JPH03160728A - Manufacture of transistor - Google Patents

Manufacture of transistor

Info

Publication number
JPH03160728A
JPH03160728A JP30113089A JP30113089A JPH03160728A JP H03160728 A JPH03160728 A JP H03160728A JP 30113089 A JP30113089 A JP 30113089A JP 30113089 A JP30113089 A JP 30113089A JP H03160728 A JPH03160728 A JP H03160728A
Authority
JP
Japan
Prior art keywords
gate electrode
drain
oxide film
oxygen ions
low concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30113089A
Other languages
Japanese (ja)
Inventor
Norihiro Ikeda
典弘 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP30113089A priority Critical patent/JPH03160728A/en
Publication of JPH03160728A publication Critical patent/JPH03160728A/en
Pending legal-status Critical Current

Links

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE:To make unnecessary the etching removing process for an unnecessary oxide film by forming a side wall spacer through injecting oxygen ions into the surface layer of the side part on at least drain side of a gate electrode and then heat treating it. CONSTITUTION:After a low concentration drain 7 and a low concentration source 8 are formed in the surface of a substrate 1, oxygen ions 9 are injected from above of the substrate 1. This injection is carried out from obliquely upper right and left toward respective side parts on the drain 7 and the source 8 side of a gate electrode 4a into the gate electrode 4a as the center, and the oxygen ions are injected into the whole surface layer including both side parts of the gate electrode 4a. Then, heat treatment is carried out for the whole substrate including the gate electrode 4a to change the oxygen ion injected part in the preceding process into a silicon oxide layer 10. At that time, initial volume of the gate electrode 4a expands somewhat due to oxidation, so that the distance (w) between the both side parts of the gate electrode 4a including oxidized part, and in particular, the oxide layer part 10a in the gate electrode side part on the drain side can be used as a side wall spacer. Thus, etching treatment is made unnecessary and high precision work can be avoided.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明はトランジスタの製造方法、より詳しくは、低濃
度ドレイン(LDD)構造型トランジスタの製造方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION (A) Field of Industrial Application The present invention relates to a method for manufacturing a transistor, and more particularly, to a method for manufacturing a lightly doped drain (LDD) structure type transistor.

(口)従来の技術 LDD構造型トランジスタ自体は、例えば、日経BP社
1989午1月14日発行rVLsI製造技術」第22
頁〜第23頁にも示されている様に既に知られており、
斯るトランジスタの製造方法においては、通常、ゲート
電極をマスクとするイオン注入により少なくとも低濃度
のドレインを形成した後、前記ゲート電極の少なくとも
前記ドレイン側の側部に側壁スペーサを設け、斯る側壁
スペーサ付きゲート電極をマスクとするイオン注入によ
り、前記ドレインを少なくともそのゲート電極側の端部
を除いて高濃度にする工程が含まれる。
(Note) Conventional technology The LDD structure type transistor itself is described in, for example, "rVLsI Manufacturing Technology" 22, published by Nikkei BP, January 14, 1989.
It is already known as shown on pages 23 to 23,
In a method for manufacturing such a transistor, usually, after forming at least a low concentration drain by ion implantation using the gate electrode as a mask, a sidewall spacer is provided at least on the side of the gate electrode on the drain side, and the sidewall is The method includes a step of increasing the concentration of the drain to a high concentration by ion implantation using the gate electrode with a spacer as a mask, except for at least the end portion on the gate electrode side.

そして、前記側壁スペーサ形戊のために従来は、低濃度
ドレイン形成後のゲート電極の周囲を含んで半導体基板
上全面に化学気相蒸着(CVD)法によりシリコン酸化
膜を約1000人厚みで堆積し、次いで反応性イオンエ
ッチング(RIE)等の異方性エッチングにより、ゲー
ト電極の少なくともドレイン側の側部に前記シリコン酸
化膜を残し、これを側壁スペーサとするものであった。
To form the sidewall spacer, conventionally, a silicon oxide film is deposited to a thickness of approximately 1000 nm over the entire surface of the semiconductor substrate, including the area around the gate electrode after forming the low concentration drain, by chemical vapor deposition (CVD). Then, by anisotropic etching such as reactive ion etching (RIE), the silicon oxide film is left on at least the side of the gate electrode on the drain side, and this is used as a sidewall spacer.

