JPH02129349A - Manufacture of conductive parts material for electronic and electrical equipment - Google Patents

Manufacture of conductive parts material for electronic and electrical equipment

Info

Publication number
JPH02129349A
JPH02129349A JP28432188A JP28432188A JPH02129349A JP H02129349 A JPH02129349 A JP H02129349A JP 28432188 A JP28432188 A JP 28432188A JP 28432188 A JP28432188 A JP 28432188A JP H02129349 A JPH02129349 A JP H02129349A
Authority
JP
Japan
Prior art keywords
less
electronic
electrical equipment
rolled
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28432188A
Other languages
Japanese (ja)
Inventor
Toshiki Muramatsu
俊樹 村松
Mamoru Matsuo
守 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sky Aluminium Co Ltd
Original Assignee
Sky Aluminium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sky Aluminium Co Ltd filed Critical Sky Aluminium Co Ltd
Priority to JP28432188A priority Critical patent/JPH02129349A/en
Publication of JPH02129349A publication Critical patent/JPH02129349A/en
Pending legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)

Abstract

PURPOSE:To obtain the title material having superior electric conductivity, thermal conductivity, solderability, etc., by subjecting a rolled Al alloy sheet containing respectively prescribed amounts of Cu and Mg to solution heat treatment, to cooling, and then to cold working to the final sheet thickness at a specific draft. CONSTITUTION:A rolled Al alloy sheet containing, by weight, 0.5-4.5% Cu and 0.2-2.0% Mg is subjected to solution heat treatment-hardening at 450-530 deg.C, cooled at >=1 deg.C/sec cooling rate, and then worked a 0-50% cold draft, by which a rolled sheet of the prescribed product sheet thickness, that is, usually of about 0.1-1.2mm sheet thickness is obtained. The above rolled Al alloy sheet has excellent repeated bendability and high strength equal to or higher than that of conventional 42 alloy, 'Kovar(R)', or Cu-type material, and further, it has superior electric conductivity, thermal conductivity, heat radiation characteristic, etc. Accordingly, this rolled Al alloy sheet can be suitably used as conductive parts material for electronic anc electrical equipment.

Description

【発明の詳細な説明】 産業上の利用分野 この弁明は半導体やICのリードフレームあるいはコネ
クタやスイッチなどの導電部品に使用される電子電気機
器導電部品用材料の製造方法に関し、良好な電気伝導性
、熱伝導性(放熱性)、はんだ付は性、・メツキ性、機
械的強度および特に優れた繰返し曲げ性を示す電子・電
気機器導電部品用材料の製造方法に関するものである。
[Detailed Description of the Invention] Industrial Field of Application This defense relates to a method for producing materials for electrically conductive parts of electronic and electrical equipment used in lead frames of semiconductors and ICs, or electrically conductive parts such as connectors and switches, and which has good electrical conductivity. The present invention relates to a method for producing a material for electrically conductive parts for electronic and electrical equipment that exhibits excellent thermal conductivity (heat dissipation), soldering properties, plating properties, mechanical strength, and especially excellent repeated bending properties.

従来の技術 電子・電気機器に使用される導電部品の代表的なものと
しては、トランジスタなどの個別半導体ヤ1.C,、L
S I、SCRに使用されるリードフレームがある。こ
のリードフレームは、代表的には次のような工程を経て
ICや半導体に組込まれる。
Conventional Technology Typical conductive parts used in electronic and electrical equipment include individual semiconductor layers such as transistors. C,,L
There are lead frames used for SI and SCR. This lead frame is typically incorporated into an IC or semiconductor through the following steps.

ダなわら先ずリードフレーム用材料としての導電材料か
らなる板厚0.1〜0.5闇の条材を用意し、その条材
にプレス打抜き加工またはエツチングを施して所要のリ
ードフレーム形状(但しアウターリード側が相互に連な
っているもの)とし、次いでそのリードフレームの所定
箇所に高純度5iなどからなる半導体素子(Siチップ
)を接合する。
First, a strip of conductive material with a thickness of 0.1 to 0.5 mm is prepared as a lead frame material, and the strip is punched or etched to form the desired lead frame shape (however, The outer leads are connected to each other), and then a semiconductor element (Si chip) made of high purity 5i or the like is bonded to a predetermined location of the lead frame.

この接合は、ダイボンディングと称されるものであって
、Agペースト等の導電樹脂を用いて加圧接着する方法
、あるいは予めリードフレーム素材の片面もしくは半導
体素子(Siチップ)の面に、Au、ACt、Ni等の
うちの1種の単層または2種以上の多重層からなるメツ
キ層を形成しておき、このメツキ層を介し加熱拡散圧着
してALJ−3iなどの共晶を利用してリードフレーム
と半導体素子とを接合する方法、さらにはPb−8nは
んだ等を用いて接合する方法などがある。この後、基板
上のリードフレームの所定箇所にダイボンディングされ
た半導体素子(Siチップ)上のへβ電極とリードフレ
ームの導体端子(インナーリード)とをALJ線もしく
Al線で接続する。この接続はワイヤボンディングと称
されている。引続いて半導体素子、結線部分、および半
導体素子が取付けられた部分のリードフレームを保護す
るために樹脂やセラミック等で封止し、I&終的にリー
ドフレームのアウクリードの相互に連なる部分を切除す
る。
This bonding is called die bonding, and is performed by pressure bonding using a conductive resin such as Ag paste, or by attaching Au, A plating layer consisting of a single layer or a multilayer of two or more of ACt, Ni, etc. is formed in advance, and heat diffusion pressure bonding is performed through this plating layer using eutectic such as ALJ-3i. There are methods of bonding a lead frame and a semiconductor element, and a method of bonding using Pb-8n solder or the like. Thereafter, the β electrode on the semiconductor element (Si chip) die-bonded to a predetermined location of the lead frame on the substrate and the conductor terminal (inner lead) of the lead frame are connected by an ALJ wire or an Al wire. This connection is called wire bonding. Subsequently, in order to protect the semiconductor element, the wiring part, and the part of the lead frame where the semiconductor element is attached, it is sealed with resin, ceramic, etc., and the parts of the lead frame where the lead frame is connected to each other are cut off. .

