JPH04228553A - Bending resisting rolled copper foil - Google Patents

Bending resisting rolled copper foil

Info

Publication number
JPH04228553A
JPH04228553A JP12172091A JP12172091A JPH04228553A JP H04228553 A JPH04228553 A JP H04228553A JP 12172091 A JP12172091 A JP 12172091A JP 12172091 A JP12172091 A JP 12172091A JP H04228553 A JPH04228553 A JP H04228553A
Authority
JP
Japan
Prior art keywords
copper foil
rolled copper
copper
bending
rolled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12172091A
Other languages
Japanese (ja)
Inventor
Yoshinori Yamamoto
佳紀 山本
Shuji Sakai
修二 酒井
Kuniaki Seki
邦彰 関
Hajime Abe
元 阿部
Norio Otani
大谷 憲夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP12172091A priority Critical patent/JPH04228553A/en
Publication of JPH04228553A publication Critical patent/JPH04228553A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/40Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling foils which present special problems, e.g. because of thinness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • B21B2003/005Copper or its alloys
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/382Improvement of the adhesion between the insulating substrate and the metal by special treatment of the metal

Abstract

PURPOSE:To obtain a rolled copper foil excellent in bending fatigue life and reduced in softening temp. CONSTITUTION:This copper foil is a bending resisting rolled copper foil characterized by having a draft of >= at least 90% (further preferably, >=93%) at the time of subjecting an annealed intermediate stock consisting of tough pitch copper or oxygen-free copper to final cold rolling to the prescribed thickness. Moreover, it is desirable to form a roughed surface (ruggedness) to a height of <=2mum on the surface of the cold rolled copper foil or further to form an oxide film by means of chemical conversion treatment on this roughed surface.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、耐屈曲性圧延銅箔、特
にフレキシブル印刷配線板その他の可撓性配線部材に適
用して好適な耐屈曲性圧延銅箔に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flex-resistant rolled copper foil, particularly to a flex-resistant rolled copper foil suitable for use in flexible printed wiring boards and other flexible wiring members.

【0002】0002

【従来の技術】フレキシブル印刷配線板(Frexib
le PrintedCircuit)は、実装形態の
自由度が高いことから、OA機器等のプリンタ部やハー
ドディスク装置のドライブ部など、可動部分への配線を
必要とする場所に広く使用されている。この種の配線板
は、例えばポリイミド等から成る絶縁フィルム上にエポ
キシ等の熱硬化性樹脂からなる接着剤を介して銅箔を貼
り合わせ、全体を130℃〜170℃の温度で1〜24
時間加熱して接着剤を硬化させた後、銅箔をエッチング
して所定の配線パターンを形成することによって製造す
る。なお、絶縁フィルムに対する銅箔の接着強度を高め
るため、電解その他の手段によって粗化処理を行ない、
銅箔の表面に微細な凹凸を形成するのが普通である。
[Prior art] Flexible printed wiring board (Flexib)
Due to its high degree of freedom in mounting form, printed circuits are widely used in places where wiring to movable parts is required, such as printer units of office automation equipment and drive units of hard disk devices. This type of wiring board is made by bonding a copper foil onto an insulating film made of polyimide or the like via an adhesive made of a thermosetting resin such as epoxy, and then heating the entire board at a temperature of 130°C to 170°C for 1 to 24 hours.
It is manufactured by curing the adhesive by heating for a period of time and then etching the copper foil to form a predetermined wiring pattern. In addition, in order to increase the adhesive strength of the copper foil to the insulating film, roughening treatment is performed by electrolysis or other means.
It is common to form fine irregularities on the surface of copper foil.

【0003】フレキシブル印刷配線板は、その特殊な使
用目的との関連上、極めて高い耐屈曲性(屈曲疲労強度
)を有することが要求され、特に近年では、装置の小型
化や高水準化の傾向に伴い、曲率半径10〜15mmの
屈曲試験を行なった場合、振動ストローク10mm及び
振動周波数25Hzの条件で108 回〜109 回に
及ぶ屈曲に耐えることが強く要求されている。
[0003] Flexible printed wiring boards are required to have extremely high bending resistance (flexural fatigue strength) due to their special purpose of use, and especially in recent years, there has been a trend toward smaller devices and higher standards. Accordingly, when performing a bending test with a radius of curvature of 10 to 15 mm, it is strongly required to withstand bending 108 to 109 times under the conditions of a vibration stroke of 10 mm and a vibration frequency of 25 Hz.

【0004】フレキシブル印刷配線板に使用する銅箔は
、例えばタフピッチ銅(酸素含有量を200〜300p
pmに制御した高純度電解銅)又は無酸素銅(酸素含有
量を50ppm以下に制御した高純度電解銅)から成る
原料素材(鋳塊)を予め熱間で圧延した後、所定の冷間
圧延と必要な中間焼鈍を繰り返して施すことによって製
造する。このようにして製造された銅箔は、冷間圧延に
よる加工硬化を起こしているため、適当な焼鈍処理を施
してその屈曲性を高める必要がある。銅箔の焼鈍処理は
、樹脂接着剤を加熱硬化させるための熱を利用して行な
うのが普通である。
[0004] The copper foil used for flexible printed wiring boards is, for example, tough pitch copper (with an oxygen content of 200 to 300 p).
A raw material (ingot) made of oxygen-free copper (high-purity electrolytic copper whose oxygen content is controlled to 50 ppm or less) or oxygen-free copper (high-purity electrolytic copper whose oxygen content is controlled to 50 ppm or less) is hot-rolled in advance, and then subjected to predetermined cold rolling. It is manufactured by repeatedly applying the necessary intermediate annealing. Since the copper foil manufactured in this manner has been work hardened due to cold rolling, it is necessary to perform an appropriate annealing treatment to improve its flexibility. The annealing treatment of copper foil is normally carried out using heat to heat and harden the resin adhesive.