(ハ)考案が解決しようとする課趙 しかし、前記側壁スペーサの形或の際のエノチングは高
精度に行われねばならず、たとえばオーバーエソチング
状態になれば、ゲート電極や基板にもエノチングが進ん
でしまう。更に、ゲート電極下のゲート酸化膜をドレイ
ン上にも延在させておき、ドレイン形戊時のイオン注入
が、この延花酸化膜を介して行われる形態の場合、斯る
延在酸化膜上にも堆積される側壁スペーサ用酸化膜を、
前記延在酸化膜のみを残してエンチング除去する作業も
煩雑である。
(c) Problems that the invention aims to solve: However, the etching when forming the sidewall spacer must be performed with high precision. I move on. Furthermore, in the case where the gate oxide film under the gate electrode is extended over the drain and ion implantation is performed through the extended oxide film when forming the drain, the gate oxide film under the gate electrode is extended over the drain. The sidewall spacer oxide film is also deposited on the
The process of etching away only the extended oxide film is also complicated.

従って、本発明はこの様な欠点をなくした、新規な製造
方法を提供するものである。
Therefore, the present invention provides a novel manufacturing method that eliminates these drawbacks.

(二)課題を解決するための手段 本発明の方法は,LDDH4造型トランジスタの製造に
おいて、前記側壁スペーサは、前記ゲート電極の少なく
とも前記ドレイン側の側部の表面層に酸素イオンを注入
し、次いで熱処理することにより形成されることを特徴
とする。
(2) Means for Solving the Problems In the method of the present invention, in manufacturing an LDDH4 transistor, the sidewall spacer is formed by implanting oxygen ions into the surface layer of at least the drain side of the gate electrode, and then It is characterized by being formed by heat treatment.

(ホ〉作用 本発明によれば、酸素イオン注入と熱処理によりシリコ
ン酸化膜が形戊され、それが側壁スペーサとなる。従っ
て、従来の如き、側壁スペーサ形或のための、不要酸化
膜のエッチング除去工程が必要とされない。
(E) Effect According to the present invention, a silicon oxide film is formed by oxygen ion implantation and heat treatment, and becomes a sidewall spacer.Therefore, unlike the conventional sidewall spacer type, unnecessary oxide film etching is not required. No removal step is required.

(へ)実施例 第1図乃至第7図は、本発明の実施例方法を工程順に示
している。
(f) Example FIGS. 1 to 7 show an example method of the present invention in the order of steps.

第1図に示す工程では,P型シリコン基板(1)の表面
に、通常の手法により分離用の厚膜シリコン酸化膜(2
)と300人厚みの薄嘆シリコン酸化膜(3)とが形或
される。後者の酸化膜(3)は、後工程で形成されるゲ
ート電極の下に位置するゲート酸化膜部分(3a)と、
延在酸化膜部分(3b)とがらなる。
In the process shown in Figure 1, a thick silicon oxide film (2
) and a thin silicon oxide film (3) with a thickness of 300 mm are formed. The latter oxide film (3) has a gate oxide film portion (3a) located under the gate electrode formed in a later step,
The extended oxide film portion (3b) is separated from the extended oxide film portion (3b).

第2図に示す工程では、各酸化膜(2)(3)上全面に
、減圧CVD法により、4000人厚みの多結晶シリコ
ン膜(4)が堆積され、更に、ゲート電極形凌位置に、
バターニングされたレジスト(5)が形戊される。尚多
結晶シリコン膜(4〉には、P(燐)添加により導電性
が付与される。
In the step shown in FIG. 2, a polycrystalline silicon film (4) with a thickness of 4,000 wafers is deposited on the entire surface of each oxide film (2) and (3) by low pressure CVD, and further, a polycrystalline silicon film (4) with a thickness of 4000 nm is deposited on the entire surface of each oxide film (2) and (3).
The patterned resist (5) is shaped. The polycrystalline silicon film (4) is given conductivity by adding P (phosphorus).

