JPH10125623A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH10125623A
JPH10125623A JP29751696A JP29751696A JPH10125623A JP H10125623 A JPH10125623 A JP H10125623A JP 29751696 A JP29751696 A JP 29751696A JP 29751696 A JP29751696 A JP 29751696A JP H10125623 A JPH10125623 A JP H10125623A
Authority
JP
Japan
Prior art keywords
film
titanium
forming
semiconductor device
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP29751696A
Other languages
Japanese (ja)
Inventor
Masahiro Sugawara
正博 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP29751696A priority Critical patent/JPH10125623A/en
Publication of JPH10125623A publication Critical patent/JPH10125623A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28026Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
    • H01L21/28035Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities
    • H01L21/28044Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities the conductor comprising at least another non-silicon conductive layer
    • H01L21/28052Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities the conductor comprising at least another non-silicon conductive layer the conductor comprising a silicide layer formed by the silicidation reaction of silicon with a metal layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/665Unipolar field-effect transistors with an insulated gate, i.e. MISFET using self aligned silicidation, i.e. salicide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7842Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate
    • H01L29/7843Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate the means being an applied insulating layer

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce the resistance of a titanium silicide electrode by forming a titanium film on a substrate, forming a nitride film on the titanium film, forming a titanium silicide film on a gate electrode and the substrate in the vicinity of the parts on both sides of the gate electrode by rapidly heating the substrate, and forming a diffusion layer on the substrate under the silicide film. SOLUTION: A titanium film 16 is formed on the whole surface of a silicon substrate 11, and then a titanium silicide film 10 is selectively formed on a gate 14 and a source/drain region 18, by rapid heating after a silicon nitride film 17 has been formed (a). By the rapid heating, compressive stress is applied to the titanium film 16 from the silicon nitride film 17, and transition of the titanium silicide film 10 to low resistance structure is induced. After the silicon nitride film 17 has been eliminated (b), only the titanium film 16 is eliminated by etching, and a titanium silicide film 10 is formed. A diffusion layer 101 is formed by ion implantation (c). Thereby the size of the element is further decreased, and source/drain electrodes of low resistance can be formed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は半導体装置の製造方
法に関わり、特に、ソース/ドレイン、ゲート電極上に
チタンシリサイド膜が形成されてなる半導体装置の製造
方法に関わる。
The present invention relates to a method of manufacturing a semiconductor device, and more particularly to a method of manufacturing a semiconductor device having a titanium silicide film formed on a source / drain and a gate electrode.

【0002】[0002]

【従来の技術】MOS型半導体集積回路装置では、ソー
ス/ドレイン領域およびゲート電極と配線間の高抵抗化
を防ぐため、ソース/ドレイン領域およびゲート電極上
に、選択的に低抵抗のシリサイド電極を形成する、いわ
ゆるサリサイド法が用いられるようとしている。シリサ
イド形成に用いられる金属として、従来よりチタンが一
般的である。
2. Description of the Related Art In a MOS semiconductor integrated circuit device, a low-resistance silicide electrode is selectively formed on a source / drain region and a gate electrode in order to prevent an increase in resistance between a source / drain region and a gate electrode. The so-called salicide method for forming is to be used. As a metal used for silicide formation, titanium has been generally used.

【0003】以下、図3を用いて、チタンを用いた従来
のチタンサリサイド法について説明する。図3(a)に
示すように、シリコン基板21上に素子分離のためのシ
リコン酸化膜22を形成し、素子形成領域23上にゲー
ト酸化膜241を形成し、その上に多結晶シリコンのゲ
ート24、ゲート酸化膜241およびシリコン酸化膜の
サイドウォール25を形成する。然る後、前記シリコン
基板21上の全面にスパッタ法によりチタン膜26を形
成する。
A conventional titanium salicide method using titanium will be described below with reference to FIG. As shown in FIG. 3A, a silicon oxide film 22 for element isolation is formed on a silicon substrate 21, a gate oxide film 241 is formed on an element formation region 23, and a polysilicon gate is formed thereon. 24, a gate oxide film 241 and a sidewall 25 of a silicon oxide film are formed. Thereafter, a titanium film 26 is formed on the entire surface of the silicon substrate 21 by a sputtering method.

