な方法で、窒化ケイ素膜
13の一部とN型不純物層14上の酸化膜15を取り除
いた後、N型不純物たとえばリンを980℃で30分拡
散してNPN)ランジスタのエミッタであるN型不純物
層18を形成すると供に、定電圧ダイオードの7ノード
であるN型不純物層14にリンを拡散して、N型不純物
層140表面濃度を高くしかつ、接合を深くする。〔第
1図(g)〕この後、窒化ケイ素膜13を取り除き、所
望のポリシリコン上の酸化膜を取り除き、ポリシリコン
11上に高融点金属たとえば白金19を形成した後、C
VD法で、酸化膜20を形成し、所望の箇所にスルーホ
ールを形成した後、電極21を形成する〔第1図(h)
〕 第2図は、本発明の実施例2の縦断面図である。
[FIG. 1(f)] After this, after oxidizing to form an oxide film 15 on the N-type impurity layer 14, a part of the silicon nitride film 12 is similarly removed using the photoresist as a mask, and then the photoresist is removed. After removing the silicon nitride film 12 and the oxide film 15 as a mask, a P-type impurity such as boron is diffused and oxidized to form the P-type impurity layer 1b and the oxide film 17. After removing a part of the oxide film 15 on the N-type impurity layer 14, an N-type impurity such as phosphorus is diffused at 980° C. for 30 minutes to form the N-type impurity layer 18 which is the emitter of the NPN transistor. , phosphorus is diffused into the N-type impurity layer 14, which is the seventh node of the constant voltage diode, to increase the surface concentration of the N-type impurity layer 140 and deepen the junction. [FIG. 1(g)] After this, the silicon nitride film 13 is removed, the desired oxide film on the polysilicon is removed, and a high-melting point metal such as platinum 19 is formed on the polysilicon 11.
After forming an oxide film 20 using the VD method and forming through holes at desired locations, electrodes 21 are formed [Fig. 1 (h)
] FIG. 2 is a longitudinal sectional view of Example 2 of the present invention.

〔第1図(a)〕と同様にP型サブストレート22にN
+型埋込層23を形成し、N型エピタキシャル24を成
長した後、熱酸化により酸化膜25を表面に形成し、酸
化膜25をマスクに、P型の絶縁拡散を、たとえばボロ
ンを1080℃の温度で、ρSが10Ω/口になるよう
に行ない1200℃で押込み、酸化を行なってP型絶縁
拡散層26aと定電圧ダイオードのP型不純物層26b
を形成する。〔第2図(a)〕 この後、酸化膜25の一部をフォトリソグラフィで取り
除屋た後、酸化膜25をマスクに、P型不純物たとえば
ポロンをE=30KeV、Φ=8 X 1014cm、
2でイオン注入しNPN)ランジスタのベースであるP
型不純物層27を形成する。
Similarly to [Fig. 1(a)], N is attached to the P-type substrate 22.
After forming the +-type buried layer 23 and growing the N-type epitaxial layer 24, an oxide film 25 is formed on the surface by thermal oxidation, and using the oxide film 25 as a mask, P-type insulation is diffused, for example, by boron at 1080°C. The P-type insulating diffusion layer 26a and the P-type impurity layer 26b of the constant voltage diode are formed by pressing at 1200°C and oxidizing them at a temperature of
form. [FIG. 2(a)] After that, a part of the oxide film 25 is removed by photolithography, and then, using the oxide film 25 as a mask, a P-type impurity, such as poron, is applied at E=30 KeV, Φ=8×1014 cm,
2, the ions are implanted to form the base of the NPN) transistor.
A type impurity layer 27 is formed.