以上のような工程を経て使用されるリードフレーム材と
しては、良好なプレス加工性もしくはエツチング性を有
すること、および半導体素子(Siチップ)とリードフ
レームをダイボンディングする工程での耐熱性(耐軟化
性)やメツキ性、はんだ付は性が良好であること、さら
には良好な放熱性(熱伝導性)、導電性を有し、しかも
半導体装置の輸送や電子機器への組込みに際しての曲が
りや繰返し曲げによって破10が生じないI械的強度や
優れた耐繰返し曲げ性を有し、また耐食性を有すること
が要求される。
The lead frame material used through the above processes must have good press workability or etching properties, and must have good heat resistance (softening resistance) during the die bonding process between the semiconductor element (Si chip) and the lead frame. It must have good heat dissipation (thermal conductivity) and conductivity, as well as good plating and soldering properties, as well as good resistance to bending and repetition when transporting semiconductor devices or incorporating them into electronic equipment. It is required to have mechanical strength that does not cause fractures when bent, excellent repeated bending resistance, and corrosion resistance.

従来このようなリードフレーム材としては、Fe−42
%N;合金である42合金、あるいは「017%Co−
29%Ni合金であるコバール、さらにはCLI系合金
のリン青銅(CA 501) 、Cu −Fe−Zn−
P (CA 194)合金、Qu−1”e−co−sn
−p (CA 195)合金等が使用されている。
Conventionally, such lead frame materials include Fe-42
%N; 42 alloy, or “017%Co-
Kovar, which is a 29% Ni alloy, as well as phosphor bronze (CA 501), which is a CLI alloy, and Cu-Fe-Zn-
P (CA 194) alloy, Qu-1”e-co-sn
-p (CA 195) alloy etc. are used.

発明が解決しようとする課題 従来のリードフレーム材として用いられているコバール
や42合金はいずれも高価なNiを多量に含有づるため
高価格とならざるを得す、またCu系合金は繰返し曲げ
性が劣り、しかも価格的な面でも問題があった。そこで
リードフレーム材で代表される電子・電気機器導電部品
の導電材料として、これらの部品に要求される緒特性を
満足ししかも安価な材料の開発・実用化が強く望まれて
いる。
Problems to be Solved by the Invention Both Kovar and 42 alloys, which are conventionally used as lead frame materials, are expensive because they contain a large amount of expensive Ni, and Cu-based alloys have poor repeatability. It was inferior, and there was also a problem in terms of price. Therefore, there is a strong desire to develop and put into practical use a material that satisfies the electrical properties required for these parts and is inexpensive and can be used as a conductive material for conductive parts of electronic and electrical equipment such as lead frame materials.

一般に安価な導電材料としてはアルミニウム合金が知ら
れており、アルミニウム合金を用いたリードフレーム材
料としては、既に特開昭62−96638号や特開昭6
2−96644号等に記載のものが提案されている。し
かしながらこれらのアルミニウム合金では、従来のリー
ドフレーム材である42合金やリン青銅と比較して強度
が低く、また繰返し曲げ性が充分でなく、そこでより強
度が高くかつ繰返し曲げ性に優れたアルミニウム合金基
の材料の開弁が望まれている。
Aluminum alloy is generally known as an inexpensive conductive material, and lead frame materials using aluminum alloy have already been published in JP-A-62-96638 and JP-A-62-96638.
The method described in No. 2-96644 and the like has been proposed. However, compared to conventional lead frame materials such as 42 alloy and phosphor bronze, these aluminum alloys have lower strength and do not have sufficient repeated bending properties. Opening of the base material is desired.

この発明は以上の事情を背qとしてなされたもので、特
に優れた繰返し曲げ性を有するとともに機械的強度も高
く、かつその他の緒特性、すなわち電気伝導性、熱伝導
性(放熱性)、はんだ付は性、メツキ性も優れたアルミ
ニウム基合金からなる電子・電気機器導電部品材料を製
造する方法を提供することを目的とするものである。
This invention was made against the background of the above circumstances, and has particularly excellent repeated bending properties, high mechanical strength, and other properties such as electrical conductivity, thermal conductivity (heat dissipation), and solderability. The object of the present invention is to provide a method for producing a material for electrically conductive parts for electronic and electrical equipment made of an aluminum-based alloy that has excellent adhesion and plating properties.

課題を解決するための手段 本発明者等はアルミニウム基合金について、前述のよう
なリードフレーム笠の電子電気機器導電部品に使用され
る材料として必要な特性、特に優れた繰返し曲げ性と高
い強度を満足させ得る成分と製造方法について種々実験
・検討を重ねた結果、この発明をなすに至ったのである
Means for Solving the Problems The present inventors have developed an aluminum-based alloy that has the characteristics necessary as a material used in electrically conductive components of electronic and electrical equipment such as lead frame caps, particularly excellent repeated bendability and high strength. As a result of repeated experiments and studies on ingredients and manufacturing methods that would satisfy the requirements, this invention was achieved.

具体的には、請求項1の発明の電子電気機器導電部品用
材料の製造方法は、Qu0.5〜4,5%、Mg0.2
〜2.0%を含有し、残部が八!および不可避的不純物
よりなるアルミニウム合金圧延板を、450〜530℃
で溶体化処理して、冷入り速度1℃/露以上で冷却し、
その後の冷間加工のhロエ率を0〜50%として最終板
厚の材料を得ることを特徴とするものである。
Specifically, the method for producing a material for electrically conductive parts of electronic and electrical equipment according to the invention of claim 1 includes Qu0.5 to 4.5%, Mg0.2
Contains ~2.0% and the remainder is 8! and an aluminum alloy rolled plate consisting of unavoidable impurities at 450 to 530°C.
solution treatment and cooling at a cooling rate of 1°C/dew or higher,
It is characterized in that the h-loe ratio of the subsequent cold working is set at 0 to 50% to obtain a material with a final plate thickness.

