JPH01212739A - Manufacture of copper bar - Google Patents
Manufacture of copper barInfo
- Publication number
- JPH01212739A JPH01212739A JP3736888A JP3736888A JPH01212739A JP H01212739 A JPH01212739 A JP H01212739A JP 3736888 A JP3736888 A JP 3736888A JP 3736888 A JP3736888 A JP 3736888A JP H01212739 A JPH01212739 A JP H01212739A
- Authority
- JP
- Japan
- Prior art keywords
- final
- cold rolling
- copper
- copper bar
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 title claims abstract description 28
- 229910052802 copper Inorganic materials 0.000 title claims abstract description 17
- 239000010949 copper Substances 0.000 title claims abstract description 17
- 238000004519 manufacturing process Methods 0.000 title claims description 8
- 238000000137 annealing Methods 0.000 claims abstract description 18
- 238000005097 cold rolling Methods 0.000 claims abstract description 12
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 7
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 7
- 239000001301 oxygen Substances 0.000 claims abstract description 7
- 238000000034 method Methods 0.000 claims description 5
- 238000005096 rolling process Methods 0.000 claims description 3
- 239000011889 copper foil Substances 0.000 abstract description 13
- 150000001879 copper Chemical class 0.000 abstract 2
- 239000000463 material Substances 0.000 description 8
- 230000000694 effects Effects 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 238000003475 lamination Methods 0.000 description 4
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 238000010924 continuous production Methods 0.000 description 3
- 239000011888 foil Substances 0.000 description 3
- 239000011121 hardwood Substances 0.000 description 3
- 238000005452 bending Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000009529 body temperature measurement Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/09—Use of materials for the conductive, e.g. metallic pattern
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/02—Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
- H05K3/022—Processes for manufacturing precursors of printed circuits, i.e. copper-clad substrates
Landscapes
- Conductive Materials (AREA)
Abstract
Description
【発明の詳細な説明】
(イ)産業上の利用分野
本発明は、電子機器用材の特にフレキシブルプリント配
線板用材としての銅箔の製造方法に関し、軟化温度の低
い性能を有する銅箔をつ(ることか目的である。Detailed Description of the Invention (a) Field of Industrial Application The present invention relates to a method for producing copper foil as a material for electronic equipment, particularly as a material for flexible printed wiring boards. It is a thing or a purpose.
尚、モーター用材、半導体装置のリードフレーム材など
への使用に対しても好適である銅条の製造方法でもある
。This method is also suitable for producing copper strips for use in motor materials, lead frame materials for semiconductor devices, and the like.
(ロ)従来の技術
フレキシブルプリント配線板は、その基板材として絶縁
性と柔軟性を持った薄いベースフィルムを用い、その表
面に、箔状の銅条即ち銅箔の電気設計に基づ(導体パタ
ーンを形成し、固着させたものである。この様なフレキ
シブルプリント配線板のエツチング処理までの製造工程
は主に次の6つから成っている。即ち銅箔の調製とトリ
ート処理とラミネート処理である。銅箔は延性、耐屈曲
性の面から考えると焼鈍材の方が良いが、取扱いには硬
材の方が良いので銅箔硬材をつくる。次に該銅箔硬材と
接着材との結合性を良(するためにトリート処理を施す
。次にトリート処理された銅箔とベースフィルムとを結
合させるラミネート処理を行う。この結合には接着材を
硬化させるための150°C〜240°Cで加熱処理を
しているが、このとき銅箔自体の焼鈍も、より低温で兼
ねて行な得れば操業に有利であり、連続プロセス化も容
易である。(b) Conventional technology A flexible printed wiring board uses a thin base film with insulation and flexibility as its substrate material, and has a conductor on its surface based on the electrical design of a foil-like copper strip, that is, a copper foil. A pattern is formed and fixed.The manufacturing process up to the etching process for such flexible printed wiring boards mainly consists of the following six steps: preparation of the copper foil, treatment treatment, and lamination treatment. Yes.Annealed copper foil is better in terms of ductility and bending resistance, but hard wood is better for handling, so copper foil hard wood is made.Next, we will prepare copper foil hard wood and adhesive material. Treatment treatment is performed to ensure good bonding properties with the base film. Next, a lamination treatment is performed to bond the treated copper foil and the base film. For this bonding, the adhesive is heated at 150°C or higher to harden the adhesive. Although the heat treatment is carried out at 240°C, it would be advantageous for the operation if the copper foil itself could also be annealed at a lower temperature, and it would be easier to make it a continuous process.
