JPH01235337A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH01235337A
JPH01235337A JP6279888A JP6279888A JPH01235337A JP H01235337 A JPH01235337 A JP H01235337A JP 6279888 A JP6279888 A JP 6279888A JP 6279888 A JP6279888 A JP 6279888A JP H01235337 A JPH01235337 A JP H01235337A
Authority
JP
Japan
Prior art keywords
oxide film
film
gate oxide
etching
irregularity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6279888A
Other languages
Japanese (ja)
Other versions
JP2663946B2 (en
Inventor
Fumihiko Inoue
文彦 井上
Junichi Teramae
寺前 淳一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu Fujitsu Electronics Ltd
Fujitsu Ltd
Original Assignee
Kyushu Fujitsu Electronics Ltd
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu Fujitsu Electronics Ltd, Fujitsu Ltd filed Critical Kyushu Fujitsu Electronics Ltd
Priority to JP63062798A priority Critical patent/JP2663946B2/en
Publication of JPH01235337A publication Critical patent/JPH01235337A/en
Application granted granted Critical
Publication of JP2663946B2 publication Critical patent/JP2663946B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Weting (AREA)

Abstract

PURPOSE:To eliminate an irregularity in an etching rate of a silicon oxide film inside a substrate face, to suppress an irregularity in a device characteristic and to enhance a yield by constituting a manufacturing method including a process to etch the silicon oxide film by using a mixed solution composed of ammonium hydroxide, hydrogen peroxide and water. CONSTITUTION:When a resist film 9 is removed, a layer 11 containing a substance contaminated with a metal which has been diffused and invaded from the resist film 9 is formed on a surface-layer part of a gate oxide film 7 and a field oxide film 4 which have been covered with the resist film 9. Then, a substrate to be treated is immersed in a mixed solution of NH4OH:H2O2:H2O=1:1:4 which has been heated to about 60-80 deg.C; the surface layer part of gate oxide films 7A, 7B and the field oxide film 4 is control-etched by about 20Angstrom . The time required for this etching operation is about 4-20 minutes. By this setup, a part 12 including the layer containing the substance contaminated with the metal is removed; the gate oxide films 7A, 7B become a desired thickness of about 80-130Angstrom . Also the field oxide film 4 becomes thin by about 20Angstrom . In this manner, it is possible to prevent an irregularity in a film thickness of the gate oxide film inside a substrate face after a control etching operation and to prevent a variation in a width of a device region due to overteching; a device characteristic can be made uniform.

Description

【発明の詳細な説明】 〔概 要〕 半導体装置の製造方法、特にウェーハプロセスにおける
酸化シリコン膜のウェットエツチング方法の改良に関し
、 基板面内における酸化シリコン膜のエツチングレートの
ばらつきをなくして素子特性のばらつきを抑え、歩留り
を向上させることを目的とし、水酸化アンモニウムと過
酸化水素と水の混液を用いて酸化シリコン膜のエツチン
グを行う工程を含んで構成する。
[Detailed Description of the Invention] [Summary] Regarding the improvement of the wet etching method of a silicon oxide film in a semiconductor device manufacturing method, particularly in a wafer process, it is possible to improve device characteristics by eliminating variations in the etching rate of a silicon oxide film within the substrate surface. The method includes a step of etching a silicon oxide film using a mixed solution of ammonium hydroxide, hydrogen peroxide, and water in order to suppress variations and improve yield.

〔産業上の利用分野〕[Industrial application field]

本発明は半導体装置の製造方法、特にウェーハプロセス
における酸化シリコン膜のウェットエツチング方法の改
良に関する。
The present invention relates to a method for manufacturing a semiconductor device, and particularly to an improvement in a method for wet etching a silicon oxide film in a wafer process.