また請求項2の発明の方法は、前述のように溶体化処理
後の冷間加工率を0〜50%として得られた最終板厚の
材料に、さらに100〜220℃で最終処理を施すこと
を特徴とするものである。
Further, the method of the invention of claim 2 further includes subjecting the material having the final plate thickness obtained by setting the cold working rate after the solution treatment to 0 to 50% as described above to further final treatment at 100 to 220°C. It is characterized by:

さらに請求項3の発明の方法は、素材合金の成分として
、前述のCLI、Mgのほか、さらにMn1.0%以下
、Qr0.3%以下、Zr0.3%以下、V0.3%以
下、Ni5.7%以下のうちの1種または2種以上を含
有づるものを用い、請求項1の発明と同様な処理を施ず
ものである。
Furthermore, in the method of the invention of claim 3, in addition to the above-mentioned CLI and Mg, Mn 1.0% or less, Qr 0.3% or less, Zr 0.3% or less, V 0.3% or less, Ni5 A material containing one or more of .7% or less is used, and is not subjected to the same treatment as the invention of claim 1.

そしてまた請求項4の発明の方法は、請求項3と同様に
素材合金成分としてQu、MQのほかMn、Cr、Zr
、V、N iのうちの1種まタハ2種以上を含有するも
のを用い、かつ請求項2と同様に溶体化処理後の冷間加
工率を0〜50%として得られた最終板厚の材料に、さ
らに100−・220℃で最終熱処理を施すものである
Furthermore, the method of the invention of claim 4 is similar to claim 3, in which the material alloy components include Mn, Cr, and Zr in addition to Qu and MQ.
, V, Ni or two or more of the following, and the final plate thickness obtained by using a material containing one or more of Tah, V, and Ni, and using a cold working rate of 0 to 50% after solution treatment as in claim 2. The material is further subjected to a final heat treatment at 100-220°C.

作   用 この発明の電子電気機器導電部品材料製造方法の木材の
アルミニウム基台金としては、時効硬化性を有する熱処
理型合金であるAj7−Cu−Mq系の合金を用いる。
Function: An Aj7-Cu-Mq alloy, which is a heat-treatable alloy having age hardening properties, is used as the wooden aluminum base metal in the method for manufacturing electrically conductive parts materials for electronic and electrical equipment according to the present invention.

ここでA&−Cu−Mq系合金とは、必須合金成分とし
て、Quを0.5%(重量%、以下同じ)以上、4.5
%以下含有し、かつMgを0.2%以上、2.0%以下
含有するものである。次にこれらのCu、MQ含有吊限
定理由について説明する。
Here, the A&-Cu-Mq alloy is defined as having Qu as an essential alloy component of 0.5% (wt%, same hereinafter) or more, 4.5%
% or less, and Mg is contained in an amount of 0.2% or more and 2.0% or less. Next, the reason for limiting the content of Cu and MQ will be explained.

Cu: Cuは強度向上に寄与するとともに、メツキ性やはんだ
性を向上させる元素であるが、Cuが0.5%未満では
強度向上の効果が充分に得られず、一方4.5%を越え
て含有させれば圧延性が低下して圧延が困難となる。し
たがってCIJは0.5〜4.5%の範囲内とした。
Cu: Cu is an element that not only contributes to strength improvement but also improves plating and solderability. However, if Cu is less than 0.5%, the effect of improving strength cannot be sufficiently obtained; on the other hand, if it exceeds 4.5%, If it is contained, rolling properties will be reduced and rolling will become difficult. Therefore, CIJ was set within the range of 0.5 to 4.5%.

Mq: MgはQuと共存することにより析出物を形成して強度
向上に寄与する元素であり、リードフレーム等の部品と
して必要な強度および耐繰返し曲げ性を得るに必要であ
る。しかしながら0.2%未満では強度向上効果が充分
に得られず、一方2.0%を越えて含有させても著しい
強度の向上はなく、しかも圧延性が極端に低下する。し
たがってMqは0.2〜2.0%の範囲内とした。
Mq: Mg is an element that forms precipitates when coexisting with Qu and contributes to improving strength, and is necessary to obtain the strength and repeated bending resistance required for parts such as lead frames. However, if the content is less than 0.2%, a sufficient strength improvement effect cannot be obtained, and on the other hand, if the content exceeds 2.0%, there is no significant improvement in strength, and moreover, the rolling properties are extremely reduced. Therefore, Mq was set within the range of 0.2 to 2.0%.

この発明の電子電気機器導電部品材料として用いるアル
ミニウム基合金は、基本的には以上のCIJ、MCIを
含有する。17−Cu−Mch系合金であればリードフ
レーム等の部品に必要な緒特性を確保できるが、さらに
耐熱性(耐軟化性)を向上させるために、請求項3また
は請求項4の発明においては、Mn1.0%以下、Qr
0.30%以下、Zr0.30%以下、V 0.30%
以下、Ni5.7%以下のうちの1種または2種以上を
添加しても良い。これらの元素の請求項3または請求項
4の発明における添加量限定理由は次の通りである。
The aluminum-based alloy used as a material for electrically conductive parts of electronic and electrical equipment according to the present invention basically contains the above CIJ and MCI. A 17-Cu-Mch based alloy can ensure the necessary mechanical properties for parts such as lead frames, but in order to further improve heat resistance (softening resistance), in the invention of claim 3 or claim 4, , Mn 1.0% or less, Qr
0.30% or less, Zr 0.30% or less, V 0.30%
Hereinafter, one or more types of Ni of 5.7% or less may be added. The reason for limiting the amount of these elements added in the invention of claim 3 or claim 4 is as follows.

Mn: Mnは溶体化処yf!時の再結晶粒を微細化し、より一
層の強度向上および耐熱性(耐軟化性)の向七を図るに
有効な元素であるが、1.0%を越えて含有させても強
度向上および耐熱性向上の効果は飽和し、また溶体化9
8即時の焼入れ感受性を高めて製造が困難となる。した
がってMnの添加量は1.0%以下とした。
Mn: Mn is solution treated yf! It is an effective element for further improving strength and improving heat resistance (softening resistance) by making the recrystallized grains finer, but even if it is contained in an amount exceeding 1.0%, it will not improve strength or heat resistance. The effect of improving sex is saturated, and solution 9
8 Increased susceptibility to immediate quenching, making manufacturing difficult. Therefore, the amount of Mn added was set to 1.0% or less.