【0005】タフピッチ銅圧延箔は、軟化温度が比較的
低いため、樹脂接着剤の熱硬化温度(通常130℃〜1
70℃)において容易に焼鈍してその屈曲性が向上する
性質がある。従って、タフピッチ銅圧延箔は、フレキシ
ブル印刷配線板を製造する際の都合から見る限り、極め
て使い勝手の良い材料であるが、耐屈曲性(屈曲疲労寿
命)があまり良くないという問題がある。一方、無酸素
銅圧延箔は、タフピッチ銅圧延箔に比較して良好な耐屈
曲性を有するが、それでも前述の厳しい要求に対しては
未だ不充分であるほか、軟化温度が比較的高いため、樹
脂接着剤の硬化温度では容易に焼鈍しないという問題が
ある。更に、どちらの圧延銅箔も、表面に粗化処理を施
して絶縁フィルムとの接着強度を向上させる必要がある
が、粗化処理に伴って生ずる表面の凹凸が原因となって
耐屈曲性が却って低下するという別の困った問題がある
[0005] Tough pitch copper rolled foil has a relatively low softening temperature, so the thermosetting temperature of the resin adhesive (usually 130°C to 100°C)
It has the property of being easily annealed at 70°C to improve its flexibility. Therefore, tough-pitch rolled copper foil is an extremely easy-to-use material in terms of manufacturing flexible printed wiring boards, but it has a problem in that its bending resistance (flexural fatigue life) is not very good. On the other hand, although oxygen-free rolled copper foil has better bending resistance than tough-pitch rolled copper foil, it is still insufficient to meet the above-mentioned strict requirements and has a relatively high softening temperature. There is a problem in that resin adhesives cannot be easily annealed at their curing temperatures. Furthermore, the surface of both types of rolled copper foil needs to be roughened to improve the adhesive strength with the insulating film, but the unevenness of the surface caused by the roughening process reduces the bending resistance. There is another troubling problem in that it actually declines.

【0006】[0006]

【発明が解決しようとする課題】本発明の主たる目的は
、樹脂接着剤の硬化温度で容易に焼鈍すると共に、焼鈍
後の耐屈曲性(屈曲疲労寿命)が極めて良好である圧延
銅箔を提供することにある。
[Problems to be Solved by the Invention] The main object of the present invention is to provide a rolled copper foil that can be easily annealed at the curing temperature of a resin adhesive and has extremely good bending resistance (flexural fatigue life) after annealing. It's about doing.

【0007】本発明の別の目的は、圧延銅箔の耐屈曲性
に与える影響が比較的少ない粗化処理の方法又は手段を
提案することにある。
Another object of the present invention is to propose a roughening treatment method or means that has relatively little influence on the bending resistance of rolled copper foil.

【0008】[0008]

【課題を解決するための手段】曲率半径10〜15mm
の屈曲試験を行なった場合、振動ストローク10mm及
び振動周波数25Hzの条件で108 回以上の過酷な
屈曲に耐え得るフレキシブル印刷配線板を実現するには
、それに見合う耐屈曲性を圧延銅箔自体に持たせる必要
がある。即ち、圧延銅箔は、フレキシブル印刷配線板の
場合よりも厳しい曲率半径5mmで屈曲試験を行なった
場合、同様の振動条件で少なくとも106回以上の屈曲
疲労寿命を有することが必要である。
[Means for solving the problem] Radius of curvature 10 to 15 mm
In order to realize a flexible printed wiring board that can withstand severe bending of 108 times or more under the conditions of a vibration stroke of 10 mm and a vibration frequency of 25 Hz, the rolled copper foil itself must have the appropriate bending resistance. It is necessary to That is, when a rolled copper foil is subjected to a bending test with a radius of curvature of 5 mm, which is stricter than that of a flexible printed wiring board, it is necessary that the rolled copper foil has a bending fatigue life of at least 106 times or more under similar vibration conditions.

【0009】このため、本発明者等は、圧延銅箔の製造
条件について数多くの実験と慎重な考察を重ねた結果、
最終冷間圧延の際の加工度と圧延後の銅箔の耐屈曲性と
の間に極めて密接な関係があることを見出した。即ち、
銅箔は、例えばタフピッチ銅や無酸素銅の原料素材(鋳
塊)を予め熱間で圧延した後、冷間圧延と中間焼鈍を繰
り返すことによって製造するのであるが、タフピッチ銅
、無酸素銅のいずれの場合も、最終冷間加工度が大きけ
れば大きいほど、焼鈍後の銅箔の屈曲強度が向上する。 また、最終冷間圧加工度と軟化温度との相関関係につい
ても併せて考察した結果、タフピッチ銅、無酸素銅のい
ずれの場合も、最終冷間加工度を大きくすることにより
、軟化温度を低下させ得ることを見出した。
[0009] For this reason, the inventors of the present invention have conducted numerous experiments and carefully considered the manufacturing conditions for rolled copper foil.
It has been found that there is an extremely close relationship between the degree of work during final cold rolling and the bending resistance of copper foil after rolling. That is,
Copper foil is manufactured by, for example, hot-rolling a raw material (ingot) of tough pitch copper or oxygen-free copper, and then repeating cold rolling and intermediate annealing. In either case, the greater the degree of final cold working, the better the bending strength of the copper foil after annealing. In addition, we also considered the correlation between the final cold working degree and the softening temperature, and found that in both tough pitch copper and oxygen-free copper, increasing the final cold working degree lowers the softening temperature. I found out that it can be done.

【0010】なお、本明細書において使用する「最終冷
間加工度」の語は、鋳塊から銅箔の完成に至るまでの間
に繰り返される何回かの圧延・焼鈍工程のうち、最後に
焼鈍を施した中間素材を所望の厚さまで最終的に冷間圧
延する際の加工度を意味するものとし、本明細書では、
次式で求められる値を専ら使用する。
[0010] The term "final cold working degree" used in this specification refers to the final cold working degree of the rolling and annealing process repeated several times from the ingot to the completion of the copper foil. In this specification, it refers to the degree of working when an annealed intermediate material is finally cold rolled to a desired thickness, and in this specification,
The value obtained by the following formula is used exclusively.

【数1】     最終冷間加工度(%)=〔(T−t)/T〕×
100  ・・・・(1)             
 但し、T:最終冷間圧延前の焼鈍済み中間素材の厚さ
                    t:最終冷
間圧延後の銅箔の厚さ
[Equation 1] Final degree of cold working (%) = [(T-t)/T]×
100...(1)
However, T: Thickness of annealed intermediate material before final cold rolling t: Thickness of copper foil after final cold rolling

【0011】従来、最終冷間加工
度は、タフピッチ銅、無酸素銅のいずれの場合も、精々
85%を超える程度で止まっていた。しかし、良好な耐
屈曲性と所望の軟化温度を圧延銅箔に持たせるには、少
なくとも90%以上の最終冷間加工度をもって圧延する
ことがどうしても必要であり、更に良好な耐屈曲性を圧
延銅箔に持たせるためには、93%以上の最終冷間加工
度をもって圧延することが望ましい。
[0011] Conventionally, the final degree of cold work has remained at a level exceeding 85% at most in both tough pitch copper and oxygen-free copper. However, in order to give rolled copper foil good bending resistance and the desired softening temperature, it is absolutely necessary to roll it with a final degree of cold working of at least 90%. In order to have copper foil, it is desirable to roll it with a final degree of cold working of 93% or more.