MO3型半導体装置のウェーハプロセス工程においては
、ゲート酸化膜のコントロールエツチング、或いは薄い
酸化シリコン膜の除去等に、ダメージ形成の少ないウェ
ットエツチング手段が用いられるが、極度に高集積化さ
れて、ゲート酸化膜の厚さが10Å以下程度に極めて薄
く形成され、また素子領域幅も1μm以下のサブミクロ
ン幅に形成される超LSI等においては、上記ウェット
エツチング処理におけるエツチング量のばらつきによっ
て、素子特性にばらつきを生じて歩留りが低下するとい
う問題があり、改善が要望されている。
In the wafer process of MO3 type semiconductor devices, wet etching means with less damage formation is used for controlled etching of gate oxide films or removal of thin silicon oxide films, but with extremely high integration, gate oxide In VLSIs, etc., in which the film thickness is extremely thin (approximately 10 Å or less) and the device region width is submicron (1 μm or less), device characteristics may vary due to variations in the amount of etching in the wet etching process. There is a problem that this causes a decrease in yield, and an improvement is desired.

(従来の技術〕 MO3型半導体装置の製造工程においては、ゲート酸化
膜を形成した後、このゲート酸化膜を通してゲート酸化
膜下の基板面に闇値電圧調整用のチャネルドーズと称す
る不純物のイオン注入がなされるが、nチャネル素子と
nチャネル素子が併設されるCMO3半導体装置の製造
に際しては、例えばnチャネル素子のチャネルドーズを
行う際にはnチャネル素子のゲート酸化膜上をレジスト
膜で覆い、またnチャネル素子のチャネルドーズを行う
際にはnチャネル素子のゲート酸化膜上をレジスト膜で
覆って所望の素子領域に選択的に所望の不純物のイオン
注入がなされる。
(Prior art) In the manufacturing process of MO3 type semiconductor devices, after forming a gate oxide film, impurity ions are implanted into the substrate surface under the gate oxide film through the gate oxide film, which is called a channel dose for dark voltage adjustment. However, when manufacturing a CMO3 semiconductor device in which an n-channel element and an n-channel element are installed together, for example, when performing channel dosing of the n-channel element, the gate oxide film of the n-channel element is covered with a resist film, Further, when performing channel dosing of an n-channel device, the gate oxide film of the n-channel device is covered with a resist film, and desired impurity ions are selectively implanted into desired device regions.

この際、レジスト膜で覆われたゲート酸化膜の深さ10
μm以下程度の表層部にはレジスト膜からの金属汚染物
質の拡散による侵入があり、この金属汚染物質によって
ゲート酸化膜の耐圧が劣化するという問題がある。
At this time, the depth of the gate oxide film covered with the resist film is 10
There is a problem in that metal contaminants diffuse into the surface layer of about μm or less from the resist film, and the breakdown voltage of the gate oxide film deteriorates due to these metal contaminants.

そこでゲート酸化膜の耐圧劣化を防止するために、上記
チャネルドーズを終わってレジスト膜を除去した後、コ
ントロールエツチング手段によりゲート酸化膜表層部の
金属汚染物質侵入領域の除去が行われる。
Therefore, in order to prevent breakdown voltage deterioration of the gate oxide film, after the channel dose is completed and the resist film is removed, the region where metal contaminants have invaded the surface layer of the gate oxide film is removed by controlled etching means.

このコントロールエツチングは、従来は弗酸系のエツチ
ング液例えば1〜5%弗酸()IP)溶液を用い、20
〜30人の程度の深さになされていた。
Conventionally, this control etching uses a hydrofluoric acid-based etching solution, such as a 1 to 5% hydrofluoric acid (IP) solution, and
It was done to a depth of about 30 people.