Cr: Orも溶体化処理時の再結晶粒を微細化して、強度およ
び耐熱性を一層向上させるに有効な元素であるが、0.
30%を越えて含有させても強度向上および耐熱性向上
の効果は飽和し、また鋳造時に巨大な化合物を生成し易
くなる。したがってOrの添加量は0.30%以下とし
た。
Cr: Or is also an effective element for refining recrystallized grains during solution treatment and further improving strength and heat resistance.
Even if the content exceeds 30%, the effects of improving strength and heat resistance are saturated, and large compounds are likely to be formed during casting. Therefore, the amount of Or added was set to 0.30% or less.

Zr: Zrも再結晶粒の微細化および強度向上、耐熱性の向上
に有効な元素であるが、0.30%を越えて含有させて
も強度向上および耐熱性向上の効果は飽和し、また鋳造
時に巨大な化合物を生成し易くなるから、zrの添加量
は0.30%以下とした。
Zr: Zr is also an effective element for refining recrystallized grains, improving strength, and improving heat resistance, but even if it is contained in amounts exceeding 0.30%, the effects of improving strength and heat resistance are saturated, and The amount of zr added was set to 0.30% or less since it becomes easy to generate huge compounds during casting.

V: ■も再結晶粒の微細化および強度向上、耐熱性の向上に
有効な元素であるが、0.30%を越えて含有されても
強度向上および耐熱性向上の効果は飽和し、また鋳造時
に巨大化合物を生成し易くなるから、■の添加量は0,
30%以下とした。
V: ■ is also an effective element for refining recrystallized grains, improving strength, and improving heat resistance, but even if it is contained in an amount exceeding 0.30%, the effect of improving strength and heat resistance is saturated; Since it becomes easier to generate giant compounds during casting, the amount of ■ added is 0,
It was set to 30% or less.

Ni: N1も再結晶粒の微細化および強度向上、耐熱性向上に
有効な元素であるが、5.7%を越えて予示に含有させ
ても強度向上および耐熱性向上の効果は飽和し、また鋳
造時に巨大な化合物を生成し易くなるから、Niの添加
量は5.7%以下とした。
Ni: N1 is also an effective element for refining recrystallized grains, improving strength, and improving heat resistance, but even if it is included in amounts exceeding 5.7%, the effects of improving strength and heat resistance are saturated. Also, the amount of Ni added was set to 5.7% or less since it would be easy to generate huge compounds during casting.

以上の各成分のほかはAI2および不可避的不純物とす
れば良い。不可避的不純物としてはFe、3iが含有さ
れるのが通常であるが、これらのFeff1.5iff
iが多くなれば晶出物サイズが大ぎくなって繰返し曲げ
性が低下するから、Feは0.50%程度以下、Siは
0.30%程度以下とすることが望ましく、より好適に
はFeは0.30%以下、Siは0.15%以下とする
ことが望ましい。
In addition to the above-mentioned components, AI2 and inevitable impurities may be used. Usually, Fe and 3i are contained as unavoidable impurities, but these Feff1.5iff
If i increases, the crystallized material size increases and the repeat bendability decreases, so it is desirable to keep Fe at about 0.50% or less and Si at about 0.30% or less, and more preferably Fe It is desirable that Si be 0.30% or less and Si be 0.15% or less.

そのほか、アルミニウム合金鋳塊の製造においては、一
般に鋳塊結晶粒の微細化のためにTi、または−「iお
よびBを添加プることが多いが、この弁明の材料の場合
もTi1またはTiおよびBが添加されていても特にリ
ードフレーム材等の電子電気別器導電部品材料として支
障はない。但しその添加量は、Ti0.2%以下、[3
0,04%以下が望ましい。
In addition, in the production of aluminum alloy ingots, Ti or -'i and B are generally added in order to refine the ingot crystal grains. Even if B is added, there is no problem in using it as a conductive component material for electronic and electrical separators such as lead frame materials.However, the amount added is Ti0.2% or less, [3
0.04% or less is desirable.

またこの発明の系のアルミニウム基合金のようにMgを
含有するA2合金の鋳造にあたっては、溶湯の酸化を防
止したりあるいは圧延性を改善づる目的でBeを必要に
応じて添加することがあるが、この弁明の材料の場合も
3eを必要に応じて50pprn Pi!度以下添加す
ることができる。
Furthermore, when casting A2 alloys containing Mg, such as the aluminum-based alloys of this invention, Be may be added as necessary to prevent oxidation of the molten metal or to improve rollability. , in the case of this defense material, 50 pprn Pi! Can be added below

次にこの弁明の電子電気別器導電部品材料の製造方法に
ついて詳述する。
Next, the manufacturing method of the electronic electrical separator conductive component material of this defense will be described in detail.

先ず前述のような成分組成のアルミニウム基台金溶湯を
常法にしたがって鋳造する。この鋳造方法としては半連
続鋳造法(DC鋳造法)が−膜内であるが、省エネルギ
や耐軟化性の向上等の観点から薄板連続鋳造法(連続蒋
造圧延法)を適用しても良い。
First, a molten aluminum base metal having the above-mentioned composition is cast in accordance with a conventional method. Semi-continuous casting method (DC casting method) is used as this casting method, but from the viewpoint of energy saving and improvement of softening resistance, thin plate continuous casting method (continuous rolling method) is also applied. good.

得られた鍔塊に対しては、均熱処理(均質化処理)およ
び熱間圧延を行ない、さらに冷間圧延を行なった後、溶
体化処理−焼入れを行なう。この溶体化処理−焼入れは
強度を増すために必要な工程である。このように溶体化
処理−焼入れを行なった後、0〜50%の冷間加工率で
所定の製品板厚の圧延板とする。すなわち冷間加工を施
さないか、また施しても50%以下の小さい加工率とす
る。なお−膜内には板厚0.1〜1.2問程度で製品板
厚となる。但し薄板連続鋳造板の場合は、これらの工程
のうち熱間圧延までの工程を省略することができる。
The obtained flange block is subjected to soaking treatment (homogenization treatment) and hot rolling, and then cold rolling and then solution treatment and quenching. This solution treatment and quenching is a necessary step to increase strength. After performing the solution treatment and quenching in this manner, a rolled plate having a predetermined product thickness is obtained at a cold working rate of 0 to 50%. That is, cold working is not performed, or even if cold working is performed, the working rate is small, 50% or less. Note that the inside of the film has a thickness of about 0.1 to 1.2 inches, which is the product thickness. However, in the case of continuously cast thin sheets, the steps up to hot rolling can be omitted among these steps.