〔第2図(b)〕 この後、酸化膜25を全面除去した後、薄い酸化膜28
を形成した後、酸化膜28上に窒化ケイ素膜29を成長
し、フォトリソグラフィでコンタクト形成する箇所の窒
化ケイ素膜29を除去した後、再びフォトリングラフィ
でN型不純物層を形成する部分のみ酸化膜28を取り除
く。〔第2図(C)〕 この後、ポリシリコン30を約1500入金面成長した
後、ポリシリコン30上にCVD酸化膜31を約500
0人成長する。この後フォトリングラフィで定電圧ダイ
オードのP型不純物層26b上の窒化ケイ素膜29と酸
化膜28を取り除いである部分のポリシリコン30上の
CVD酸化膜31を取り除いた後、CVD酸化膜31を
マスクにN型不純物たとえばリンを1000℃30分拡
散し定電圧ダイオードのカソードであるN型不純物層3
2を形成する。〔第2図(d)〕 この後、CVD酸化膜31を取り除いた後、ポリシリコ
ン30にN型不純物たとえばヒ素を全面にE=70Ke
V、Φ= I X 1016cm−2の条件でイオン注
入した後、たとえば950℃N2雰囲気中で30分熱処
理して、NPN)ランジスタのエミッタであるN型不純
物層33を形成すると供に、定電圧ダイオードのN型不
純物層32にヒ素を拡散するため、N型不純物層320
表面濃度を高くし、かつ接合を深くする。〔第2図(e
)〕この後、フォトリソグラフィでN型不純物層32と
N型不純物層33上にポリシリコン30aを残す様に、
他のポリシリコン30を取り除いた後、たとえばフッ酸
等の液で窒化ケイ素膜29が取り除いである部分の酸化
膜28を取り除く。
[FIG. 2(b)] After that, after removing the entire oxide film 25, a thin oxide film 28 is removed.
After forming the silicon nitride film 29, a silicon nitride film 29 is grown on the oxide film 28, and after removing the silicon nitride film 29 at the location where the contact is to be formed by photolithography, only the part where the N-type impurity layer will be formed is oxidized again by photolithography. Remove membrane 28. [FIG. 2(C)] After this, about 1,500 layers of polysilicon 30 are grown on the deposited surface, and then about 500 layers of CVD oxide film 31 is grown on the polysilicon 30.
0 people grow. Thereafter, the silicon nitride film 29 and oxide film 28 on the P-type impurity layer 26b of the constant voltage diode were removed by photolithography, and the CVD oxide film 31 on the polysilicon 30 in a certain area was removed. An N-type impurity layer 3, which is a cathode of a constant voltage diode, is formed by diffusing an N-type impurity, such as phosphorus, at 1000°C for 30 minutes on a mask.
form 2. [FIG. 2(d)] After that, after removing the CVD oxide film 31, an N-type impurity such as arsenic (E=70Ke) is applied to the entire surface of the polysilicon 30.
After ion implantation under the conditions of V, Φ= I In order to diffuse arsenic into the N-type impurity layer 32 of the diode, the N-type impurity layer 320 is
Increase the surface concentration and deepen the bond. [Figure 2 (e
)] After this, the polysilicon 30a is left on the N-type impurity layer 32 and the N-type impurity layer 33 by photolithography.
After removing the other polysilicon 30, the portion of the oxide film 28 where the silicon nitride film 29 has been removed is removed using a liquid such as hydrofluoric acid.

〔第2図(f)〕 この後、電極34をP型不純物層上とポリシリコン30
a上に形成する。〔第2図(g)〕〔発明の効果〕 以上説明したように本発明は、NPN)ランジスタのエ
ミッタのN型不純物層を形成する前に、定電圧ダイオー
ドのN型不純物層をポリシリコンを通して形成した後、
再びポリシリコンを通してNPN)ランジスタのエミッ
タ形成と同時に、定電圧ダイオードのN型不純物層にN
型不純物を拡散するために、定電圧ダイオードのN型不
純物層を深く形成でき、P−N接合が深い箇所で形成さ
れるため、定電圧ダイオードのリークが少なくなる効果
がある。
[FIG. 2(f)] After this, the electrode 34 is connected to the P-type impurity layer and the polysilicon 30.
Form on a. [Figure 2 (g)] [Effects of the Invention] As explained above, the present invention has the advantage of forming the N-type impurity layer of the constant voltage diode through polysilicon before forming the N-type impurity layer of the emitter of the NPN transistor. After forming,
At the same time as forming the emitter of the transistor (NPN) through the polysilicon again, the N-type impurity layer of the constant voltage diode is
In order to diffuse type impurities, the N-type impurity layer of the constant voltage diode can be formed deeply, and the PN junction is formed at a deep location, which has the effect of reducing leakage of the constant voltage diode.