【0012】圧延銅箔の耐屈曲性や軟化温度は、酸素の
含有量によっても影響を受ける。特にタフピッチ銅の軟
化温度が無酸素銅のそれに比較して低いのは、酸素の影
響が大きいからである。しかし、最終冷間加工度を90
%以上にすることの効果(特に屈曲疲労寿命の改善に及
ぼす効果)は、酸素の含有量が極めて少ない無酸素銅の
場合は勿論のこと、酸素含有量が比較的多いタフピッチ
銅の場合でも、共通して認めることが出来た。
[0012] The bending resistance and softening temperature of rolled copper foil are also affected by the oxygen content. In particular, the reason why the softening temperature of tough pitch copper is lower than that of oxygen-free copper is because the influence of oxygen is large. However, the final degree of cold working is 90
% or more (especially the effect on improving flex fatigue life), not only in the case of oxygen-free copper with extremely low oxygen content, but also in the case of tough pitch copper with relatively high oxygen content. We were able to come to a common recognition.

【0013】なお、無酸素銅の場合、燐の含有量は、出
来るだけ少ないことが望ましい。燐は、脱酸素剤として
屡々使用する元素であるが、その添加量が多過ぎると、
圧延銅箔の軟化温度を上昇させるだけでなく、銅箔本来
の耐屈曲性を劣化させるという好ましくない副作用を生
ずるからである。本発明者等の実験結果によれば、許容
し得る燐の含有量は、多くとも1ppmであった。なお
、酸素の含有量が比較的多いタフピッチ銅の場合は、燐
を添加することによる副作用は特に認められなかった。
[0013] In the case of oxygen-free copper, it is desirable that the phosphorus content be as low as possible. Phosphorus is an element often used as an oxygen scavenger, but if too much is added,
This is because it not only increases the softening temperature of the rolled copper foil, but also causes undesirable side effects of deteriorating the inherent bending resistance of the copper foil. According to the experimental results of the present inventors, the acceptable phosphorus content was at most 1 ppm. Note that in the case of tough pitch copper, which has a relatively high oxygen content, no particular side effects were observed due to the addition of phosphorus.

【0014】冷間圧延後の銅箔の厚さは、あまり厚いと
、フレキシブル印刷配線板の特徴である柔軟性、特に1
0〜15mmの曲率半径での柔軟性(弾性限界内の屈曲
性)を失わせる結果となって都合が悪く、それに伴って
屈曲疲労寿命も低下する。このため、圧延銅箔の厚さは
、多くとも100μm(0.1mm)以下とすることが
望ましく、通常の使用形態を想定した圧延銅箔の好まし
い厚さは、例えば0.035mm、0.07mm又は0
.018mmである。
[0014] If the thickness of the copper foil after cold rolling is too thick, the flexibility, which is a characteristic of flexible printed wiring boards, will deteriorate, especially 1.
This results in a loss of flexibility (flexibility within the elastic limit) at a radius of curvature of 0 to 15 mm, which is disadvantageous, and the flexural fatigue life is accordingly reduced. For this reason, it is desirable that the thickness of the rolled copper foil be at most 100 μm (0.1 mm) or less, and the preferred thickness of the rolled copper foil assuming normal usage is, for example, 0.035 mm or 0.07 mm. or 0
.. It is 018mm.

【0015】圧延銅箔は、絶縁フィルムとの接着強度を
高めるため、その表面を粗化して使用する必要があるが
、所定の限度を超えて粗化処理を行った場合は、銅箔表
面の凹凸が大きくなる結果、その凹凸が原因となって銅
箔の内部に応力の集中部分が発生し、銅箔の屈曲疲労寿
命を却って縮めることになる。このため、銅箔表面の粗
化処理は、粗化による凹凸の高さ(粗化断面の厚さ)が
多くとも2μm以下となる程度に止めておくことが望ま
しい。なお、粗化面に更に化成処理を施すことにより、
当該粗化面上にベルベット状の酸化物被膜を形成するこ
とも好ましい対策である。この種の被膜は、接着樹脂の
馴染みを良くする効果のほか、粗化面形成による屈曲疲
労寿命の低下を最小限に防止する効果がある。
[0015] Rolled copper foil must be used with its surface roughened in order to increase the adhesive strength with the insulating film, but if the roughening treatment exceeds the specified limit, the surface of the copper foil may become rough. As a result of the increase in the unevenness, the unevenness causes a stress concentration area to occur inside the copper foil, which actually shortens the bending fatigue life of the copper foil. For this reason, it is desirable to limit the roughening treatment of the surface of the copper foil to such an extent that the height of the unevenness (thickness of the roughened cross section) due to roughening is at most 2 μm or less. In addition, by further applying chemical conversion treatment to the roughened surface,
It is also a preferable measure to form a velvet-like oxide film on the roughened surface. This type of coating not only has the effect of improving the adhesion of the adhesive resin, but also has the effect of minimizing the reduction in flexural fatigue life due to the formation of a roughened surface.