←→発明が解決しようとする課題
連続プロセス化しようとすれば、銅箔をベースフィルム
に固着する際の加熱によってその銅箔が十分に軟化する
ことが必要であり、その温度もより低温の方が有利であ
る。然し従来の製造においては、銅箔の軟化温度が高い
ので、ラミネート処理の際の加熱では十分に軟化しない
。ために連続プロセス化を容易に実施するためには軟化
温度の低い銅箔の発明が課題とされた。←→Problem to be solved by the invention If a continuous process is to be achieved, the copper foil needs to be sufficiently softened by heating when it is fixed to the base film, and the temperature is also lower. is advantageous. However, in conventional manufacturing, since the softening temperature of copper foil is high, it is not softened sufficiently by heating during lamination processing. Therefore, in order to easily implement a continuous process, it was necessary to invent a copper foil with a low softening temperature.
に)課題を解決するための手段
本発明者等は、上記の課題を解決するため、銅条を低温
で軟化せしめることを目的とし、種々の製造条件につい
て研究し、検討を重ねた結果次のような発明をするに至
った。即ち、純度9999%以上、酸素含有量501)
I)m以下の純銅を用い、冷間圧延工程の最終焼鈍を2
00℃〜400℃の温度で30分〜5時間施した後、最
終冷間圧延を施すことにより上記目的を達成し得たもの
である。B) Means for Solving the Problems In order to solve the above problems, the inventors of the present invention have researched various manufacturing conditions for the purpose of softening copper strips at low temperatures, and as a result of repeated examinations, they have developed the following. He came up with an invention like this. That is, purity 9999% or more, oxygen content 501)
I) Using pure copper with a diameter of less than m, the final annealing in the cold rolling process is
The above object was achieved by performing final cold rolling after rolling at a temperature of 00° C. to 400° C. for 30 minutes to 5 hours.
(ホ)作用
本発明において、純度99.99%以上としたのは不純
物量が多いと軟化温度が高くなってしまうためで酸素含
有量を50ppm以下に限定した理由は酸素含有量が5
0ppmより高くなると最終焼鈍の効果が減少し、軟化
温度が低(ならないからである。(E) Effect In the present invention, the reason why the purity is 99.99% or more is because if the amount of impurities is large, the softening temperature becomes high.The reason why the oxygen content is limited to 50 ppm or less is that the oxygen content is
If it is higher than 0 ppm, the effect of final annealing will decrease and the softening temperature will be low (or not).
冷間圧延工程の最終焼鈍温度を200°C〜400’C
に限定した理由は、200°C未満では軟化が不十分で
あるため最終圧延の加工度を太き(することが困難とな
り〔後出衣の比較例(21)参照〕箔状状形悪化を招(
ためであり、400℃より高温では軟化温度を十分に下
げる効果が減少してしまうからである。The final annealing temperature in the cold rolling process is 200°C to 400'C.
The reason for this is that at temperatures below 200°C, softening is insufficient, making it difficult to thicken the final rolling process [see Comparative Example (21) of Atoide], which may cause deterioration of the foil shape. Invitation (
This is because the effect of sufficiently lowering the softening temperature is reduced at temperatures higher than 400°C.
又焼鈍時間を30分〜5時間に限定した理由は、60分
未満ならば軟化が不十分であるため加工度を十分大きく
する事が困難となり、5時間より長くしても軟化温度を
下げる効果は変らないので徒らにエネルギーの損失を招
き有益でない。The reason why the annealing time is limited to 30 minutes to 5 hours is that if it is less than 60 minutes, the softening will be insufficient and it will be difficult to increase the degree of working sufficiently. does not change, resulting in unnecessary energy loss and is not beneficial.
(へ)実施例
純度99.99 %以上、酸素含有量が50ppm以下
の純銅を加工して、所定の加工率が得られる様な板厚と
し、表に示すような条件により最終焼鈍を施した後、6
5μmまで冷間圧延を施し、この圧延銅箔を試料として
軟化温度を測定した。(F) Example Pure copper with a purity of 99.99% or more and an oxygen content of 50 ppm or less was processed to a thickness that would provide a predetermined processing rate, and final annealing was performed under the conditions shown in the table. After, 6
Cold rolling was performed to a thickness of 5 μm, and the softening temperature was measured using the rolled copper foil as a sample.