第3図に示す工程では、RIHにより多結晶シリコン膜
(4)の異方性エッチングが行われ、レジスト(5)の
直下に多結晶シリコン膜が残され、それがゲート電極(
4a)となる。
In the step shown in FIG. 3, the polycrystalline silicon film (4) is anisotropically etched by RIH, leaving the polycrystalline silicon film directly under the resist (5), which forms the gate electrode (
4a).

第4図に示す工程では、前工程のレジスト(5)が除去
され、ついで、燐イオン(6)が基板上から延在酸化膜
(3b)を通して、低濃度に注入される。
In the step shown in FIG. 4, the resist (5) from the previous step is removed, and then phosphorus ions (6) are implanted at a low concentration from above the substrate through the extended oxide film (3b).

このとき、ゲート電極(4a)がマスクとなり、基板表
面に低濃度ドレイン(7)と低濃度ソース(8)が形成
される。イオン注入条件は、イオン種11p、注入エネ
ルギ60KeV、ドーズ量IXIO”/cm2である。
At this time, the gate electrode (4a) serves as a mask, and a low concentration drain (7) and a low concentration source (8) are formed on the substrate surface. The ion implantation conditions are: ion species 11p, implantation energy 60 KeV, and dose IXIO''/cm2.

第5図に示す工程では、酸素イオン(9)が基板上から
注入される。このときの注入は、ゲート電極(4a)の
、ドレイン(7)及びソース(8)側の各側部に向うべ
く、ゲート電極(4a)を中心にその左右の斜ぬ上方か
ら行われ、この結果、ゲート電極(4a)の両側部を含
む全面の表面層に酸素イオンが注入される。イオン注入
条件は、イオン種目0”注入エネルギ32KeV、ドー
ズ量I X 1 0 ”/cm”であり、注入深さは約
500人である。
In the step shown in FIG. 5, oxygen ions (9) are implanted from above the substrate. The injection at this time is performed not diagonally above the left and right sides of the gate electrode (4a) in order to direct it to each side of the gate electrode (4a) on the drain (7) and source (8) sides. As a result, oxygen ions are implanted into the entire surface layer including both sides of the gate electrode (4a). The ion implantation conditions were as follows: ion type 0'' implantation energy 32KeV, dose amount I x 10''/cm'', and implantation depth approximately 500.

第6図に示す工程では、ゲート電極(4a)を含む基板
全体に熱処理が施され、これにより前工程の酸素イオン
注入部がシリコン酸化物層(10)に変わる。このとき
、斯る酸化により、当初のゲート電極(4a)の体積が
若干膨張する結果、酸化部分を含むゲート電極(4a)
の両側部間距離Wは、当初のそれより約1000人増加
し、特に、ドレイン側のゲート電極側部の酸化物層部分
(10a)が側壁スペーサとして用いられる。
In the step shown in FIG. 6, the entire substrate including the gate electrode (4a) is subjected to heat treatment, thereby converting the oxygen ion implanted portion in the previous step into a silicon oxide layer (10). At this time, due to such oxidation, the volume of the original gate electrode (4a) expands slightly, and as a result, the gate electrode (4a) including the oxidized portion
The distance W between both sides is increased by about 1000 compared to the original value, and in particular, the oxide layer portion (10a) on the side of the gate electrode on the drain side is used as a sidewall spacer.

本工程における熱処理は、窒素雰囲気中での、900℃
、30分の加熱条件で行われる。このとき、第4図にお
ける注入イオンに対するアニール効果も生じる。
The heat treatment in this step is at 900°C in a nitrogen atmosphere.
, under heating conditions of 30 minutes. At this time, an annealing effect on the implanted ions shown in FIG. 4 also occurs.

第7図に示す工程では、砒素イオン(11)が基板上か
ら延在酸化膜(3b)を介して注入され、次いで通常の
熱処理が施される。このとき、酸化物層(Hl)付のゲ
ート電極(4a)がマスクとなり、高濃度のドレイン(
l2)及びソース(13)が形戊される。
In the step shown in FIG. 7, arsenic ions (11) are implanted from above the substrate through the extended oxide film (3b), and then a normal heat treatment is performed. At this time, the gate electrode (4a) with the oxide layer (Hl) serves as a mask, and the highly concentrated drain (
l2) and the source (13) are shaped.