【0016】[0016]

【実施例】以下、本発明を幾つかの実施例を参照して更
に詳細に説明する。なお、下記の実施例では、図1に示
した試験装置によって屈曲疲労寿命の測定を行なった。 この装置は、発振駆動体4に振動伝達部材3を結合した
構造となっており、被試験銅箔1は、螺子2aを介して
その両端を固定板2に固定することによって装填する。 銅箔1の中間部は、所定の曲率半径Rをもってヘアピン
状に屈曲せしめ、その状態で振動伝達部材3の先端に連
接させる。銅箔の屈曲寿命試験は、幅10mmの被試験
銅箔を使用し、曲率半径Rを5mm、振動ストロークを
10mm、振動周波数を25Hzに設定して行ない、か
つ、6個の被試験試料銅箔を同一条件で測定した結果の
平均値をもって当該銅箔の屈曲疲労寿命とした。
EXAMPLES The present invention will be explained in more detail below with reference to some examples. In the following examples, the flexural fatigue life was measured using the testing apparatus shown in FIG. This device has a structure in which a vibration transmission member 3 is coupled to an oscillation driving body 4, and the copper foil 1 to be tested is loaded by fixing both ends thereof to a fixing plate 2 via screws 2a. The intermediate portion of the copper foil 1 is bent into a hairpin shape with a predetermined radius of curvature R, and connected to the tip of the vibration transmission member 3 in this state. The bending life test of copper foil was conducted using a copper foil to be tested with a width of 10 mm, setting the radius of curvature R to 5 mm, the vibration stroke to 10 mm, and the vibration frequency to 25 Hz. The average value of the results measured under the same conditions was taken as the bending fatigue life of the copper foil.

【0017】[0017]

【実施例】以下、本発明を幾つかの実施例を参照して更
に詳細に説明する。なお、下記の実施例では、図1に示
した試験装置によって屈曲疲労寿命の測定を行なった。 本装置は、発振駆動体4に振動伝達部材3を結合したよ
うな構造になっており、被試験銅箔1は、螺子2aを介
して両端を固定板2に固定することによって装填する。 銅箔1の中間部は、所定の曲率半径Rをもってヘアピン
状に屈曲せしめ、その状態で振動伝達部材3の先端に連
接させる。屈曲寿命試験は、幅10mmの被試験銅箔を
使用し、曲率半径Rを5mm、振動ストロークを10m
m、振動周波数を25Hzに設定して行ない、かつ、6
個の被試験銅箔を同一条件で測定した結果の平均値をも
って当該銅箔の屈曲疲労寿命とした。
EXAMPLES The present invention will be explained in more detail below with reference to some examples. In the following examples, the flexural fatigue life was measured using the testing apparatus shown in FIG. This apparatus has a structure in which a vibration transmitting member 3 is coupled to an oscillation driving body 4, and the copper foil 1 to be tested is loaded by fixing both ends to a fixing plate 2 via screws 2a. The intermediate portion of the copper foil 1 is bent into a hairpin shape with a predetermined radius of curvature R, and connected to the tip of the vibration transmission member 3 in this state. The bending life test uses a copper foil to be tested with a width of 10 mm, a radius of curvature R of 5 mm, and a vibration stroke of 10 m.
m, the vibration frequency was set to 25Hz, and 6
The bending fatigue life of the copper foil was defined as the average value of the results of measuring each copper foil under the same conditions.

【0018】〈実施例1〉高純度電解銅を溶解し、厚さ
200mm、幅650mmのタフピッチ銅(酸素含有量
:250ppm)の鋳塊(原料素材)を製作した。この
鋳塊を約10mmの厚さまで熱間圧延した後、更に冷間
圧延及び中間焼鈍を繰り返し、夫々の厚さが0.1mm
、0.18mm、0.35mm、0.5mm、0.8m
m及び2mmの焼鈍済み中間素材を製作した。これらの
中間素材を0.035mmの厚さまで最終的に冷間圧延
し、夫々の最終冷間加工度が65%、81%、90%、
93%、96%及び98%の圧延銅箔(試料1〜試料6
)を製作した。なお、比較のための試料として、厚さ0
.035mmの市販のタフピッチ銅圧延箔(試料7)を
用意した。これらの試料銅箔を160℃の温度で1時間
焼鈍した後、図1の装置を用いて夫々の屈曲疲労寿命を
測定した。測定結果を表1に示す。
Example 1 High-purity electrolytic copper was melted to produce an ingot (raw material) of tough pitch copper (oxygen content: 250 ppm) with a thickness of 200 mm and a width of 650 mm. After hot rolling this ingot to a thickness of approximately 10 mm, cold rolling and intermediate annealing were repeated until each thickness was 0.1 mm.
, 0.18mm, 0.35mm, 0.5mm, 0.8m
Annealed intermediate materials of 2 mm and 2 mm were produced. These intermediate materials were finally cold rolled to a thickness of 0.035 mm, and the respective final cold working degrees were 65%, 81%, 90%,
93%, 96% and 98% rolled copper foil (Samples 1 to 6)
) was produced. In addition, as a sample for comparison, a sample with a thickness of 0
.. A commercially available tough pitch copper rolled foil (sample 7) of 0.035 mm was prepared. After annealing these sample copper foils at a temperature of 160° C. for 1 hour, the bending fatigue life of each was measured using the apparatus shown in FIG. The measurement results are shown in Table 1.

【0019】[0019]

【表1】[Table 1]

【0020】表1から明らかなように、屈曲疲労寿命の
改善効果は、最終冷間加工度が90%以上である試料3
〜試料6のいずれにも現われており、なかでも最終冷間
加工度が93%以上である試料4〜試料6は、屈曲疲労
寿命改善の効果が特に顕著である。これに対して、最終
冷間加工度が90%未満である試料1及び試料2と市販
のタフピッチ圧延箔(試料7)は、屈曲疲労寿命がいず
れも106 回以下に止まっており、この程度の値では
、フレキシブル印刷配線板に要求される屈曲疲労寿命(
曲率半径10〜15mmで108 回以上)を満足させ
ることが出来ない。
As is clear from Table 1, the effect of improving the flexural fatigue life was greater in sample 3, in which the degree of final cold work was 90% or more.
- Sample 6, and among them, Samples 4 to 6, in which the final degree of cold working is 93% or more, have a particularly remarkable effect of improving the flexural fatigue life. On the other hand, Samples 1 and 2 with a final degree of cold working of less than 90% and commercially available tough pitch rolled foil (Sample 7) all have a bending fatigue life of 106 cycles or less. The value is the bending fatigue life required for flexible printed wiring boards (
108 times or more with a radius of curvature of 10 to 15 mm) cannot be satisfied.