またトランジスタの形成領域等を画定分離するフィール
ド酸化膜を選択酸化により形成した際、該選択酸化に用
いた耐酸化膜下部の薄い下敷き酸化膜をウォッシュアウ
トする際にも1〜5%HF溶液が用いられていた。
Furthermore, when a field oxide film is formed by selective oxidation to define and separate transistor formation regions, a 1 to 5% HF solution is also used to wash out the thin underlying oxide film below the oxidation-resistant film used for the selective oxidation. It was used.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし上記HF溶液は300人/分程度の比較的大きな
エツチングレートを有するために、基板面内において大
きなエツチングレートのばらつきを生ずる。
However, since the above-mentioned HF solution has a relatively high etching rate of about 300 per minute, large variations in etching rate occur within the surface of the substrate.

第3図は5%)HF溶液で熱酸化による酸化シリコン(
SiO□)膜を80人エツチングした際の基板面内にお
けるエツチングレートのばらつきを示す図で、ta+は
エツチング液のSiO□膜厚の面内分布を示し、fb)
はエツチング後の5i(h膜厚の面内分布を示す。
Figure 3 shows silicon oxide (5%) by thermal oxidation in HF solution.
This is a diagram showing the variation in etching rate within the substrate surface when a SiO□) film was etched by 80 people, where ta+ indicates the in-plane distribution of the SiO□ film thickness of the etching solution, fb)
indicates the in-plane distribution of 5i(h film thickness) after etching.

なお(C)は測定径路を示す。Note that (C) shows the measurement path.

そのため、前記ゲート酸化膜のコントロールエツチング
に際しては、基板面内においてゲート酸化膜厚に大きな
ばらつきを生じて、超LSI等高集積化されて、ゲート
酸化膜厚が100Å以下に設定される品種においては、
闇値電圧に大きなばらつきを生ずる。
Therefore, when performing the controlled etching of the gate oxide film, there is a large variation in the gate oxide film thickness within the substrate surface, and in products that are highly integrated such as VLSI and the gate oxide film thickness is set to 100 Å or less, ,
This causes large variations in the dark value voltage.

また前記下敷き酸化膜のウォッシュアウトに際してはフ
ィールド酸化膜端部のバーズビーク部の後退量がばらつ
くので、ILsI等トランジスタ幅がサブミクロン幅に
設定される品種においては、トランジスタ幅の変動割合
が拡大してコンダクタンスが大きく変動する。
Furthermore, when washing out the underlying oxide film, the amount of recession of the bird's beak at the edge of the field oxide film varies, so in products such as ILsI where the transistor width is set to submicron width, the rate of variation in transistor width increases. Conductance fluctuates greatly.

そしてこれらトランジスタ特性のばらつきによって歩留
りの低下を招(という問題があった。
There was a problem in that the variation in these transistor characteristics led to a decrease in yield.

そこで本発明は、基板面内における酸化シリコン膜のエ
ツチングレートのばらつきをなくして素子特性のばらつ
きを抑え、歩留りを向上させることを目的とする。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to eliminate variations in the etching rate of a silicon oxide film within the plane of a substrate, suppress variations in device characteristics, and improve yield.

〔課題を解決するだめの手段〕[Failure to solve the problem]

上記課題は、水酸化アンモニウムと過酸化水素と水の混
液を用いて酸化シリコン膜のエツチングを行う工程を有
する本発明による半導体装置の製造方法によって解決さ
れる。
The above-mentioned problems are solved by a method of manufacturing a semiconductor device according to the present invention, which includes a step of etching a silicon oxide film using a mixed solution of ammonium hydroxide, hydrogen peroxide, and water.