従って、既に形戊されていた低濃度のドレイン(7)と
ソース(8)とは高濃度状態となるが、側壁スペーサの
作用をなす酸化物層部分(10a)の存在により、高濃
度ドレイン(12)のゲート電極側端部(7a)は低濃
度のま・残り、LDD構造となる。
Therefore, the low-concentration drain (7) and source (8) that have already been formed are in a high-concentration state, but due to the presence of the oxide layer portion (10a) that acts as a sidewall spacer, the high-concentration drain (7) and source (8) are in a high concentration state. The end portion (7a) on the gate electrode side of 12) remains with a low concentration, forming an LDD structure.

尚、本実施例では、ゲー1tM(4a)の両側部に酸化
物層があるので、同様に、高l農度ソース(13)のゲ
ート電極側端部(8a)も低濃度のま・残ることとなる
。イオン注入条件は、イオン種”As”、注入エルギ8
0KeV、ドーズ15 X 1 0 ”/cm’である
In this example, since there is an oxide layer on both sides of the gate electrode 1tM (4a), similarly, the gate electrode side end (8a) of the high-intensity source (13) also remains at a low concentration. It happens. The ion implantation conditions were ion species “As” and implantation energy 8.
0 KeV and a dose of 15×10”/cm′.

この後、ソース、ドレインコンタクトや、配線、パッシ
ベーシ3等、周知の工程を経て、トランジスタが完戊さ
れる。
Thereafter, the transistor is completed through well-known processes such as source and drain contacts, wiring, passivation 3, etc.

本実施例にあっては、側壁スペーサを溝戊するシリコン
酸化物層(10)はゲート電極(4a)の両側部に設け
られたが、少なくとも、ドレイン側の側部にのみ用けら
れて良い。
In this embodiment, the silicon oxide layer (10) that grooves the sidewall spacer is provided on both sides of the gate electrode (4a), but it may be used at least only on the side on the drain side. .

又、本実施例にあっては、高濃度のソース、ドレイン作
戒のためのイオン注入は、延在酸化膜(3b)を通して
行われたが、斯る酸化膜は事前に除去されても良い。
Further, in this embodiment, ion implantation for high concentration source and drain operations was performed through the extended oxide film (3b), but such oxide film may be removed in advance. .

(ト)発明の効果 本発明によれば、側壁スペーサを用いたLD1)Ill
造型トランジスタの91遺方法において、そのffll
”fスペーサの形戊のために、従来の如きエッチング処
理が必要とされず、従って、従来のエンチング処理に伴
う高精度作業から解放される。又本発明は、従来のエッ
チング工程に代えて、イオン注入と熟処理工程を含むも
のであり、斯る工程自体、エッチング工程に比べ、簡眼
なものである。
(g) Effects of the invention According to the invention, the LD using side wall spacers1)Ill
In the 91st method of modeling transistors, the ffll
``Due to the shape of the f-spacer, conventional etching is not required, thus freeing the user from the high precision work associated with conventional etching.Also, in place of the conventional etching process, the present invention This process includes ion implantation and a deep treatment process, and this process itself is simpler than the etching process.

更に、通常、多結晶シリコンゲート電極の二ノチング形
戊工程において、その高段差部にエッチング残渣が生じ
やすく、配線間のリーク不良の原因となるが、本発明に
よれば、斯る残渣が存在しても、それは、.側壁スペー
サ形戊時の酸素イオン1t人と、熱処理により、同様に
シリコン酸化物となるので問題はない。
Furthermore, normally, in the double-notching process of polycrystalline silicon gate electrodes, etching residues are likely to be generated in the high step portions, which causes leakage defects between wirings, but according to the present invention, the presence of such residues can be eliminated. However, that... There is no problem because silicon oxide is similarly formed by heat treatment with 1 ton of oxygen ions when forming the sidewall spacer.