【0021】〈実施例2〉高純度電解銅を真空中で加熱
して溶解し、厚さ200mm、幅650mmの無酸素銅
(酸素含有量:2ppm)の鋳塊(原料素材)を製作し
た。この鋳塊を約10mmの厚さまで熱間で圧延した後
、更に中間焼鈍及び冷間圧延を繰り返し、夫々の厚さが
0.1mm、0.18mm、0.35mm、0.5mm
、0.8mm及び2mmの中間素材を製作した。これら
の中間素材を0.035mmの厚さまで最終的に冷間で
圧延し、最終加工度が夫々65%、81%、90%、9
3%、96%及び98%の圧延銅箔(試料8〜試料13
)を製作した。なお、比較のための試料として、酸素含
有量が250ppmであるタフピッチ銅の焼鈍済み中間
素材を別に用意し、当該中間素材に対しても加工度93
%の最終冷間圧延を施すことにより、同じ厚さ(0.0
35mm)の圧延銅箔(試料14)を製作した。これら
の試料を160°の温度で1時間焼鈍した後、図1の装
置を用いて屈曲疲労寿命を測定した。測定結果を表2に
示す。
Example 2 High-purity electrolytic copper was heated and melted in a vacuum to produce an ingot (raw material) of oxygen-free copper (oxygen content: 2 ppm) with a thickness of 200 mm and a width of 650 mm. After hot rolling this ingot to a thickness of approximately 10 mm, intermediate annealing and cold rolling were repeated to obtain thicknesses of 0.1 mm, 0.18 mm, 0.35 mm, and 0.5 mm, respectively.
, 0.8 mm and 2 mm intermediate materials were produced. These intermediate materials were finally cold rolled to a thickness of 0.035 mm, and the final working ratio was 65%, 81%, 90%, and 9, respectively.
3%, 96% and 98% rolled copper foil (Samples 8 to 13)
) was produced. As a sample for comparison, an annealed intermediate material of tough pitch copper with an oxygen content of 250 ppm was separately prepared, and the intermediate material was also processed at a working degree of 93.
% final cold rolling to the same thickness (0.0
A rolled copper foil (sample 14) with a thickness of 35 mm was manufactured. After annealing these samples at a temperature of 160° for 1 hour, the flexural fatigue life was measured using the apparatus shown in FIG. The measurement results are shown in Table 2.

【0022】[0022]

【表2】[Table 2]

【0023】表2から明らかなように、無酸素銅の場合
でも、屈曲疲労寿命の改善効果は、最終冷間加工度が9
0%以上である試料10〜試料13のいずれにも現われ
ており、なかでも最終冷間加工度が93%以上である試
料11〜試料13は、屈曲疲労寿命改善の効果が特に顕
著である。これに対し、最終冷間加工度が90%未満で
ある試料8及び試料9は、屈曲疲労寿命の改善効果をそ
れほど認めることが出来なかった。なお、比較のための
試料14(実施例1の試料4に相当)のタフピッチ銅圧
延箔の屈曲疲労寿命は、106 回を超えているものの
、同一加工度(93%)の試料11の屈曲疲労寿命に比
較して若干劣っている。
[0023] As is clear from Table 2, even in the case of oxygen-free copper, the effect of improving the flexural fatigue life is greater when the degree of final cold work is 9.
It appears in all of Samples 10 to 13 where the degree of final cold work is 0% or more, and especially in Samples 11 to 13 where the final degree of cold work is 93% or more, the effect of improving the flexural fatigue life is particularly remarkable. On the other hand, Samples 8 and 9, in which the final degree of cold working was less than 90%, could not significantly improve the bending fatigue life. Although the bending fatigue life of the tough-pitch rolled copper foil of Sample 14 (corresponding to Sample 4 of Example 1) for comparison exceeds 106 cycles, the bending fatigue life of Sample 11 with the same working degree (93%) It is slightly inferior to the lifespan.

【0024】〈実施例3〉高純度電解銅を真空中で加熱
して溶解し、かつ、その溶湯中に極く僅かの燐を添加す
ることにより、厚さが200mm、幅が650mmの無
酸素銅(酸素含有量:2ppm、燐含有量:0.4pp
m)の鋳塊(原料素材)を製作した。この鋳塊を約10
mmの厚さまで熱間で圧延した後、中間焼鈍及び冷間圧
延を繰り返し、夫々の厚さが0.1mm、0.18mm
、0.35mm、0.5mm、0.8mm及び2mmの
中間素材を製作した。これらの中間素材を0.035m
mの厚さまで最終的に冷間で圧延し、最終加工度が夫々
65%、81%、90%、93%、96%及び98%の
圧延銅箔(試料15〜試料20)を製作した。なお、比
較試料として、燐の含有量が3ppmである無酸素銅の
焼鈍済み中間素材と、燐の添加量が0.2ppm、酸素
含有量が250ppmであるタフピッチ銅の焼鈍済み中
間素材を別に用意し、これらの中間素材に対しても加工
度93%の最終冷間圧延を施し、上記試料と同じ厚さ(
0.035mm)の圧延銅箔(試料21及び試料22)
を製作した。これらの試料を160°の温度で1時間焼
鈍した後、図1の装置を用いて屈曲疲労寿命を測定した
。各試料の半軟化温度及び屈曲疲労寿命を表3に示す。
<Example 3> By heating and melting high-purity electrolytic copper in a vacuum, and adding a very small amount of phosphorus to the molten metal, an oxygen-free mold with a thickness of 200 mm and a width of 650 mm is produced. Copper (oxygen content: 2 ppm, phosphorus content: 0.4 ppm
An ingot (raw material) of m) was produced. Approximately 10 pieces of this ingot
After hot rolling to a thickness of mm, intermediate annealing and cold rolling were repeated until the thickness was 0.1 mm and 0.18 mm, respectively.
, 0.35 mm, 0.5 mm, 0.8 mm and 2 mm intermediate materials were manufactured. 0.035m of these intermediate materials
The copper foils were finally cold rolled to a thickness of m to produce rolled copper foils (Samples 15 to 20) with final workability of 65%, 81%, 90%, 93%, 96%, and 98%, respectively. As comparative samples, we separately prepared an annealed intermediate material of oxygen-free copper with a phosphorus content of 3 ppm and an annealed intermediate material of tough pitch copper with an added amount of phosphorus of 0.2 ppm and an oxygen content of 250 ppm. However, these intermediate materials were also subjected to final cold rolling with a processing degree of 93% to obtain the same thickness as the above sample (
0.035 mm) rolled copper foil (Sample 21 and Sample 22)
was produced. After annealing these samples at a temperature of 160° for 1 hour, the flexural fatigue life was measured using the apparatus shown in FIG. Table 3 shows the semi-softening temperature and flexural fatigue life of each sample.