【0004】次いで、図3(b)に示すように、例えば
850℃・10秒の急速加熱を行い、ソース/ドレイン
領域28およびゲート24上のみチタンシリサイド20
を形成する。
[0004] Then, as shown in FIG. 3 (b), rapid heating is performed, for example, at 850 ° C. for 10 seconds to form titanium silicide 20 only on the source / drain region 28 and the gate 24.
To form

【0005】次に、図3(c)に示すように、例えばN
4 OH+H2 2 薬液によるウェットエッチングを行
い、急速加熱後も未反応であったチタン膜26を除去し
てソース/ドレイン領域28上およびゲート24上にチ
タンシリサイド電極20を形成する。
[0005] Next, as shown in FIG.
Wet etching with H 4 OH + H 2 O 2 chemical solution is performed to remove the titanium film 26 that has not been reacted even after rapid heating, thereby forming a titanium silicide electrode 20 on the source / drain region 28 and the gate 24.

【0006】[0006]

【発明が解決しようとする課題】前述したチタンサリサ
イド法には、サリサイド幅が寸法が1.0μm以下の領
域では、急速加熱後に形成されるチタンシリサイドの抵
抗が高くなるという問題があった。
The above-mentioned titanium salicide method has a problem that the resistance of titanium silicide formed after rapid heating becomes high in the region where the salicide width is 1.0 μm or less.

【0007】これは、チタンシリサイドには低抵抗の構
造と高抵抗の構造の2種類の構造があり、熱処理時間に
比例して低抵抗構造への遷移が進むが、寸法の微細化に
伴い、低抵抗構造への遷移が発生しにくくなるためであ
る。この問題は、急速加熱時に、チタン膜に圧縮応力を
加えれば改善が可能であることが既に分かっている。
This is because titanium silicide has two types of structures, a low resistance structure and a high resistance structure. The transition to the low resistance structure progresses in proportion to the heat treatment time. This is because the transition to the low-resistance structure hardly occurs. It has already been found that this problem can be improved by applying compressive stress to the titanium film during rapid heating.

【0008】本発明は前述の問題点にかんがみ、チタン
シリサイド形成時にチタン膜に圧縮応力をかけること
で、チタンシリサイド電極を低抵抗化することを目的と
する。
In view of the above problems, an object of the present invention is to reduce the resistance of a titanium silicide electrode by applying a compressive stress to a titanium film when forming titanium silicide.

【0009】[0009]

【課題を解決するための手段】本発明の半導体装置の製
造方法は、半導体基板上に形成されたゲート絶縁膜と、
前記ゲート絶縁膜上に形成されたゲート電極と、前記ゲ
ート電極の側面に形成された側壁酸化膜とを備える半導
体装置の製造方法において、前記半導体基板上にチタン
膜を形成する第一の工程と、前記チタン膜上に窒化膜を
形成する第二の工程と、前記第二の工程後、前記半導体
基板に急速加熱処理を施し、前記ゲート電極上及び前記
ゲート電極の両脇近傍の前記半導体基板上にチタンシリ
サイド膜を形成する第三の工程と、前記ゲート電極の両
脇近傍に形成された前記チタンシリサイド膜の下の半導
体基板に拡散層を形成する第四の工程とを有することを
特徴としている。
According to the present invention, there is provided a method of manufacturing a semiconductor device, comprising: a gate insulating film formed on a semiconductor substrate;
In a method of manufacturing a semiconductor device including a gate electrode formed on the gate insulating film and a sidewall oxide film formed on a side surface of the gate electrode, a first step of forming a titanium film on the semiconductor substrate A second step of forming a nitride film on the titanium film, and after the second step, performing a rapid heating process on the semiconductor substrate to form a semiconductor substrate on the gate electrode and in the vicinity of both sides of the gate electrode. A third step of forming a titanium silicide film thereon; and a fourth step of forming a diffusion layer in a semiconductor substrate below the titanium silicide film formed near both sides of the gate electrode. And

【0010】また、本発明の他の特徴とするところは、
半導体基板上に形成されたゲート絶縁膜と、前記ゲート
絶縁膜上に形成されたゲート電極と、前記ゲート電極側
面に形成された側壁酸化膜と、拡散層とを備える半導体
装置の製造方法において、前記半導体基板上にチタン膜
を形成する第一の工程と、前記チタン膜上に窒化膜を形
成する第二の工程と、前記第二の工程後、前記半導体基
板に急速加熱処理を施し、前記ゲート電極上及び前記拡
散層上にチタンシリサイド膜を形成する第三の工程とを
有することを特徴としている。
Another feature of the present invention is that
A method of manufacturing a semiconductor device comprising: a gate insulating film formed on a semiconductor substrate; a gate electrode formed on the gate insulating film; a sidewall oxide film formed on a side surface of the gate electrode; and a diffusion layer. A first step of forming a titanium film on the semiconductor substrate, a second step of forming a nitride film on the titanium film, and after the second step, subjected to a rapid heating treatment on the semiconductor substrate, And forming a titanium silicide film on the gate electrode and the diffusion layer.