上記各工程のうち、均熱処理は450〜530℃の温度
にて48時間以内保持すれば良い。均熱温度が450℃
未満では熱間圧延性が低下し、一方均熱湿度が530℃
を越えれば共晶溶融が発生し易くなる。
Among the above steps, the soaking treatment may be maintained at a temperature of 450 to 530°C for within 48 hours. Soaking temperature is 450℃
If the temperature is lower than 530°C, the hot rolling properties will decrease.
If the value exceeds 100%, eutectic melting is likely to occur.

また保持時間が48時間を越えても、均熱による組織の
均質化効果はほとんど飽和し、エネルギコストの増大を
招くだけである。
Furthermore, even if the holding time exceeds 48 hours, the effect of homogenizing the structure due to soaking is almost saturated, which only results in an increase in energy costs.

灼熱処理後は通常は再加熱してから熱間圧延を行なう。After the scorching heat treatment, the material is usually reheated and then hot rolled.

この再加熱は、常法に従って450〜530℃で行ない
、熱間圧延も450〜530℃で行なえば良い。なお灼
熱処理(均質化処理)と熱間圧延のための加熱!2!l
!浬は、上述のように個別に行なう必要はなく、均質化
処理と熱間圧延のための加熱とを兼ねて1回の加熱処理
を行ない、引続いて熱間圧延を行なっても良い。
This reheating may be carried out at 450 to 530°C according to a conventional method, and hot rolling may also be carried out at 450 to 530°C. In addition, heating for scorching treatment (homogenization treatment) and hot rolling! 2! l
! It is not necessary to perform the rolling separately as described above, and a single heat treatment may be performed to serve as both the homogenization treatment and the heating for hot rolling, followed by hot rolling.

熱間圧延終了後は、−次冷間圧延を施して圧延板中間体
とし、さらにこの圧延板中間体に対して溶体化処理、焼
入れを行なう。溶体化処理、焼入れは、時効硬化性を与
えるべく、M(J、CLJ等の元素を予め固溶させてお
くためのものであり、溶体化処理温度は450〜530
℃の範囲内の温度とする必要がある。溶体化処理温度が
450℃未満では、その後の時効硬化性、加工硬化性が
低下して充分な強度が得られなくなる。一方溶体化処理
温度が530℃を越えれば、共晶溶融が発生して好まし
くない。また溶体化処理温度での保持時間は板厚によっ
て異なるが、1闇以下の板厚であれば、40分以内の保
持で充分である。溶体化処理温度で保持後の冷却(焼入
れ)は、1℃/511c以上の冷却速度とげる。冷五〇
速度が1℃/sec未満では時効硬化が少なく、また同
時に加工硬化性も低くなって、充分な強度が冑られなく
なるから、1℃/Sに以上の冷却速度とする必要がある
。なおコイル状の圧延板中間体に対してこの溶体化処理
を行なう場合は連続焼鈍炉を用いるのが通常であるが、
連続焼鈍の場合は保持時間が短かくても冷却速度が1℃
/式以上であれば、その後の時効硬化性、加工硬化性が
著しく損なわれることはない。
After the hot rolling is completed, a second cold rolling is performed to obtain a rolled plate intermediate, and this rolled plate intermediate is further subjected to solution treatment and quenching. Solution treatment and quenching are for pre-dissolving elements such as M (J, CLJ, etc.) in order to impart age hardenability, and the solution treatment temperature is 450 to 530.
The temperature must be within the range of °C. If the solution treatment temperature is less than 450°C, the subsequent age hardenability and work hardenability will deteriorate, making it impossible to obtain sufficient strength. On the other hand, if the solution treatment temperature exceeds 530°C, eutectic melting will occur, which is undesirable. Further, the holding time at the solution treatment temperature varies depending on the plate thickness, but if the plate thickness is 1 mm or less, holding for 40 minutes or less is sufficient. Cooling (quenching) after holding at the solution treatment temperature achieves a cooling rate of 1°C/511c or more. If the cooling rate is less than 1°C/sec, age hardening will be low and work hardening will also be low, making it impossible to achieve sufficient strength, so it is necessary to set the cooling rate to 1°C/s or more. Note that when performing this solution treatment on a coil-shaped rolled plate intermediate, a continuous annealing furnace is usually used.
In the case of continuous annealing, the cooling rate is 1℃ even if the holding time is short.
/ or more, the subsequent age hardenability and work hardenability will not be significantly impaired.

このように溶体化処理、焼入れを行なった後には、その
まま製品板としても良いが、必要に応じて、強度を増づ
ためあるいは焼入れ時の歪を矯正するため、冷間圧延や
レベリング等の冷間前■を行なうことができる。但し、
冷間加工を過剰に行なえば繰返し曲げ性が低下するから
、この発明では特に優れた繰返し曲げ性を得るため溶体
化!LIyJl、焼入れ後の冷間加工率は0〜50%の
範囲内とする必要がある。50%を越える冷間加工率で
は、強度は高くなるが繰返し曲げ性が低下してこの発明
の目的に沿わなくなる。
After solution treatment and quenching, it may be used as a product sheet as is, but if necessary, cold rolling or leveling may be applied to increase the strength or correct distortion during quenching. You can perform mamae■. however,
Excessive cold working will reduce the repeatability of bending, so in this invention we use solution processing to obtain particularly excellent repeatability! LIyJl, the cold working rate after quenching needs to be within the range of 0 to 50%. If the cold working ratio exceeds 50%, the strength will increase, but the repeat bendability will decrease, which will not meet the purpose of the present invention.

最終圧延板の強度については、従来の42合金やCLJ
系合金のリードフレーム材等の電子電気機器54電部品
用月料と同等以上の性能を得るためには引張強さで40
klIF/nr−以上、繰返し曲げ3回以上が必要であ
るが、以上のようなこの発明の方法によるアルミニウム
塁合金材料の場合、強度および繰返し曲げ性ともに充分
にその値を満足1Jることかできる。
Regarding the strength of the final rolled plate, conventional 42 alloy and CLJ
In order to obtain performance equivalent to or higher than that of lead frame materials for electronic and electrical equipment such as lead frame materials of 54-based alloys, the tensile strength must be 40.
klIF/nr- or more, repeated bending three or more times is required, but in the case of the aluminum base alloy material produced by the method of the present invention as described above, both strength and repeated bendability can be sufficiently satisfied with the values of 1J. .