【0025】[0025]

【表3】[Table 3]

【0026】表3から明らかなように、本実施例の場合
も、屈曲疲労寿命の改善効果は、最終冷間加工度が90
%以上である試料17〜試料20のいずれの場合にも現
われており、なかでも最終冷間加工度が93%以上であ
る試料18〜試料20は、屈曲疲労寿命改善の効果が特
に顕著である。半軟化温度も、最終冷間加工度が90%
以上である試料17〜試料20は、140℃以下と極め
て好ましい値を実現することが出来た。これに対し、最
終冷間加工度が90%未満である試料15及び試料16
は、屈曲疲労寿命の改善効果がそれほど認められないば
かりでなく、半軟化温度が140℃を越えているため、
本発明の目的に使用することが不適当である。
[0026] As is clear from Table 3, in the case of this example as well, the effect of improving the flexural fatigue life is significant when the final degree of cold work is 90.
It appears in all cases of Samples 17 to 20 where the degree of final cold working is 93% or more, and the effect of improving the flexural fatigue life is particularly remarkable in Samples 18 to 20 where the final degree of cold work is 93% or more. . Even at semi-softening temperature, the final degree of cold working is 90%.
Samples 17 to 20 as described above were able to achieve a very preferable value of 140° C. or lower. In contrast, samples 15 and 16 whose final degree of cold work is less than 90%
Not only is the effect of improving flexural fatigue life not so significant, but also the semi-softening temperature exceeds 140℃,
Unsuitable for use for the purposes of the present invention.

【0027】なお、比較例である試料21の無酸素銅圧
延箔は、燐の添加量が3.0%と多いため、93%の最
終冷間加工を施したにも拘らず、その効果が相殺されて
しまっており、結果として半軟化温度が140℃を越え
、屈曲疲労寿命の改善効果もそれ程認められない。一方
、別の比較例である試料22(実施例1の試料4、実施
例2の試料14に相当)のタフピッチ銅圧延箔は、燐の
添加量が少ないため、半軟化温度が140℃以下と好ま
しい値になっており、屈曲疲労寿命も試料17のそれに
匹敵する。尤も、同試料の屈曲疲労寿命は、実施例2の
場合と同様、同一加工度(93%)の試料18の屈曲疲
労寿命に比較して若干劣っている。
Note that the oxygen-free rolled copper foil of Sample 21, which is a comparative example, has a large amount of phosphorus added at 3.0%, so even though it was subjected to a final cold working of 93%, its effect was As a result, the semi-softening temperature exceeds 140° C., and the effect of improving the flexural fatigue life is not so significant. On the other hand, the tough pitch copper rolled foil of Sample 22 (corresponding to Sample 4 of Example 1 and Sample 14 of Example 2), which is another comparative example, has a semi-softening temperature of 140°C or lower due to the small amount of phosphorus added. This is a preferable value, and the flexural fatigue life is also comparable to that of Sample 17. However, as in the case of Example 2, the flexural fatigue life of the same sample is slightly inferior to that of sample 18 with the same working degree (93%).

【0028】〈実施例4〉実施例1の方法で製作した最
終冷間加工度93%のタフピッチ銅圧延箔(本発明試料
4)並びに実施例2及び実施例3の方法で製作した同じ
く最終冷間加工度93%の無酸素銅圧延箔(本発明試料
11及び18)を使用し、これらの試料を銅濃度20g
/l、硫酸濃度100g/lからなるメッキ液(液温2
5℃)中に浸漬し、電流密度を変えて各試料の片面に銅
メッキを施して粗化面を形成した。析出物の高さ(凹凸
の高さ)と屈曲疲労寿命を測定した結果を表4乃至表6
に示す。なお、試料銅箔の焼鈍は、実施例1乃至実施例
3の場合と同様、160℃の温度で1時間加熱すること
によって行った。
<Example 4> Tough pitch copper rolled foil with a final cold working degree of 93% produced by the method of Example 1 (sample 4 of the present invention) and the same final cold rolled foil produced by the methods of Examples 2 and 3. Oxygen-free copper rolled foils (invention samples 11 and 18) with a machining degree of 93% were used, and these samples were heated to a copper concentration of 20 g.
/l, plating solution consisting of sulfuric acid concentration 100g/l (solution temperature 2
5° C.) and copper plating was applied to one side of each sample by changing the current density to form a roughened surface. Tables 4 to 6 show the results of measuring the height of precipitates (height of unevenness) and flexural fatigue life.
Shown below. Note that the sample copper foil was annealed by heating at a temperature of 160° C. for 1 hour, as in Examples 1 to 3.

【0029】[0029]

【表4】[Table 4]

【0030】[0030]

【表5】[Table 5]

【0031】[0031]

【表6】[Table 6]

【0032】表4乃至表6から明らかなように、タフピ
ッチ銅及び無酸素銅のいずれの場合も、粗化処理を施す
と、圧延銅箔本来の屈曲疲労寿命が低下する傾向がある
。しかし、メッキの際の電流密度が小さい場合は、粗化
面の凹凸が微細化される傾向があるため、特に析出物の
高さが2μm以下である試料23,24(タフピッチ銅
)及び試料27,28,31,32(無酸素銅)は、屈
曲疲労密度の低下が比較的少ない。なお、本実施例では
、電流の密度を変えて粗化面の形状を調節したが、メッ
キ液の液温や銅濃度又は硫酸濃度等を変えて粗化面の形
状を調節することも可能である。
As is clear from Tables 4 to 6, when roughening treatment is applied to both tough pitch copper and oxygen-free copper, the inherent bending fatigue life of the rolled copper foil tends to decrease. However, when the current density during plating is low, the irregularities on the roughened surface tend to become finer, so especially Samples 23 and 24 (tough pitch copper) and Sample 27 where the height of the precipitates is 2 μm or less. , 28, 31, and 32 (oxygen-free copper) have relatively little decrease in bending fatigue density. In this example, the shape of the roughened surface was adjusted by changing the current density, but it is also possible to adjust the shape of the roughened surface by changing the temperature of the plating solution, copper concentration, sulfuric acid concentration, etc. be.