〔作 用〕[For production]

即ち本発明においては、水酸化アンモニウム(Nil、
011)と過酸化水素(1120□)と水(1120)
との混合液が、NI+40Hのエツチング作用によって
金属汚染物質をSiO□ごと除去すると同時に、11□
0□の酸化作用によってエツチングレートの制御及び表
面荒れを防止する機能を有し、そのエツチングレートを
1〜5人/分程度に極め°C小さく抑えることができる
ことによって、基板面内のSin、膜のエツチングレー
トのばらつきかきが第4図に示すように殆ど生じないと
いう実験結果に基づき、該NH,O1lと11□0□と
HzOとの混液をMO3型半導体装置の製造工程におけ
る金属汚染物質除去のためのゲート酸化膜の微小深さの
コントロールエツチングや、薄い酸化膜のウォノンユア
ウトに用いる。
That is, in the present invention, ammonium hydroxide (Nil,
011), hydrogen peroxide (1120□) and water (1120)
The mixed solution with 11□ removes metal contaminants along with SiO□ by the etching action of NI+40H
It has the function of controlling the etching rate and preventing surface roughening by the oxidation action of 0□, and by keeping the etching rate extremely low to about 1 to 5 people/minute, it is possible to reduce the thickness of Si and films within the substrate surface. Based on the experimental results that there is almost no variation in the etching rate as shown in Figure 4, a mixed solution of NH, O1l, 11□0□ and HzO is used to remove metal contaminants in the manufacturing process of MO3 type semiconductor devices. It is used for micro-depth control etching of gate oxide films and for etching thin oxide films.

なお第4図において(a)はエツチング前のSiO□膜
厚の基板面内分布、(blはエツチング後の5i02膜
厚の基板面内分布を示す。
In FIG. 4, (a) shows the in-plane distribution of the SiO□ film thickness before etching, and (bl) shows the in-plane distribution of the 5i02 film thickness after etching.

そしてこれによって、コントロールエツチング後のゲー
ト酸化膜厚の基板面内のばらつきや、オーバエツチング
による素子領域幅の変動等が防止されて素子特性が均一
化され、超LSI等高集積化される半導体装置において
特に大きな歩留り向上が得られる。
As a result, variations in gate oxide film thickness within the substrate surface after controlled etching and variations in device region width due to overetching are prevented, and device characteristics are made uniform, leading to highly integrated semiconductor devices such as VLSIs. A particularly large improvement in yield can be obtained.

〔実施例〕〔Example〕

以下本発明を、図を参照し実施例により具体的に説明す
る。
Hereinafter, the present invention will be specifically explained by examples with reference to the drawings.

第1図は本発明の一実施例の工程断面図、第2図は本発
明の他の実施例の工程断面図である。
FIG. 1 is a process sectional view of one embodiment of the present invention, and FIG. 2 is a process sectional view of another embodiment of the invention.

全図を通じ同一対象物は同一符合で示す。Identical objects are indicated by the same reference numerals throughout the figures.

第1図(a)参照 本発明の方法をゲート酸化膜のコントロールエツチング
に用いてCMO3半導体装置を製造するに際しては、通
常の方法で例えばn−型シリコン基板1に選択的にp−
型ウェル2が形成され、表面部に基板1面を表出する第
1の素子形成領域3^とウェル2面を表出する第2の素
子形成領域3Bとを画定分離するフィールド酸化膜4及
びその下部のn型チャネルストッパ5及びn型チャネル
ストッパ6が形成されてなる従来同様の被処理基板を用
い、従来通り熱酸化手段により第1の素子形成領域3八
と第2の素子形成領域3Bの表面に厚さ例えば100〜
150人程度のゲー程度化膜7八及び7Bを形成する。
Refer to FIG. 1(a) When manufacturing a CMO3 semiconductor device by using the method of the present invention for controlled etching of a gate oxide film, for example, p-type silicon substrate 1 is selectively etched using a normal method.
A mold well 2 is formed, and a field oxide film 4 and a field oxide film 4 are formed on the surface portion to define and separate a first element formation region 3^ that exposes the first surface of the substrate and a second element formation region 3B that exposes the second surface of the well. Using a substrate to be processed similar to the conventional one on which the n-type channel stopper 5 and the n-type channel stopper 6 are formed, the first element forming region 38 and the second element forming region 3B are formed by thermal oxidation as in the conventional method. For example, the thickness on the surface is 100~
Formation layers 78 and 7B of approximately 150 people are formed.