なお請求項2および請求項4の発明の方法の場合、繰返
し曲げ性をさらに向上させるために、上述のような0〜
50%の冷間加工率で最終板厚とした後に100〜22
0℃で最終焼鈍を行なう。最終焼鈍温度が100℃未満
では、伸びの向上も少ないから、繰返し曲げ性が余り向
上せず、一方220℃を越える温度では、伸びは向上し
て繰返し曲げ性も向上するが、強度は低下してしまい、
また温度によっては過時効となって繰返し曲げ性が逆に
低下してしまうこともある。しICがって最終焼鈍は1
00〜220℃の範囲内で行なう必要がある。
In addition, in the case of the method of the invention of claims 2 and 4, in order to further improve the repeatability, the above-mentioned
100~22 after making the final plate thickness with a cold working rate of 50%
Final annealing is performed at 0°C. If the final annealing temperature is less than 100°C, there is little improvement in elongation, so repeat bendability does not improve much. On the other hand, if the final annealing temperature exceeds 220°C, elongation improves and repeat bendability improves, but strength decreases. I ended up
Moreover, depending on the temperature, over-aging may occur and the repeated bending property may deteriorate. Therefore, the final annealing is 1
It is necessary to carry out the process within the range of 00 to 220°C.

実  施  例 第1表に示7合金N0. 1〜N0. 3を通常の半連
続M造法により鋳造した。半連続鋳造した詩興は、各面
を面側して厚さ 500 rnm、幅+000/lIn
、長さ3500 rnrnとし、第2表に示す製造条件
N0. 1〜N0.6で0.30市厚の圧延板とした。
Example 7 alloy No. 7 shown in Table 1. 1~N0. 3 was cast using the normal semi-continuous M manufacturing method. The semi-continuously cast Shikoh has a thickness of 500 rnm with each side facing up, and a width of +000/lIn.
, the length is 3500 rnrn, and the manufacturing conditions shown in Table 2 are No. 0. A rolled plate with a thickness of 0.30 was obtained by measuring 1 to N0.6.

これらのアルミニウム合金圧延板について、引張り強さ
、繰返し曲げ性、導電率、メツキ性、はんだ付は性につ
いて調査した。その結果を第3表に示す。
These aluminum alloy rolled plates were investigated for tensile strength, repeated bending properties, electrical conductivity, plating properties, and soldering properties. The results are shown in Table 3.

なおζこで引張試験は、溶体化処理−焼入れ後、室温で
7日間放置してから行なった。また最終焼鈍のある場合
は、溶体化98哩−焼入れ後、7日間室温絞首してから
最終焼鈍し、引張試験を行なった。
Note that the tensile test was conducted after being left at room temperature for 7 days after solution treatment and quenching. In cases where final annealing was required, the specimens were solution-treated for 98 hours and then strangled at room temperature for 7 days before final annealing and then subjected to a tensile test.

また、アルミニウム合金の場合、ALJヤAct等のメ
ツキを施すにあたってメツキを叶今に行なうためには一
般にメツキ前に予め表面処理を行なう必要がある。また
はんだを付ける場合も表面’l!を浬を事前に行なって
おけばはんだが付き易く、はんだ付は部の剥離が生じに
くくなる。このような事前の表面処理としては一般にN
1メツキやCuメツキがあり、さらにこの表面処理の前
処理としてはジンケート処理が有効である。このジンケ
ート処理時のZnの分布が均一であるほど、そのジンケ
ート処理面上へのNiやCLIのメツキ性が良好となり
、さらにその上に施されるAuやAQのメツキ性やはん
だ付は性が良好となる。そこでこの実施例においても、
メツキ性やはんだ付は性を判定するために圧延板にジン
ケート処理を施してそのジンケート処理面のznの分布
を光学顕微鏡で観察し、Znの分布か均一な順に○、△
、×と評価した。△以上であればメツキ性やはんだ付は
性は一応合格と判定される。なおこのジンケート処理条
件は、次の通りである。
Furthermore, in the case of aluminum alloys, in order to perform plating such as ALJ or Act, it is generally necessary to perform surface treatment in advance before plating. Also, when applying solder, use the surface 'l! If you do this in advance, the solder will stick more easily and the parts will be less likely to peel off during soldering. Such preliminary surface treatment is generally performed using N
There are 1 plating and Cu plating, and zincate treatment is effective as a pretreatment for this surface treatment. The more uniform the distribution of Zn during this zincate treatment, the better the plating properties of Ni and CLI on the zincate treated surface, and the better the plating properties and soldering properties of Au and AQ applied thereon. Becomes good. Therefore, in this example as well,
To determine the plating and soldering properties, a rolled plate is subjected to zincate treatment, and the Zn distribution on the zincate-treated surface is observed with an optical microscope.
, rated as ×. If it is △ or above, the plating and soldering properties are determined to be acceptable. The zincate treatment conditions are as follows.

浴組成 :  NaO8525g/& 酸化亜鉛  98g/l 浴温度 220℃ 浸漬時間 :30秒 また繰返し曲げ性は、0.30rRmの圧延材を90’
片振りで繰返し曲げを行ない、破断に至るまでの往復回
数を測定した。この繰返し曲げ性は3回以上あれば性能
上問題はない。
Bath composition: NaO 8525g/& zinc oxide 98g/l Bath temperature 220°C Immersion time: 30 seconds Also, the repeated bendability was 90' for the rolled material of 0.30rRm.
Bending was repeated with one swing, and the number of reciprocations until breakage was measured. There is no problem in terms of performance as long as this repeated bendability is 3 or more times.