【0033】〈実施例5〉実施例4の方法で表面に粗化
面を形成した圧延銅箔のうち、析出物の高さが2μm以
下である銅箔(タフピッチ銅の試料23,24及び無酸
素銅の試料27,28,31,32)を使用し、これら
の銅箔をエポキシ樹脂の接着剤を用いてポリイミド絶縁
フィルム上に貼り合わせ、公知の要領(加熱温度130
℃〜170℃,加熱時間1〜24時間)で接着剤を硬化
させた後、エッチングによって所定の配線パターンを形
成してフレキシブル印刷配線板を製作した。完成した配
線板の断面構造を図2に示す。同図において、10は圧
延銅箔、10aは当該銅箔の上に形成した析出物(凹凸
)、12は絶縁フィルム、14は樹脂接着剤を夫々示す
<Example 5> Of the rolled copper foils on which a roughened surface was formed by the method of Example 4, the copper foils with precipitate heights of 2 μm or less (tough pitch copper samples 23 and 24 and no Using oxygenated copper samples 27, 28, 31, 32), these copper foils were bonded onto a polyimide insulating film using an epoxy resin adhesive, and heated in a known manner (heating temperature 130°C).
After curing the adhesive at a temperature of 1 to 24 hours at a temperature of 1 to 170 degrees Celsius, a predetermined wiring pattern was formed by etching to produce a flexible printed wiring board. Figure 2 shows the cross-sectional structure of the completed wiring board. In the figure, 10 is a rolled copper foil, 10a is a precipitate (unevenness) formed on the copper foil, 12 is an insulating film, and 14 is a resin adhesive.

【0034】このようにして製作したフレキシブル印刷
配線板の各々について、図1の試験装置を使用して曲率
半径10mmでの屈曲寿命試験を行なったところ、屈曲
疲労寿命は、曲率半径5mmで試験した銅箔段階での測
定結果に比較して2桁以上も長くなり、いずれの配線板
も優に108 回以上の屈曲に充分耐え得ることを確認
した。
[0034] For each of the flexible printed wiring boards thus manufactured, a bending life test was conducted using the testing apparatus shown in Fig. 1 at a radius of curvature of 10 mm. Compared to the measurement results at the copper foil stage, the length was more than two orders of magnitude longer, and it was confirmed that each wiring board could sufficiently withstand bending of 108 times or more.

【0035】〈実施例6〉実施例4の方法で表面に粗化
面を形成した圧延銅箔のうち、試料32の銅箔を使用し
、当該銅箔に化成処理を施すことにより、粗化面上にベ
ルベット状の黒色酸化膜を重ねて形成した。酸化膜の形
成は、表面を脱脂洗浄した後、NaCl2 とNaOH
との混合溶液(濃度185g/l、温度90℃)に10
分間浸漬することによって行なった。この化成処理が屈
曲疲労寿命に及ぼす影響を測定した結果を表7に示す。 なお、試料銅箔の焼鈍は、上記実施例の場合と同様、1
60℃の温度で1時間加熱することによって行った。
<Example 6> Of the rolled copper foils on which a roughened surface was formed by the method of Example 4, the copper foil of sample 32 was used, and the copper foil was subjected to a chemical conversion treatment to make the surface rough. A velvet-like black oxide film was layered on the surface. To form an oxide film, after degreasing and cleaning the surface, use NaCl2 and NaOH.
10 in a mixed solution (concentration 185 g/l, temperature 90°C) with
This was done by soaking for a minute. Table 7 shows the results of measuring the effect of this chemical conversion treatment on the flexural fatigue life. Note that the sample copper foil was annealed in the same manner as in the above example.
This was done by heating at a temperature of 60°C for 1 hour.

【0036】[0036]

【表7】[Table 7]

【0037】表7から明らかなように、化成処理による
黒色酸化膜を粗化面の上に形成すると、粗化面処理によ
って短縮した屈曲疲労寿命が或る程度回復する。なお、
本実施例の方法で化成処理を施した銅箔を使用し、実施
例5の方法でフレキシブル印刷配線板を製作して屈曲寿
命試験を行なったところ、いずれの配線板も曲率半径1
0mmで優に108 回以上の屈曲に充分耐え得ること
を確認した。
As is clear from Table 7, when a black oxide film by chemical conversion treatment is formed on the roughened surface, the bending fatigue life shortened by the roughening surface treatment is recovered to some extent. In addition,
Using the copper foil chemically treated by the method of this example, flexible printed wiring boards were manufactured by the method of Example 5, and a bending life test was conducted.
It was confirmed that it could sufficiently withstand bending of 108 times or more at 0 mm.

【0038】[0038]

【発明の効果】本発明によれば、屈曲疲労寿命が良好で
軟化温度の低い圧延銅箔を得ることが出来る。なお、本
発明の圧延銅箔は、フレキシブル印刷配線板に使用して
極めて好適な銅箔であるが、可撓性を必要とするその他
の各種の配線部材、例えばTAB実装法(Tape A
utomated Bondinng)におけるテープ
キャリア等にも広く使用することが出来る。
[Effects of the Invention] According to the present invention, a rolled copper foil having a good bending fatigue life and a low softening temperature can be obtained. Although the rolled copper foil of the present invention is extremely suitable for use in flexible printed wiring boards, it can also be used for various other wiring members that require flexibility, such as the TAB mounting method (Tape A).
It can also be widely used as a tape carrier in automated bonding.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】圧延銅箔の屈曲疲労寿命を測定するために使用
した試験装置の概略図。
FIG. 1 is a schematic diagram of a test device used to measure the bending fatigue life of rolled copper foil.

【図2】本発明の銅箔を用いて製作したフレキシブル印
刷配線板の断面図。
FIG. 2 is a cross-sectional view of a flexible printed wiring board manufactured using the copper foil of the present invention.