第1図(bl参照 次いで従来同様の方法により該被処理基板上にチャネル
ドーズを行う例えば第1の素子形成領域3八面を表出す
る開孔8を有し、チャネルドーズを行わない第2の素子
形成領域3Bのゲート酸化膜7A上を覆うレジスト膜9
を形成し、該レジスト膜9及びフィールド酸化膜4をマ
スクにし、ゲート酸化膜7Aを通して、イオン注入手段
により第1の素子形成領域3Aのn−型益板1面に10
゛+s cm−”程度の燐P0のチャネルドーズを行う
。110はP゛ドーズ領域示す。
FIG. 1 (see BL) Next, a channel dose is applied to the substrate to be processed by a method similar to the conventional method. A resist film 9 covering the gate oxide film 7A in the element formation region 3B of
is formed, and using the resist film 9 and field oxide film 4 as a mask, 100 nm is applied to one surface of the n-type gain plate in the first element forming region 3A by ion implantation through the gate oxide film 7A.
A channel dose of phosphorus P0 of approximately "+s cm-" is applied. Reference numeral 110 indicates a P dose region.

第1図(C)参照 次いで通常の方法で従来通りレジスト膜9を除去する。See Figure 1 (C) The resist film 9 is then removed in a conventional manner using a conventional method.

ここでレジスト膜9に覆われていたゲート酸化膜7B及
びフィールド酸化膜4の表層部には従来通りレジスト膜
9から拡散侵入した金属汚染物質含有層11が形成され
る。
Here, a metal contaminant-containing layer 11 is formed on the surface layer portions of the gate oxide film 7B and the field oxide film 4 that were covered with the resist film 9 by diffusing and penetrating from the resist film 9 as in the conventional method.

第1図Fdl参照 次いで上記被処理基板を、60〜80℃程度に加温した
NI+4011: 11,0□:II□O=1:1:4
の混液に浸漬し、ゲート酸化膜7A、7B及びフィール
ド酸化膜4の表層部を20人程度コントロールエ・ノチ
ングする。
Refer to FIG. 1 Fdl. Next, the substrate to be processed was heated to about 60 to 80°C. NI+4011: 11,0□:II□O=1:1:4
About 20 people perform control etching on the surface layer parts of the gate oxide films 7A, 7B and the field oxide film 4.

このエツチングに要する時間は約4〜20公人度である
。ここで前記金属汚染物質含有層を含む鎖線で図示する
12の部分が除去されて、ゲート酸化膜7八、7Bは8
0〜130人程度の所程度厚さになる。またフィールド
酸化膜4も20人程度薄くなる。
The time required for this etching is about 4 to 20 degrees. Here, 12 portions shown by chain lines including the metal contaminant-containing layer are removed, and the gate oxide films 78, 7B are removed by 8.
The thickness will be about 0 to 130 people. Furthermore, the field oxide film 4 is also thinned by about 20 layers.

第1図(e)参照 以後従来同様の方法によりゲート酸化膜7^、7B上に
ポリSi等のゲート電極13A 、 13Bを形成し、
ゲート電極13Aをマスクにし選択イオン注入手段で素
子形成領域3Aに選択的に硼素を注入し、次いでゲート
電極13Bをマスクにし選択イオン注入手段で素子形成
領域3Bに選択的に砒素を注入し、次いで活性化熱処理
を行って素子形成領域3Aにp゛型のソース領域14及
びドレイン領域15を、また素子形成領域3Bにn゛型
のソース領域16及びドレイン領域17を形成する。こ
の際前記チャネルドーズ領域110はn型チャネル層1
0となる。
Referring to FIG. 1(e), gate electrodes 13A and 13B made of poly-Si or the like are formed on the gate oxide films 7^ and 7B by a method similar to the conventional method.
Using the gate electrode 13A as a mask, selective ion implantation means selectively implants boron into the element formation region 3A. Next, using the gate electrode 13B as a mask, selective ion implantation means selectively implants arsenic into the element formation region 3B. Activation heat treatment is performed to form a p' type source region 14 and drain region 15 in the element forming region 3A, and an n' type source region 16 and drain region 17 in the element forming region 3B. At this time, the channel dose region 110 is the n-type channel layer 1.
It becomes 0.