【0011】また、本発明のその他の特徴とするところ
は、請求項1または2の何れか1項に記載の半導体装置
の製造方法において、前記第三の工程において、前記半
導体基板に、昇温速度100〜600℃の急速加熱処理
を施すことを特徴としている。
According to another feature of the present invention, in the method of manufacturing a semiconductor device according to any one of claims 1 and 2, in the third step, the semiconductor substrate is heated. It is characterized by performing a rapid heating process at a rate of 100 to 600 ° C.

【0012】また、本発明のその他の特徴とするところ
は、請求項1または2の何れか1項に記載の半導体装置
の製造方法において、前記第三の工程において、前記半
導体基板に、650〜900℃の範囲のうちのいずれか
の温度で、急速加熱処理を施すことを特徴としている。
According to another feature of the present invention, in the method of manufacturing a semiconductor device according to any one of claims 1 and 2, in the third step, the semiconductor substrate is provided with 650-500 nm. The rapid heating treatment is performed at any temperature within the range of 900 ° C.

【0013】また、本発明のその他の特徴とするところ
は、請求項4に記載の半導体装置の製造方法において、
前記第三の工程において、前記半導体基板に、850
℃、10秒の急速加熱処理を施すことを特徴としてい
る。
Another feature of the present invention is that in the method of manufacturing a semiconductor device according to claim 4,
In the third step, 850 is added to the semiconductor substrate.
It is characterized by performing a rapid heating treatment at 10 ° C. for 10 seconds.

【0014】また、本発明のその他の特徴とするところ
は、請求項5に記載の半導体装置の製造方法において、
前記第三の工程において、前記半導体基板に、850
℃、10秒の急速加熱処理を施した後、650℃、30
分の加熱を行うことを特徴としている。
Another feature of the present invention is that in the method of manufacturing a semiconductor device according to claim 5,
In the third step, 850 is added to the semiconductor substrate.
650 ° C, 30 seconds
It is characterized by performing heating for minutes.

【0015】[0015]

【発明の実施の形態】以下、本発明の実施の形態につい
て図1及び2を参照して説明する。図1及び図2は、本
発明の実施の形態を表す半導体装置の製造工程順断面図
である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. 1 and 2 are cross-sectional views illustrating a semiconductor device according to an embodiment of the present invention in the order of manufacturing steps.

【0016】まず、図1(a)に示すように、シリコン
基板11に素子分離用の熱酸化膜12を形成し、素子形
成領域13上にゲート酸化膜141を形成する。次に、
前記酸化膜141上に多結晶シリコンのゲート14を形
成する。その後、図1(b)に示すように、ゲート14
の側面に公知の方法でサイドウォール酸化膜15を形成
する。
First, as shown in FIG. 1A, a thermal oxide film 12 for element isolation is formed on a silicon substrate 11, and a gate oxide film 141 is formed on an element formation region 13. next,
A polycrystalline silicon gate 14 is formed on the oxide film 141. Thereafter, as shown in FIG.
A side wall oxide film 15 is formed on the side surface by a known method.

【0017】次に、図1(c)に示すように、公知のス
パッタ法によりチタン膜16をシリコン基板11の全面
に、膜厚30nmで形成する。次いで、図1(d)に示
すように、公知の化学的気相成長法でシリコン窒化膜1
7をシリコン基板11の全面に膜厚40nmで形成す
る。
Next, as shown in FIG. 1C, a titanium film 16 is formed with a thickness of 30 nm on the entire surface of the silicon substrate 11 by a known sputtering method. Next, as shown in FIG. 1D, the silicon nitride film 1 is formed by a known chemical vapor deposition method.
7 is formed on the entire surface of the silicon substrate 11 with a thickness of 40 nm.