軟化温度の決定は80°C〜260℃までの20℃間隔
の温度に設定した油浴または塩浴中に15分間浸漬した
後、インストロン型引張り試験機により強度を測定する
事で行った。得られた結果は表に併記した。The softening temperature was determined by immersing the sample in an oil bath or salt bath set at a temperature of 80°C to 260°C in 20°C intervals for 15 minutes, and then measuring the strength using an Instron type tensile tester. The obtained results are also listed in the table.
軟化の目やすを半軟化温度(上記圧延箔の圧延状態の強
度をHoとし、該圧延箔の完全軟化時の強度なHpとす
れば(Ho + Hp)/2の強度を示す温度)の数値
で示した。A measure of softening is the semi-softening temperature (temperature that indicates the strength of (Ho + Hp)/2, where Ho is the strength of the rolled foil in the rolled state and Hp is the strength when the rolled foil is completely softened). It was shown in
表の試料(1)〜(11)は最終焼鈍の温度と時間が本
発明によるもので最終冷間圧延はすべて加工率90チの
ものであって本発明の実施例を示し、試料(21)は
〜(30)最終焼鈍時間と最終冷間圧延の加工率とは^
(1)〜(11)と同じ範囲にあるが、最終焼鈍の温度
が本発明の範囲外のものであって、比較例である。これ
らの数値を最終焼鈍温度と半軟化温度との関係を図に示
したものが第1図(比較例21は欠)である。Samples (1) to (11) in the table show the final annealing temperature and time according to the present invention, and the final cold rolling is all done at a processing rate of 90 inches, indicating an example of the present invention. ~ (30) The final annealing time and final cold rolling processing rate are in the same range as (1) to (11), but the final annealing temperature is outside the range of the present invention, and the comparison is This is an example. FIG. 1 (Comparative Example 21 is omitted) shows the relationship between these values and the final annealing temperature and the semi-softening temperature.
第1図によれば、最終焼鈍温度を400℃より高(する
と半軟化温度が上昇し、200°C〜400℃の範囲に
おいて軟化温度が低(なる事が判明された。According to FIG. 1, it was found that when the final annealing temperature was set higher than 400°C, the semi-softening temperature rose, and the softening temperature became low in the range of 200°C to 400°C.
又、試料(12)〜(20)は最終焼鈍の温度と時間(
すべて1時間)は共に本発明によるもので、ただ最終加
工率を変化させた本発明の実施例である。In addition, samples (12) to (20) were subjected to final annealing temperature and time (
1 hour) are both according to the invention, but are examples of the invention in which the final processing rate was varied.
試料(31)〜(66)は最終焼鈍時間はすべて1時間
であるが、最終焼鈍温度が本発明の範囲外にある比較例
で、最終加工率を変化させたものである。Samples (31) to (66) all have a final annealing time of 1 hour, but are comparative examples in which the final annealing temperature is outside the range of the present invention, and the final processing rate was changed.
これら試料(12)〜(20)と試料(31)〜(36
)の半軟化温度の測定値と、本発明実施例の試料(1)
、(3)+(5)と比較例(22) 、 (23) 、
(24)の半軟化温度測定値等について最終加工率と
半軟化温度との関係を図に示したものが第2図である。These samples (12) to (20) and samples (31) to (36)
) and the measured value of the semi-softening temperature of sample (1) of the present invention example.
, (3) + (5) and comparative examples (22), (23),
FIG. 2 shows the relationship between the final processing rate and the semi-softening temperature with respect to the semi-softening temperature measurement values of (24).
第2図によれば最終加工率が低くなっても本発明の効果
は明らかである。According to FIG. 2, the effect of the present invention is clear even when the final processing rate is low.
(ト)効果
上述したように、本発明を実施すれば低い軟化温度を有
する銅条を得ることができるため、フレキシブルプリン
ト配線板を製造する際、ラミネート処理時の加熱で十分
に軟化する高純度銅条が容易に得られ、連続プロセス化
およびエネルギーの節減に効果を発揮する。又モーター
用材、リードフレーム材の使用に対しても有効である。(g) Effects As mentioned above, by implementing the present invention, it is possible to obtain a copper strip with a low softening temperature, so when manufacturing a flexible printed wiring board, it is possible to obtain a high-purity copper strip that is sufficiently softened by heating during lamination processing. Copper strips can be easily obtained and are effective for continuous processing and energy savings. It is also effective for use in motor materials and lead frame materials.