第 表 第 表 第3表から明らかなように、この発明の製造方法による
電子電気機器導電部品材料としてのアルミニウム基合金
は、圧延材での強度が引張り強さ40M/IRd以上で
充分な強度を有しているばかりでなく、繰返し曲げ性が
著しく優れており、そのほか導電率は従来のリードフレ
ーム材である42合金(導電率31AC8%)と比較し
て格段に高くて電気伝導性に優れ、さらにジンケート処
理時のZnの均一性が良好であることから、メツキ性や
はんだ付は性に優れることが判る。なお第3表中には特
に示さなかったが、耐食性や放熱性(熱伝導性)も優れ
ていることが確認されている。
As is clear from Table 3, the aluminum-based alloy used as a material for electrically conductive parts of electronic and electrical equipment produced by the manufacturing method of the present invention has sufficient strength when rolled as a tensile strength of 40 M/IRd or more. Not only does it have excellent repeat bendability, but it also has a much higher electrical conductivity than 42 alloy (conductivity 31AC8%), which is the conventional lead frame material. Furthermore, since the uniformity of Zn during the zincate treatment was good, it was found that the plating and soldering properties were excellent. Although not particularly shown in Table 3, it has been confirmed that corrosion resistance and heat dissipation (thermal conductivity) are also excellent.

発明の効果 この発明の製造方法によれば、繰返し曲げ性が優れると
ともに、従来の42合金やコバールあるいはCU系系材
上同等以上の高い強度を有し、しかも良好な電気伝導性
、熱伝導性、放熱性を有し、かつまた良好なはんだ付は
性、メツキ性を有するアルミラム基の電子電気機器導電
部品用材料を得ることができる。したがってこれらの特
性が要求されるIC1半導体のリードフレーム材やスイ
ッチ、コネクタ等の電子電気機器導電部品用の材料の製
造に最適である。なお特にリードフレーム材においてソ
イ1ボンデイングをへ2線で行なう場合にこの発明の製
造方法による材料をリードフレームとして使用すれば、
半導体素子取付部およびワイヤ接続部に金メツキや銀メ
ツキ等を施す必要がなく、そのままでワイヤホンディン
グが可能となり、半導体素子製造のコストをさらに下げ
ることがでさるというメリットもある。
Effects of the Invention According to the manufacturing method of the present invention, it has excellent repeated bending properties, has high strength equivalent to or higher than conventional 42 alloy, Kovar or CU-based materials, and has good electrical conductivity and thermal conductivity. It is possible to obtain an aluminum-based material for electrically conductive parts of electronic and electrical equipment, which has heat dissipation properties and also has good soldering and plating properties. Therefore, it is ideal for manufacturing lead frame materials for IC1 semiconductors that require these characteristics, and materials for electrically conductive parts of electronic and electrical equipment such as switches and connectors. In particular, when performing Soi 1 bonding with Soi 2 wire in lead frame materials, if the material produced by the manufacturing method of the present invention is used as the lead frame,
There is no need to apply gold plating, silver plating, etc. to the semiconductor element mounting part and the wire connection part, and wire bonding can be performed as is, which has the advantage of further reducing the cost of semiconductor element manufacturing.

Claims (4)

【特許請求の範囲】[Claims] (1)Cu0.5〜4.5%(重量%、以下同じ)、M
g0.2〜2.0%を含有し、残部がAlおよび不可避
的不純物よりなるアルミニウム合金圧延板を、450〜
530℃で溶体化処理して、冷却速度1℃/sec以上
で冷却し、その後の冷間加工の加工率を0〜50%とし
て最終板厚の材料を得ることを特徴とする電子電気機器
導電部品用材料の製造方法。
(1) Cu0.5-4.5% (weight%, same below), M
An aluminum alloy rolled plate containing 0.2 to 2.0% of g, with the remainder consisting of Al and inevitable impurities,
Conductive electronic and electrical equipment characterized by solution treatment at 530°C, cooling at a cooling rate of 1°C/sec or more, and subsequent cold working at a processing rate of 0 to 50% to obtain a material with a final plate thickness. Method of manufacturing materials for parts.
(2)Cu0.5〜4.5%、Mg0.2〜2.0%を
含有し、残部がAlおよび不可避的不純物よりなるアル
ミニウム合金圧延板を、450〜530℃で溶体化処理
して、冷却速度1℃/sec以上で冷却し、その後の冷
間加工の加工率を0〜50%として得られた最終板厚の
材料に、さらに100〜220℃で最終熱処理を施すこ
とを特徴とする電子電気機器導電部品用材料の製造方法
(2) A rolled aluminum alloy plate containing 0.5 to 4.5% of Cu and 0.2 to 2.0% of Mg, with the balance consisting of Al and unavoidable impurities, is solution-treated at 450 to 530°C, The material is cooled at a cooling rate of 1°C/sec or more, and the resulting material has a final thickness of 0% to 50%, and is further subjected to final heat treatment at 100°C to 220°C. A method for manufacturing a material for electrically conductive parts of electronic and electrical equipment.
(3)Cu0.5〜4.5%、Mg0.2〜2.0%を
含有し、さらにMn1.0%以下、Cr0.3%以下、
Zr0.3%以下、V0.3%以下、Ni5.7%以下
のうちの1種または2種以上を含有し、残部がAlおよ
び不可避的不純物よりなるアルミニウム合金圧延板を、
450〜530℃で溶体化処理して、冷却速度1℃/s
ec以上で冷却し、その後の冷間加工の加工率を0〜5
0%として最終板厚の材料を得ることを特徴とする電子
電気機器導電部品用材料の製造方法。
(3) Contains Cu0.5-4.5%, Mg0.2-2.0%, and further includes Mn1.0% or less, Cr0.3% or less,
An aluminum alloy rolled plate containing one or more of Zr 0.3% or less, V 0.3% or less, and Ni 5.7% or less, with the balance consisting of Al and inevitable impurities,
Solution treatment at 450-530℃, cooling rate 1℃/s
Cool at ec or higher and reduce the processing rate of subsequent cold working from 0 to 5.
A method for producing a material for electrically conductive parts of electronic and electrical equipment, characterized by obtaining a material with a final plate thickness of 0%.
(4)Cu0.5〜4.5%、Mg0.2〜2.0%を
含有し、さらにMn1.0%以下、Cr0.3%以下、
Zr0.3%以下、V0.3%以下、Ni5.7%以下
のうちの1種または2種以上を含有し、残部がAlおよ
び不可避的不純物よりなるアルミニウム合金圧延板を、
450〜530℃で溶体化処理して、冷却速度1℃/s
ec以上で冷却し、その後の冷間加工の加工率を0〜5
0%として得られた最終板厚の材料に、さらに100〜
220℃で最終熱処理を施すことを特徴とする電子電気
機器導電部品用材料の製造方法。
(4) Contains Cu0.5-4.5%, Mg0.2-2.0%, and further includes Mn1.0% or less, Cr0.3% or less,
An aluminum alloy rolled plate containing one or more of Zr 0.3% or less, V 0.3% or less, and Ni 5.7% or less, with the balance consisting of Al and inevitable impurities,
Solution treatment at 450-530℃, cooling rate 1℃/s
Cool at ec or higher and reduce the processing rate of subsequent cold working from 0 to 5.
The final thickness of the material obtained as 0% is further increased by 100~
A method for producing a material for electrically conductive parts of electronic and electrical equipment, characterized by subjecting it to final heat treatment at 220°C.
JP28432188A 1988-11-10 1988-11-10 Manufacture of conductive parts material for electronic and electrical equipment Pending JPH02129349A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28432188A JPH02129349A (en) 1988-11-10 1988-11-10 Manufacture of conductive parts material for electronic and electrical equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28432188A JPH02129349A (en) 1988-11-10 1988-11-10 Manufacture of conductive parts material for electronic and electrical equipment