【0018】その後、図2(a)に示すように、昇温速
度100〜600℃で、850℃・10秒の急速加熱を
行い、ゲート14上およびソースドレイン領域18上、
すなわち、チタンとシリコンとが直に接触する部分で選
択的にチタンシリサイド膜10を形成する。
Thereafter, as shown in FIG. 2A, rapid heating is performed at 850 ° C. for 10 seconds at a temperature increasing rate of 100 to 600 ° C., so that the gate 14 and the source / drain region 18 are heated.
That is, the titanium silicide film 10 is selectively formed at a portion where titanium and silicon are in direct contact.

【0019】このとき、素子分離酸化膜12およびサイ
ドウォール酸化膜15上においてはチタンとシリコン酸
化膜とが接触しており、チタンは未反応である。この図
2(a)における急速加熱により、シリコン窒化膜17
からチタン膜16に圧縮応力がかかるので、チタンシリ
サイド膜10の低抵抗構造への遷移が促進される。
At this time, titanium and the silicon oxide film are in contact with each other on the element isolation oxide film 12 and the side wall oxide film 15, and titanium is not reacted. By the rapid heating in FIG.
Since a compressive stress is applied to the titanium film 16, the transition of the titanium silicide film 10 to a low resistance structure is promoted.

【0020】次に、図2(b)に示すように、シリコン
窒化膜17を除去した後、図2(c)に示すように、チ
タン膜16のみをウェットエッチングにより除去するこ
とにより、チタンシリサイド膜(電極)10を形成す
る。次に、図2(c)に示すように、チタンサリサイド
膜(電極)10の下に、拡散層101をイオン注入によ
り形成する。
Next, as shown in FIG. 2B, after the silicon nitride film 17 is removed, only the titanium film 16 is removed by wet etching as shown in FIG. A film (electrode) 10 is formed. Next, as shown in FIG. 2C, a diffusion layer 101 is formed below the titanium salicide film (electrode) 10 by ion implantation.

【0021】次に、図2(d)に示すように、公知のイ
オン注入法により拡散領域101を形成する。なお、前
記の例では急速加熱を850℃・10秒としたが、温度
条件は650℃〜900℃の範囲で任意に選択すること
が可能である。また、熱処理時間も数秒から30分程度
まで選択することが出来る。
Next, as shown in FIG. 2D, a diffusion region 101 is formed by a known ion implantation method. In the above example, the rapid heating was performed at 850 ° C. for 10 seconds, but the temperature condition can be arbitrarily selected in the range of 650 ° C. to 900 ° C. Further, the heat treatment time can be selected from several seconds to about 30 minutes.

【0022】また、急速加熱を1段階で行うのではな
く、650℃・30分の加熱を行い、引き続き850℃
・10秒の加熱を行う、といった2段階の熱処理に変更
することも可能である。
Further, instead of performing rapid heating in one stage, heating is performed at 650 ° C. for 30 minutes, and then 850 ° C.
-It is also possible to change to a two-stage heat treatment in which heating is performed for 10 seconds.

【0023】また、前記の例ではチタンシリサイドを形
成する以前にソース/ドレイン領域に拡散層を形成する
ための工程を入れていないが、あらかじめソース/ドレ
イン領域にイオン注入を行い拡散層を形成した後、チタ
ンシリサイドを形成することも可能である。また、ゲー
ト側面のサイドウォールを酸化膜により形成している
が、シリコン窒化膜などを用いることも可能である。
In the above example, a step for forming a diffusion layer in the source / drain region was not performed before forming the titanium silicide. However, a diffusion layer was formed by implanting ions into the source / drain region in advance. Later, titanium silicide can be formed. Further, although the sidewall on the gate side surface is formed of an oxide film, a silicon nitride film or the like may be used.

【0024】[0024]

【発明の効果】本発明は前述したように、本発明によれ
ば、シリサイド電極を形成する時に、チタン膜に圧縮応
力をかけるので、素子の微細化が進行して、サリサイド
電極寸法が狭い場合でも、低抵抗のソース/ドレイン、
ゲート電極を形成することが可能になる。
As described above, according to the present invention, when a silicide electrode is formed, a compressive stress is applied to a titanium film. But low resistance source / drain,
A gate electrode can be formed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態における半導体装置の工程
順断面図である。
FIG. 1 is a sectional view of a semiconductor device according to an embodiment of the present invention in the order of steps.