【符号の説明】[Explanation of symbols]

1…試料銅箔                   
     10…圧延銅箔2…固定板        
                10a…粗化析出物 3…振動伝達部材                 
   12…絶縁フィルム 4…発振駆動体                  
    14…樹脂接着剤。
1...Sample copper foil
10...Rolled copper foil 2...Fixing plate
10a... Roughening precipitate 3... Vibration transmission member
12... Insulating film 4... Oscillation driver
14...Resin adhesive.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】銅の原料素材に所定の圧延と必要な焼鈍を
施して得た焼鈍済み中間素材に対して最終冷間圧延を施
してなる圧延銅箔であって、当該最終冷間圧延の加工度
が少なくとも90%以上であることを特徴とする耐屈曲
性圧延銅箔。
Claim 1: A rolled copper foil obtained by subjecting a copper raw material to predetermined rolling and necessary annealing, and subjecting an annealed intermediate material to final cold rolling, wherein A bend-resistant rolled copper foil characterized by a degree of processing of at least 90% or more.
【請求項2】最終冷間圧延の加工度が93%以上である
ことを特徴とする請求項1に記載の耐屈曲性圧延銅箔。
2. The bend-resistant rolled copper foil according to claim 1, wherein the final cold rolling has a workability of 93% or more.
【請求項3】銅の原料素材としてタフピッチ銅を用いた
ことを特徴とする請求項1又は請求項2に記載の耐屈曲
性圧延銅箔。
3. The flex-resistant rolled copper foil according to claim 1 or 2, wherein tough pitch copper is used as a raw material for the copper.
【請求項4】銅の原料素材として無酸素銅を用いたこと
を特徴とする請求項1又は請求項2に記載の耐屈曲性圧
延銅箔。
4. The bend-resistant rolled copper foil according to claim 1 or 2, characterized in that oxygen-free copper is used as the copper raw material.
【請求項5】銅の原料素材中の燐の含有量が多くとも1
ppm以下であることを特徴とする請求項4に記載の耐
屈曲性圧延銅箔。
Claim 5: The content of phosphorus in the copper raw material is at most 1
The bend-resistant rolled copper foil according to claim 4, characterized in that the bending-resistant rolled copper foil has a content of ppm or less.
【請求項6】最終冷間圧延後の銅箔に対して表面粗化処
理を施したことを特徴とする請求項1乃至請求項5のい
ずれか一に記載の耐屈曲性圧延銅箔。
6. The flex-resistant rolled copper foil according to claim 1, wherein the copper foil is subjected to a surface roughening treatment after final cold rolling.
【請求項7】粗化処理による銅箔表面の凹凸の高さが2
μm以下であることを特徴とする請求項6に記載の耐屈
曲性圧延銅箔。
Claim 7: The height of the unevenness on the copper foil surface due to roughening treatment is 2
The bend-resistant rolled copper foil according to claim 6, characterized in that the bending-resistant rolled copper foil has a thickness of μm or less.
【請求項8】粗化処理を施した銅箔の表面に更に化成処
理による酸化物被膜を形成したことを特徴とする請求項
6又は請求項7に記載の圧延銅箔製造方法。
8. The method for producing rolled copper foil according to claim 6 or 7, further comprising forming an oxide film by chemical conversion treatment on the surface of the copper foil that has been subjected to the roughening treatment.
JP12172091A 1990-06-22 1991-05-28 Bending resisting rolled copper foil Pending JPH04228553A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12172091A JPH04228553A (en) 1990-06-22 1991-05-28 Bending resisting rolled copper foil

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP2-165084 1990-06-22
JP16508490 1990-06-22
JP16508190 1990-06-22
JP2-165081 1990-06-22
JP16508290 1990-06-22
JP2-165082 1990-06-22
JP12172091A JPH04228553A (en) 1990-06-22 1991-05-28 Bending resisting rolled copper foil

Publications (1)

Publication Number Publication Date
JPH04228553A true JPH04228553A (en) 1992-08-18

Family

ID=27470797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12172091A Pending JPH04228553A (en) 1990-06-22 1991-05-28 Bending resisting rolled copper foil

Country Status (1)

Country Link
JP (1) JPH04228553A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7772501B2 (en) 2006-04-25 2010-08-10 Molex Incorporated Flexible printed circuit board
JP2013136807A (en) * 2011-12-28 2013-07-11 Jx Nippon Mining & Metals Corp Rolled copper foil for use in forming superconductive film
CN103255313A (en) * 2012-02-17 2013-08-21 日立电线株式会社 Rolled copper foil
JP2013207145A (en) * 2012-03-29 2013-10-07 Jx Nippon Mining & Metals Corp Copper foil, copper-clad laminate, flexible wiring board, and three-dimensional molding

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7772501B2 (en) 2006-04-25 2010-08-10 Molex Incorporated Flexible printed circuit board
JP2013136807A (en) * 2011-12-28 2013-07-11 Jx Nippon Mining & Metals Corp Rolled copper foil for use in forming superconductive film
CN103255313A (en) * 2012-02-17 2013-08-21 日立电线株式会社 Rolled copper foil
JP2013207145A (en) * 2012-03-29 2013-10-07 Jx Nippon Mining & Metals Corp Copper foil, copper-clad laminate, flexible wiring board, and three-dimensional molding

Similar Documents

Publication Publication Date Title
KR100333567B1 (en) Rolled Copper Foil for Flexible Printed Circuits and Process for Producing the Same
KR100344859B1 (en) rolled copper foil for flexible printed circuit board and method of manufacturing the same
KR101396214B1 (en) Copper foil and copper-clad laminate plate using same
JP3009383B2 (en) Rolled copper foil and method for producing the same
EP1630239B1 (en) Copper alloy and method of manufacturing the same
JP4916154B2 (en) Copper or copper alloy foil for circuit
EP1180917B1 (en) Laminate sheet of copper-alloy foil and liquid crystal polymer
JP3859384B2 (en) Rolled copper foil for flexible printed circuit board having excellent flexibility and manufacturing method thereof
JP2007107038A (en) Copper or copper alloy foil for circuit
JP2001262296A (en) Rolled copper foil and its manufacturing process
KR20030014168A (en) Copper alloy foil for laminated sheet
JPH04228553A (en) Bending resisting rolled copper foil
JP2003041334A (en) Copper alloy foil for laminate
JP2009280855A (en) Rolled copper foil and method for producing the same
KR102227339B1 (en) Hard-rolled copper foil and manufacturing method of the hard-rolled copper foil
JP2002226928A (en) Copper alloy foil for laminated board
JPH0456754A (en) Flexible oxygen-free copper rolled foil and flexible printed board and tab tape carrier using the foil
JP4798894B2 (en) Copper alloy foil for laminates
JPH02263958A (en) Oxygen free copper rolled foil and flexible printing circuit board using it
JP2003041333A (en) Copper alloy foil for laminate
JP2003041332A (en) Copper alloy foil for laminate
JPH01319641A (en) Soft rolled copper foil and flexible printed board
JP4798890B2 (en) Copper alloy foil for laminates
KR101721314B1 (en) Rolled copper foil, copper clad laminate, and flexible printed board and electronic device
JP2005029826A (en) Method for manufacturing copper alloy foil for electronic component

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020326