そして以後、図示しない絶縁膜の形成、配線形成等がな
され、本発明の方法を用いたCMO3半導体装置が完成
する。
Thereafter, an insulating film (not shown), wiring, etc. are formed, and a CMO3 semiconductor device using the method of the present invention is completed.

なお本発明に係るコントロールエツチング方法において
は、80人エツチングした際にも前記第4図に示される
ようにitt面内のエツチングレートのばらつきは極め
てすくない。従って20人程度の微小厚さエツチングを
行う該実施例において基板面内のエツチングレートのば
らつきは殆ど顕現化されず、従って該コントロールエツ
チングによるゲート酸化膜の厚さのばらつきは殆ど生ず
ることがない。
In the controlled etching method according to the present invention, even when etching is performed by 80 people, as shown in FIG. 4, variations in the etching rate within the itt plane are extremely small. Therefore, in this embodiment, in which about 20 people perform etching to a minute thickness, variations in the etching rate within the plane of the substrate are hardly realized, and therefore, variations in the thickness of the gate oxide film due to the controlled etching hardly occur.

第2図1al参照 また選択酸化手段により素子形成領域を画定分離する際
に本発明の方法を適用する際には、例えばn−型シリコ
ン基板10表面に従来通り熱酸化法により厚さ200人
程程度下敷きSing膜18膜形8し、次いで該下敷き
Sing膜18上に素子形成領域3の形状に対応する耐
酸化膜例えば窒化シリコン(Si3N4)膜パターン1
9を形成し、次いで該SiJ。
Refer to FIG. 2 1al. When applying the method of the present invention to define and separate element forming regions by selective oxidation means, for example, the surface of the n-type silicon substrate 10 is coated with a thickness of about 200 by conventional thermal oxidation. An underlay Sing film 18 is formed into a film shape 8, and then an oxidation-resistant film, for example, a silicon nitride (Si3N4) film pattern 1 corresponding to the shape of the element formation region 3 is formed on the underlay Sing film 18.
9 and then the SiJ.

膜パターン19をマスクにしてイオン注入によりチャネ
ルストッパ用の燐(P”)を選択的に注入する。ここで
105はど注入領域を示す。
Phosphorus (P") for a channel stopper is selectively implanted by ion implantation using the film pattern 19 as a mask. Here, 105 indicates an implantation region.

第2図(bl参照 次いで従来通り5i3Nn膜パターン19をマスクにし
て選択酸化を行い厚さ5000人程度0フィールド酸化
膜4を形成する。このフィールド酸化膜4の端部には公
知の薄い酸化膜よりなるバーズビーク104が形成され
る。またこの際同時に前に注入されたP゛は活性化際分
布してn型チャネルストッパ5が形成される。
Refer to FIG. 2 (bl) Next, selective oxidation is performed using the 5i3Nn film pattern 19 as a mask in the conventional manner to form a 0-field oxide film 4 with a thickness of about 5000 layers. A bird's beak 104 is formed.At the same time, the previously implanted P is distributed during activation to form an n-type channel stopper 5.

第2図(C1参照 次いで燐酸煮沸処理等によりSi、N、膜パターン19
を除去した後、60〜80℃程度に加温したN)I40
H: II□0□: H20=1 : 1 : 4の混
液により下敷きS i OzPQ 18をエソヂング除
去する。
FIG. 2 (see C1) Next, Si, N, film pattern 19 is removed by phosphoric acid boiling treatment, etc.
N)I40 heated to about 60 to 80°C after removing
H: II□0□: H20=1:1:4 underlayer S i OzPQ 18 is removed by etching.