【図2】本発明の実施の形態における半導体装置の工程
順断面図である。
FIG. 2 is a sectional view of the semiconductor device according to the embodiment of the present invention in the order of steps.

【図3】従来のチタンサリサイド法における半導体装置
の工程順断面図である。
FIG. 3 is a sectional view of a semiconductor device in a conventional titanium salicide method in the order of steps.

【符号の説明】[Explanation of symbols]

10 チタンシリサイド膜 11 シリコン基板 141 ゲート酸化膜 14 ゲート 15 ゲート側壁の絶縁性サイドウォール 16 チタン膜 17 シリコン窒化膜 18 ソース/ドレイン領域 DESCRIPTION OF SYMBOLS 10 Titanium silicide film 11 Silicon substrate 141 Gate oxide film 14 Gate 15 Insulating sidewall of gate side wall 16 Titanium film 17 Silicon nitride film 18 Source / drain region

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板上に形成されたゲート絶縁膜
と、前記ゲート絶縁膜上に形成されたゲート電極と、前
記ゲート電極の側面に形成された側壁酸化膜とを備える
半導体装置の製造方法において、 前記半導体基板上にチタン膜を形成する第一の工程と、 前記チタン膜上に窒化膜を形成する第二の工程と、 前記第二の工程後、前記半導体基板に急速加熱処理を施
し、前記ゲート電極上及び前記ゲート電極の両脇近傍の
前記半導体基板上にチタンシリサイド膜を形成する第三
の工程と、 前記ゲート電極の両脇近傍に形成された前記チタンシリ
サイド膜の下の半導体基板に拡散層を形成する第四の工
程とを有することを特徴とする半導体装置の製造方法。
1. A method of manufacturing a semiconductor device comprising: a gate insulating film formed on a semiconductor substrate; a gate electrode formed on the gate insulating film; and a sidewall oxide film formed on a side surface of the gate electrode. A first step of forming a titanium film on the semiconductor substrate; a second step of forming a nitride film on the titanium film; and after the second step, performing a rapid heating process on the semiconductor substrate. Forming a titanium silicide film on the gate electrode and on the semiconductor substrate near both sides of the gate electrode; and forming a semiconductor under the titanium silicide film formed on both sides of the gate electrode. And a fourth step of forming a diffusion layer on the substrate.
【請求項2】 半導体基板上に形成されたゲート絶縁膜
と、前記ゲート絶縁膜上に形成されたゲート電極と、前
記ゲート電極側面に形成された側壁酸化膜と、拡散層と
を備える半導体装置の製造方法において、 前記半導体基板上にチタン膜を形成する第一の工程と、 前記チタン膜上に窒化膜を形成する第二の工程と、 前記第二の工程後、前記半導体基板に急速加熱処理を施
し、前記ゲート電極上及び前記拡散層上にチタンシリサ
イド膜を形成する第三の工程とを有することを特徴とす
る半導体装置の製造方法。
2. A semiconductor device comprising: a gate insulating film formed on a semiconductor substrate; a gate electrode formed on the gate insulating film; a sidewall oxide film formed on a side surface of the gate electrode; and a diffusion layer. In the manufacturing method, a first step of forming a titanium film on the semiconductor substrate, a second step of forming a nitride film on the titanium film, and after the second step, rapid heating of the semiconductor substrate Performing a treatment to form a titanium silicide film on the gate electrode and the diffusion layer.
【請求項3】 請求項1または2の何れか1項に記載の
半導体装置の製造方法において、 前記第三の工程において、前記半導体基板に、昇温速度
100〜600℃の急速加熱処理を施すことを特徴とす
る半導体装置の製造方法。
3. The method for manufacturing a semiconductor device according to claim 1, wherein in the third step, the semiconductor substrate is subjected to a rapid heating process at a temperature increasing rate of 100 to 600 ° C. A method for manufacturing a semiconductor device, comprising:
【請求項4】 請求項1または2の何れか1項に記載の
半導体装置の製造方法において、 前記第三の工程において、前記半導体基板に、650〜
900℃の範囲のうちのいずれかの温度で、急速加熱処
理を施すことを特徴とする半導体装置の製造方法。
4. The method of manufacturing a semiconductor device according to claim 1, wherein in the third step, 650 to 650 are provided on the semiconductor substrate.
A method for manufacturing a semiconductor device, wherein a rapid heating process is performed at any temperature within a range of 900 ° C.
【請求項5】 請求項4に記載の半導体装置の製造方法
において、 前記第三の工程において、前記半導体基板に、850
℃、10秒の急速加熱処理を施すことを特徴とする半導
体装置の製造方法。
5. The method of manufacturing a semiconductor device according to claim 4, wherein in the third step, 850 is added to the semiconductor substrate.
A method for manufacturing a semiconductor device, comprising performing a rapid heating process at 10 ° C. for 10 seconds.
【請求項6】 請求項5に記載の半導体装置の製造方法
において、 前記第三の工程において、前記半導体基板に、850
℃、10秒の急速加熱処理を施した後、650℃、30
分の加熱処理を行うことを特徴とする半導体装置の製造
方法。
6. The method of manufacturing a semiconductor device according to claim 5, wherein in the third step, 850 is added to the semiconductor substrate.
650 ° C, 30 seconds
A method for manufacturing a semiconductor device, comprising performing a heat treatment for one minute.
JP29751696A 1996-10-18 1996-10-18 Manufacture of semiconductor device Withdrawn JPH10125623A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29751696A JPH10125623A (en) 1996-10-18 1996-10-18 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29751696A JPH10125623A (en) 1996-10-18 1996-10-18 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH10125623A true JPH10125623A (en) 1998-05-15