4,4,

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第7図は、 本発明の実施例方法を説 明するための工程別断面図である。 Figures 1 to 7 are An example method of the present invention will be described. FIG.

Claims (1)

【特許請求の範囲】[Claims] (1)ゲート電極をマスクとするイオン注入により少な
くとも低濃度のドレインを形成した後、前記ゲート電極
の少なくとも前記ドレイン側の側部に側壁スペーサを設
け、斯る側壁スペーサ付きゲート電極をマスクとするイ
オン注入により、前記ドレインを少なくともそのゲート
電極側の端部を除いて高濃度にする工程を含む低濃度ド
レイン構造型トランジスタの製造方法において、前記側
壁スペーサは、前記ゲート電極の少なくとも前記ドレイ
ン側の側部の表面層に酸素イオンを注入し、次いで熱処
理することにより形成されることを特徴とするトランジ
スタの製造方法。
(1) After forming at least a low concentration drain by ion implantation using the gate electrode as a mask, a sidewall spacer is provided at least on the side of the gate electrode on the drain side, and the gate electrode with the sidewall spacer is used as a mask. In the method for manufacturing a transistor with a low concentration drain structure, which includes the step of making the drain highly doped by ion implantation except for at least an end on the gate electrode side, the sidewall spacer is arranged in the drain at least on the drain side of the gate electrode. 1. A method of manufacturing a transistor, characterized in that the transistor is formed by implanting oxygen ions into a side surface layer and then subjecting it to heat treatment.
JP30113089A 1989-11-20 1989-11-20 Manufacture of transistor Pending JPH03160728A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30113089A JPH03160728A (en) 1989-11-20 1989-11-20 Manufacture of transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30113089A JPH03160728A (en) 1989-11-20 1989-11-20 Manufacture of transistor

Publications (1)

Publication Number Publication Date
JPH03160728A true JPH03160728A (en) 1991-07-10

Family

ID=17893184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30113089A Pending JPH03160728A (en) 1989-11-20 1989-11-20 Manufacture of transistor

Country Status (1)

Country Link
JP (1) JPH03160728A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5240874A (en) * 1992-10-20 1993-08-31 Micron Semiconductor, Inc. Semiconductor wafer processing method of forming channel stops and method of forming SRAM circuitry
JPH0766393A (en) * 1993-08-23 1995-03-10 Nec Kansai Ltd Manufacture of semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5240874A (en) * 1992-10-20 1993-08-31 Micron Semiconductor, Inc. Semiconductor wafer processing method of forming channel stops and method of forming SRAM circuitry
JPH0766393A (en) * 1993-08-23 1995-03-10 Nec Kansai Ltd Manufacture of semiconductor device

Similar Documents

Publication Publication Date Title
JPH0434819B2 (en)
JPS63155750A (en) Manufacture of semiconductor device
JPH0473295B2 (en)
JPH03160728A (en) Manufacture of transistor
JPH0640549B2 (en) Method for manufacturing MOS semiconductor device
JP2948486B2 (en) Method for manufacturing semiconductor device
JPH0370139A (en) Manufacture of semiconductor device
JPH02295129A (en) Manufacture of semiconductor device
JPS6315749B2 (en)
US6013554A (en) Method for fabricating an LDD MOS transistor
JPH08186082A (en) Manufacture of semiconductor device
JPH0779101B2 (en) Manufacturing method of semiconductor device
JPH01110762A (en) Manufacture of semiconductor device
JPH0393233A (en) Manufacture of semiconductor device
JPH02295131A (en) Manufacture of mos transistor
JP3344162B2 (en) Method for manufacturing field effect semiconductor device
JPS63144573A (en) Manufacture of mos type transistor
JPS62273774A (en) Manufacture of field-effect transistor
JPH0358430A (en) Semiconductor device and manufacture thereof
JPS59219964A (en) Manufacture of semiconductor device
JP3244066B2 (en) Method for manufacturing semiconductor device
JPH09181312A (en) Manufacture of semiconductor device
JPS59150477A (en) Manufacture of semiconductor device
US20040142519A1 (en) Methods of manufacturing a semiconductor device
JPS6081863A (en) Manufacture of semiconductor device