【図面の簡単な説明】[Brief explanation of the drawing]

り 第1図(a)〜(勇)は、本発明の第1の実施例、第2
図(a)〜(g)は、第2の実施例の縦断面図である。 1.22・・・・・・P型サブストレート、2.23・
・・・・・N+埋込層、3.24・・・・・・N型エピ
タキシャル、4.6,8,13,20,25,28.3
1・・・・・・酸化膜、5a、5b、10,16.26
a、26b、27・・・・・・P型不純物層、7,12
.29・・・・・・窒化ケイ素膜、14.18,32.
33・・・・・・N型不純物層、9・・・・・・フォト
レジスト、11,30゜30a・・・・・・ポリシリコ
ン、19・・・・・・白金、21゜34・・・・・・電
極。 代理人 弁理士  内 原   晋
Figures 1(a) to 1(b) show the first embodiment and the second embodiment of the present invention.
Figures (a) to (g) are longitudinal sectional views of the second embodiment. 1.22...P-type substrate, 2.23.
...N+ buried layer, 3.24...N type epitaxial, 4.6, 8, 13, 20, 25, 28.3
1... Oxide film, 5a, 5b, 10, 16.26
a, 26b, 27... P-type impurity layer, 7, 12
.. 29...Silicon nitride film, 14.18,32.
33... N-type impurity layer, 9... Photoresist, 11, 30° 30a... Polysilicon, 19... Platinum, 21° 34... ····electrode. Agent Patent Attorney Susumu Uchihara

Claims (1)

【特許請求の範囲】[Claims]  第1導電型半導体基体に、第1の第2導電型不純物層
を形成する工程と、トランジスタのベースである第2の
第2導電型不純物層を形成する工程とポリシリコンを形
成する工程と、ポリシリコンを通して第1の第2導電型
不純物層内に第1導電型不純物層を形成する工程と、ポ
リシリコンを通して前記第1導電型不純物層と、第2の
第2導電型不純物層内に同時に第1導電型不純物層を形
成する工程を含むことを特徴とする半導体装置の製造方
法。
a step of forming a first second conductivity type impurity layer on a first conductivity type semiconductor substrate; a step of forming a second second conductivity type impurity layer serving as a base of the transistor; and a step of forming polysilicon; forming a first conductivity type impurity layer in the first second conductivity type impurity layer through the polysilicon; and simultaneously forming the first conductivity type impurity layer and the second second conductivity type impurity layer through the polysilicon; A method for manufacturing a semiconductor device, comprising the step of forming a first conductivity type impurity layer.
JP63008754A 1988-01-18 1988-01-18 Method for manufacturing semiconductor device Expired - Lifetime JPH07120711B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63008754A JPH07120711B2 (en) 1988-01-18 1988-01-18 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63008754A JPH07120711B2 (en) 1988-01-18 1988-01-18 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPH01183149A true JPH01183149A (en) 1989-07-20
JPH07120711B2 JPH07120711B2 (en) 1995-12-20

Family

ID=11701714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63008754A Expired - Lifetime JPH07120711B2 (en) 1988-01-18 1988-01-18 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JPH07120711B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59161060A (en) * 1982-12-20 1984-09-11 レイセオン カンパニ− Method of producing semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59161060A (en) * 1982-12-20 1984-09-11 レイセオン カンパニ− Method of producing semiconductor device

Also Published As

Publication number Publication date
JPH07120711B2 (en) 1995-12-20

Similar Documents

Publication Publication Date Title
US4408387A (en) Method for producing a bipolar transistor utilizing an oxidized semiconductor masking layer in conjunction with an anti-oxidation mask
JP3098848B2 (en) Self-aligned planar monolithic integrated circuit vertical transistor process
JPS62277745A (en) Semiconductor integrated circuit
JPH0193159A (en) Manufacture of bicmos element
JPH01183149A (en) Manufacture of semiconductor device
JPS624339A (en) Semiconductor device and manufacture thereof
JP2890509B2 (en) Method for manufacturing semiconductor device
KR100388212B1 (en) Method for manufacturing bipolar junction transistor
JPS62281367A (en) Manufacture of semiconductor device
JP3707978B2 (en) Semiconductor integrated circuit and manufacturing method thereof
JPH01235367A (en) Manufacture of semiconductor device
JPS63144567A (en) Manufacture of semiconductor device
JPH02119258A (en) Manufacture of semiconductor device
JPS63104366A (en) Manufacture of semiconductor device
JPS63249370A (en) Semiconductor device and its manufacture
JPH0485936A (en) Manufacture of semiconductor device
JPH0582985B2 (en)
JPH061815B2 (en) Method for manufacturing semiconductor device
JPS60137036A (en) Manufacture of semiconductor integrated circuit
JPS63104367A (en) Manufacture of semiconductor device
JPS58212170A (en) Semiconductor device
JPH01130553A (en) Manufacture of semiconductor integrated circuit
JPS61154073A (en) Manufacture of semiconductor device
JPS62243361A (en) Manufacture of semiconductor device
JPH01108771A (en) Manufacture of semiconductor device