Family

ID=17847538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29751696A Withdrawn JPH10125623A (en) 1996-10-18 1996-10-18 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH10125623A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000021121A1 (en) * 1998-10-05 2000-04-13 Seiko Epson Corporation Semiconductor device and method for producing the same
US6284610B1 (en) * 2000-09-21 2001-09-04 Chartered Semiconductor Manufacturing Ltd. Method to reduce compressive stress in the silicon substrate during silicidation
US6656847B1 (en) * 1999-11-01 2003-12-02 Taiwan Semiconductor Manufacturing Company Method for etching silicon nitride selective to titanium silicide

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000021121A1 (en) * 1998-10-05 2000-04-13 Seiko Epson Corporation Semiconductor device and method for producing the same
US6500759B1 (en) 1998-10-05 2002-12-31 Seiko Epson Corporation Protective layer having compression stress on titanium layer in method of making a semiconductor device
US6656847B1 (en) * 1999-11-01 2003-12-02 Taiwan Semiconductor Manufacturing Company Method for etching silicon nitride selective to titanium silicide
US6284610B1 (en) * 2000-09-21 2001-09-04 Chartered Semiconductor Manufacturing Ltd. Method to reduce compressive stress in the silicon substrate during silicidation

Similar Documents

Publication Publication Date Title
JPH04223341A (en) Formation method of self-aligned titanium silicide
JP2002016246A (en) Manufacturing method of mos-type semiconductor transistor
KR100615121B1 (en) Method for manufacturing semiconductor device
JPH03288443A (en) Manufacture of semiconductor device
JPH10125623A (en) Manufacture of semiconductor device
JPH08204188A (en) Semiconductor device and its manufacture
JPH023244A (en) Manufacture of semiconductor device
US5620911A (en) Method for fabricating a metal field effect transistor having a recessed gate
JPH1064898A (en) Manufacturing method of semiconductor device
JPH07273326A (en) Semiconductor device and manufacture of it
JPH1065171A (en) Manufacture of mos transistor
JP2001185506A (en) Method for manufacturing semiconductor device
JPH05190566A (en) Manufacture of semiconductor device
US6238958B1 (en) Method for forming a transistor with reduced source/drain series resistance
JP2768995B2 (en) Method for manufacturing semiconductor device
JP3417114B2 (en) Method for manufacturing semiconductor device
JPH0846044A (en) Manufacture of semiconductor device
JP2001094100A (en) Fabrication method of semiconductor device
JP2002151682A (en) Semiconductor device and manufacturing method thereof
JPH0529343A (en) Manufacture of fine semiconductor device
KR100451756B1 (en) Method for fabricating semiconductor device the same
JP2005517285A (en) Semiconductor device including thin oxide liner and method of manufacturing the same
JPH10270688A (en) Mosfet and manufacture thereof
JPH11354650A (en) Semiconductor device and its manufacture
JPS6068656A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040106