第1図は、最終焼鈍温度と時間が軟化度に及ぼす程度を
示したもの、第2図は最終加工率が軟化度に及ぼす程度
を示した図である。
最終焼鈍温度(’C+
第1図
N!終加工I(ん)
第2図FIG. 1 shows the effect of final annealing temperature and time on the degree of softening, and FIG. 2 shows the effect of final processing rate on the degree of softening. Final annealing temperature ('C+ Figure 1 N! Final processing I (n) Figure 2
Claims (1)
%以上、酸素含有量50ppm以下の純銅を用い、冷間
圧延工程の最終焼鈍を200℃〜400℃の温度で30
分〜5時間施した後、最終冷間圧延を施すことを特徴と
する銅条の製造方法。When manufacturing copper strips by rolling, the purity is 99.99.
% or more, and the oxygen content is less than 50 ppm, and the final annealing in the cold rolling process is carried out at a temperature of 200°C to 400°C for 30°C.
A method for producing a copper strip, which comprises performing final cold rolling after being rolled for 5 hours to 5 hours.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3736888A JPH01212739A (en) | 1988-02-22 | 1988-02-22 | Manufacture of copper bar |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3736888A JPH01212739A (en) | 1988-02-22 | 1988-02-22 | Manufacture of copper bar |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01212739A true JPH01212739A (en) | 1989-08-25 |
Family
ID=12495578
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3736888A Pending JPH01212739A (en) | 1988-02-22 | 1988-02-22 | Manufacture of copper bar |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01212739A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02263959A (en) * | 1989-04-04 | 1990-10-26 | Hitachi Cable Ltd | Oxygen free copper rolled foil and flexible printing circuit board using it |
-
1988
- 1988-02-22 JP JP3736888A patent/JPH01212739A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02263959A (en) * | 1989-04-04 | 1990-10-26 | Hitachi Cable Ltd | Oxygen free copper rolled foil and flexible printing circuit board using it |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1630239B1 (en) | Copper alloy and method of manufacturing the same | |
SU1713423A3 (en) | Method of manufacturing electrode wire from copper of its alloy with zinc | |
EP1180917B1 (en) | Laminate sheet of copper-alloy foil and liquid crystal polymer | |
JP2011058029A (en) | Copper alloy foil | |
KR20200060613A (en) | Substrate for electroless plating, method of manufacturing the same, and metal plating method using the same | |
JPH01212739A (en) | Manufacture of copper bar | |
JPS62112763A (en) | Manufacture of copper material for electric conduction softening at low temperature | |
JP5933943B2 (en) | Rolled copper foil for flexible printed wiring boards, copper-clad laminates, flexible printed wiring boards, and electronic equipment | |
JPH01319640A (en) | Oxygen-free copper base alloy and rolled copper foil for flexible printed circuit board | |
JP2001073186A (en) | Production of parts for wiring laminated with insulating film | |
US3973716A (en) | Process for making a piece of hollow jewelry | |
JP4059150B2 (en) | Copper alloy foil for printed wiring and manufacturing method thereof | |
JPS62243727A (en) | Rolled copper foil for printed circuit board | |
JPH01319641A (en) | Soft rolled copper foil and flexible printed board | |
JP2016079423A (en) | Rolled copper foil, copper-clad laminate, flexible printed wiring board, electronic equipment, and method for manufacturing rolled copper foil | |
JPH05177215A (en) | Production of rolled foil of copper alloy for film carrier | |
JP2977870B2 (en) | Rolled copper alloy foil for film carrier | |
JP4798890B2 (en) | Copper alloy foil for laminates | |
JPH04173943A (en) | High purity rolled copper foil having high flexibility and body utilizing same | |
JPS62189738A (en) | Tape for semiconductor lead | |
JPS6220274B2 (en) | ||
JPH02129349A (en) | Manufacture of conductive parts material for electronic and electrical equipment | |
CN111526674A (en) | Rolled copper foil, copper-clad laminate, flexible printed board, and electronic device | |
JPH02263958A (en) | Oxygen free copper rolled foil and flexible printing circuit board using it | |
JPH04228553A (en) | Bending resisting rolled copper foil |