上記混液の熱酸化Sin、膜18に対するエツチングレ
ートは1〜5人/分程度の非常に遅いレートであるので
、該エツチング処理においてフィールド酸化膜4が強く
オーバエツチングされバーズビーク部104が広く除去
されて素子形成領域が太き(拡大することがなくなり、
素子幅のばらつきは減少する。
Since the etching rate of the thermally oxidized Sin film 18 of the above-mentioned mixed solution is a very slow rate of about 1 to 5 per minute, the field oxide film 4 is strongly overetched in the etching process, and the bird's beak portion 104 is widely removed. The element formation area is thicker (no longer expands,
Variations in element width are reduced.

そして以後例えば前記実施例の工程により半導体装置が
形成される。
Thereafter, a semiconductor device is formed by, for example, the steps of the above embodiment.

〔発明の効果〕〔Effect of the invention〕

以上説明のように本発明によれば、コントロールエツチ
ング後のゲート酸化膜厚の基板面内のばらつきや、オー
バエツチングによる素子領域幅の変動等が防止されて素
子特性が均一化され、超しsr等高集積化される半導体
装置において特に大きな歩留り向上が得られる。
As described above, according to the present invention, variations in gate oxide film thickness within the substrate surface after controlled etching and variations in device region width due to overetching are prevented, device characteristics are made uniform, and SSR is improved. A particularly large improvement in yield can be obtained in semiconductor devices that are integrated at equal height.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図fa)〜telは本発明の方法の一実施例の工程
断面図、 第2図fa)〜(C1は本発明の方法の他の実施例の工
程断面図、 第3図は従来のエツチングレートの面内ばらつきを示す
図、 第4図は本発明の方法によるエツチングレートの面内ば
らつきを示す図 でなる。 図において、 1はn−型シリコン基板、 2はp−型ウェル、 3A、3Bは素子形成領域、 4はフィールド酸化膜、 5はn型チャネルストッパ、 6はp型チャネルストッパ、 7^、7Bはゲート酸化膜、 8は開孔、 9はレジスト膜、 10はn型チャネル領域、 11は金属汚染物質含有層、 12はエツチング除去部、 13A 、13Bはゲート電極、 14はp゛゛ソース領域、 15はp゛型トドレイン領域 16はn゛゛ソース領域、 17はn゛゛ドレイン領域 を示す。 ホ畠明の〃5恥−突箱例O工程訪め口 穿 1 口 (千〇1) 本全B胎宏勧−戴鞄例のL哩断面目 早 1 口 (そ[F]2) 率 3 (支) (R>          (し、) A奮トB月θと53粁に5工2.7ラーシブし一トロ値
り直■トつ、3H′ホす目早 4 口
Fig. 1 fa) to tel are process sectional views of one embodiment of the method of the present invention, Fig. 2 fa) to (C1 are process sectional views of another embodiment of the method of the present invention, and Fig. 3 is a process sectional view of an embodiment of the method of the present invention. Figure 4 is a diagram showing in-plane variations in etching rate according to the method of the present invention. In the figure, 1 is an n-type silicon substrate, 2 is a p-type well, and 3A is a diagram showing in-plane variations in etching rate. , 3B is an element formation region, 4 is a field oxide film, 5 is an n-type channel stopper, 6 is a p-type channel stopper, 7^, 7B is a gate oxide film, 8 is an opening, 9 is a resist film, 10 is an n-type Channel region, 11 is a metal contaminant-containing layer, 12 is an etching removal part, 13A and 13B are gate electrodes, 14 is a p'' source region, 15 is a p'' type drain region 16 is an n'' source region, 17 is an n'' drain Indicates the area. Ho Hatake Akira's 〃5 Shame-Example O process visit opening 1 mouth (1,001) Honzen B womb promotion-Dai bag example L cross section 1 mouth (so[F ]2) Rate 3 (branch) (R> (shi,) A striving to B month θ and 53 months, 5 hours 2.7 rashib, 1 toro price straight ■ totsu, 3H' home quickly 4 mouths