Publications (1)

Publication Number Publication Date
JPH02129349A true JPH02129349A (en) 1990-05-17

Family

ID=17677039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28432188A Pending JPH02129349A (en) 1988-11-10 1988-11-10 Manufacture of conductive parts material for electronic and electrical equipment

Country Status (1)

Country Link
JP (1) JPH02129349A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08277447A (en) * 1995-04-07 1996-10-22 Mitsubishi Cable Ind Ltd Production of conductive aluminum alloy wire
JP2006169574A (en) * 2004-12-15 2006-06-29 Mitsubishi Alum Co Ltd Aluminum alloy sheet for secondary battery case and producing method therefor
WO2015166407A1 (en) * 2014-04-28 2015-11-05 Ennio Corrado Electrical connector comprising a contact element of an aluminium based alloy
CN108796399A (en) * 2018-07-02 2018-11-13 黄河科技学院 A kind of metal alloy and preparation method thereof with high impact resistance

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5672157A (en) * 1979-11-13 1981-06-16 Furukawa Electric Co Ltd:The Manufacture of high-strength heat-resistant aluminum alloy conductor
JPS59222550A (en) * 1983-05-31 1984-12-14 Furukawa Electric Co Ltd:The High strength aluminum alloy conductor and its manufacture
JPS61270358A (en) * 1985-05-24 1986-11-29 Furukawa Electric Co Ltd:The Manufacture of high strength aluminum alloy conductor
JPS6396239A (en) * 1986-10-09 1988-04-27 Sky Alum Co Ltd Material for electrically conductive parts of electronic and electrical appliance

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5672157A (en) * 1979-11-13 1981-06-16 Furukawa Electric Co Ltd:The Manufacture of high-strength heat-resistant aluminum alloy conductor
JPS59222550A (en) * 1983-05-31 1984-12-14 Furukawa Electric Co Ltd:The High strength aluminum alloy conductor and its manufacture
JPS61270358A (en) * 1985-05-24 1986-11-29 Furukawa Electric Co Ltd:The Manufacture of high strength aluminum alloy conductor
JPS6396239A (en) * 1986-10-09 1988-04-27 Sky Alum Co Ltd Material for electrically conductive parts of electronic and electrical appliance

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08277447A (en) * 1995-04-07 1996-10-22 Mitsubishi Cable Ind Ltd Production of conductive aluminum alloy wire
JP2006169574A (en) * 2004-12-15 2006-06-29 Mitsubishi Alum Co Ltd Aluminum alloy sheet for secondary battery case and producing method therefor
JP4539913B2 (en) * 2004-12-15 2010-09-08 三菱アルミニウム株式会社 Aluminum alloy plate for secondary battery case and manufacturing method thereof
WO2015166407A1 (en) * 2014-04-28 2015-11-05 Ennio Corrado Electrical connector comprising a contact element of an aluminium based alloy
CN108796399A (en) * 2018-07-02 2018-11-13 黄河科技学院 A kind of metal alloy and preparation method thereof with high impact resistance
CN108796399B (en) * 2018-07-02 2020-07-03 黄河科技学院 Metal alloy with high impact resistance and preparation method thereof

Similar Documents

Publication Publication Date Title
US4908078A (en) Material for conductive parts of electronic or electric devices
JP4567906B2 (en) Copper alloy plate or strip for electronic and electrical parts and method for producing the same
JPS61183426A (en) High strength, highly conductive heat resisting copper alloy
JPS6389640A (en) Conductive parts material for electronic and electrical equipment
JPS6160846A (en) Lead material of copper alloy for semiconductor device
JPH02129349A (en) Manufacture of conductive parts material for electronic and electrical equipment
JPS61287156A (en) Blank for lead frame
JPS61257443A (en) Cu alloy as lead material for semiconductor device
JPS5893860A (en) Manufacture of high strength copper alloy with high electric conductivity
JPS6396239A (en) Material for electrically conductive parts of electronic and electrical appliance
JPS63105943A (en) Copper alloy for semiconductor device and its production
JPS63128158A (en) Manufacture of high strength copper alloy having high electrical conductivity
JPH01162754A (en) Production of material for conductive parts of electronic and electric apparatus
JPH01162752A (en) Manufacture of conductive parts material for electronic and electrical equipment
JPS6314832A (en) Copper alloy for electronic equipment and its production
JP2597773B2 (en) Method for producing high-strength copper alloy with low anisotropy
JPH02170941A (en) Material for electronic and electrical appliance conductive parts and its production
JPS6396236A (en) Material for electrically conductive parts of electronic and electrical appliance
JPS6320906B2 (en)
JPS58147140A (en) Lead wire of semiconductor device
JPH0375346A (en) Production of high strength and high conductivity type metallic sheet for lead frame
JPH0572455B2 (en)
JPH02133554A (en) Manufacture of material for conductive parts of electronic and electrical apparatus
JPH0437151B2 (en)
JPS61242052A (en) Copper alloy lead material for semiconductor device