Claims (1)

【特許請求の範囲】[Claims]  水酸化アンモニウムと過酸化水素と水の混液を用いて
酸化シリコン膜のエッチングを行う工程を有することを
特徴とする半導体装置の製造方法。
A method for manufacturing a semiconductor device, comprising the step of etching a silicon oxide film using a mixed solution of ammonium hydroxide, hydrogen peroxide, and water.
JP63062798A 1988-03-16 1988-03-16 Method for manufacturing semiconductor device Expired - Fee Related JP2663946B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63062798A JP2663946B2 (en) 1988-03-16 1988-03-16 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63062798A JP2663946B2 (en) 1988-03-16 1988-03-16 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPH01235337A true JPH01235337A (en) 1989-09-20
JP2663946B2 JP2663946B2 (en) 1997-10-15

Family

ID=13210728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63062798A Expired - Fee Related JP2663946B2 (en) 1988-03-16 1988-03-16 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP2663946B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5413678A (en) * 1993-05-14 1995-05-09 Texas Instruments Incorporated Heated SC1 solution for selective etching
KR100486210B1 (en) * 1997-09-12 2005-06-16 삼성전자주식회사 Cleaning method of trench isolation for improvement of trench profile
KR100624089B1 (en) * 2005-07-12 2006-09-15 삼성전자주식회사 Method of forming a pattern, method of manufacturing a multi gate oxide layer and flash memory cell using the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5342670A (en) * 1976-09-30 1978-04-18 Nec Corp Coupling cave-type delay circuit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5342670A (en) * 1976-09-30 1978-04-18 Nec Corp Coupling cave-type delay circuit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5413678A (en) * 1993-05-14 1995-05-09 Texas Instruments Incorporated Heated SC1 solution for selective etching
KR100486210B1 (en) * 1997-09-12 2005-06-16 삼성전자주식회사 Cleaning method of trench isolation for improvement of trench profile
KR100624089B1 (en) * 2005-07-12 2006-09-15 삼성전자주식회사 Method of forming a pattern, method of manufacturing a multi gate oxide layer and flash memory cell using the same

Also Published As

Publication number Publication date
JP2663946B2 (en) 1997-10-15

Similar Documents

Publication Publication Date Title
JP2558931B2 (en) Semiconductor device and manufacturing method thereof
JPH0434819B2 (en)
JPS5850015B2 (en) Manufacturing method of semiconductor device
US4292156A (en) Method of manufacturing semiconductor devices
US5780347A (en) Method of forming polysilicon local interconnects
JPH01235337A (en) Manufacture of semiconductor device
JP2712401B2 (en) Method for manufacturing semiconductor device
JPS6032974B2 (en) Manufacturing method of semiconductor device
JPH05243264A (en) Manufacture of transistor
JP3399111B2 (en) Method for manufacturing semiconductor device
JPH0316150A (en) Manufacture of semiconductor element
JP4032618B2 (en) Manufacturing method of semiconductor device
JPH0393233A (en) Manufacture of semiconductor device
JPH0582734A (en) Manufacture of mos semiconductor device
JPH027558A (en) Semiconductor device and manufacture thereof
JPH10125623A (en) Manufacture of semiconductor device
JPH0590254A (en) Manufacture of semiconductor device
JPS60127741A (en) Manufacture of semiconductor device
JPH0258771B2 (en)
KR19980065735A (en) Method of forming surface step of semiconductor substrate
KR19990005216A (en) Method for manufacturing spacers of transistors
JPH03280429A (en) Manufacture of semiconductor device
JPS63153862A (en) Manufacture of semiconductor device
JPH03160728A (en) Manufacture of transistor
JPS62211952A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees