JP2005029826A - Method for manufacturing copper alloy foil for electronic component - Google Patents

Method for manufacturing copper alloy foil for electronic component Download PDF

Info

Publication number
JP2005029826A
JP2005029826A JP2003195221A JP2003195221A JP2005029826A JP 2005029826 A JP2005029826 A JP 2005029826A JP 2003195221 A JP2003195221 A JP 2003195221A JP 2003195221 A JP2003195221 A JP 2003195221A JP 2005029826 A JP2005029826 A JP 2005029826A
Authority
JP
Japan
Prior art keywords
weight
copper alloy
heat treatment
ratio
alloy foil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003195221A
Other languages
Japanese (ja)
Inventor
Yoshinori Yamamoto
佳紀 山本
Hajime Sasaki
元 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2003195221A priority Critical patent/JP2005029826A/en
Publication of JP2005029826A publication Critical patent/JP2005029826A/en
Pending legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method for obtaining a copper alloy foil which realizes high strength and high thermostability while keeping high electroconductivity, and has characteristics suitable for a material of a FPC and a film carrier. <P>SOLUTION: The method for manufacturing the copper alloy foil comprises a first heat treatment of heating a cast copper alloy to 700 to 900°C and then cooling it to 300°C or lower at a temperature-lowering rate of 25°C or more per minute; a second heat treatment of heating it to 400 to 500°C and holding it for 30 minutes to 5 hours; and a step of finally rolling it to a thickness of 50 μm or thinner. The above described copper alloy comprises 0.1-0.5 wt.% Fe, 0.1-0.5 wt.% Ni, 0.03-0.2 wt.% P, 0.1-3.0 wt.% Zn, and 0.01-2.0 wt.% Sn and the balance Cu, while a ratio of the total weight of Fe and Ni to the weight of P, namely (Fe+Ni)/P, is 3 to 10, and a ratio of the weight of Fe to the weight of Ni, namely Fe/Ni, is 0.8 to 1.2. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、FPC(フレキシブルプリント配線板)の導体やTAB(Tape Automated Bonding)用のフィルムキャリア等として用いられる電子部品用銅合金箔の製造方法に関するものである。
【0002】
【従来の技術】
電子機器の小型化、軽量化、高密度化に対応した配線材料やICパッケージング材料として、銅箔をポリイミド樹脂フィルムなどに貼り合わせてエッチングで配線パターンを形成したFPCやTAB用のフィルムキャリアが広く用いられている。こうした用途に用いられる銅箔には、導電性が良いこと、厚さが薄くて均一であること、積層加工や実装の工程中に変形を起こさない強度を持つこと、積層加工時やはんだ付け時の加熱によって軟化しない耐熱性をもつこと、配線形成時にエッチングむらが生じないこと、高温高湿度下での配線の短絡(マイグレーション)が起こらないことなどの特性が求められる。
【0003】
更に、近年、高密度実装の進行によって、FPCやフィルムキャリアはその配線幅や配線間隔がより小さくなるファインピッチ化が進んでおり、それに対応して、より薄くて表面粗さが小さい銅箔が使用されるようになっている。また、厚さが薄くなると樹脂との積層工程で材料が変形したり、折れ曲がり等が起こりやすくなるため、従来よりも一層、材料の強度を高める必要がある。
【0004】
一方、FPCやフィルムキャリアは銅箔と樹脂フィルムを積層したものであるが、その構造として従来から、ポリイミド樹脂の基板フィルムと銅箔をエポキシ樹脂からなる接着剤層を介して積層する三層構造が用いられてきた。しかし近年、従来のはんだより融点の高い鉛フリーはんだが接続に使用される等の理由によって、FPCやフィルムキャリアに従来以上の耐熱性が要求されるようになっている。このため、耐熱性の劣る接着剤層を用いずに直接ポリイミド樹脂層と銅箔を積層する二層構造が広く用いられるようになってきた。ここで、三層構造の場合は100〜200℃の温度で加圧することによりエポキシ樹脂などの接着剤を硬化させて、ポリイミド樹脂などの基板フィルムと銅箔を接着する。それに対して二層構造の場合はポリイミド樹脂を銅箔と直接接着することから、300〜400℃の温度で加圧することが必要となる。
【0005】
このように、FPCやフィルムキャリアに用いられる銅箔には、ファインピッチ化に対応するためにより高い強度が求められている。また二層構造の採用により、従来よりも耐熱性の良い材料であることも同時に求められている。このような要求に鑑みて、純銅よりも強度に優れた銅合金を使用することにより、電子部品用として必要な導電率を維持しながら強度、耐熱性を向上させようとしたものとして、特許文献1、2に示すものがある。
【0006】
【特許文献1】
特許第2743668号公報
【特許文献2】
特開2003−34829号公報
【0007】
【発明が解決しようとする課題】
しかしながら、上記特許文献1、2に示された方法により得られた銅合金箔においても、引張り強度及び導電率が十分とはいえず、更に、高強度、高耐熱性、高導電性を両立した銅箔が要望されていた。
【0008】
従って、本発明の目的は、高い導電性を維持しながら高強度と高耐熱性を実現することができ、FPCやフィルムキャリア等の材料として適した特性を持った銅合金箔を得るための製造方法を提供することにある。
【0009】
【課題を解決するための手段】
上記目的を達成するため、本発明の電子部品用銅合金箔の製造方法は、0.1〜0.5重量%のFe、0.1〜0.5重量%のNi、0.03〜0.2重量%のP、0.1〜3.0重量%のZn、0.01〜2.0重量%のSn、および残部のCuから成り、前記Feと前記Niの合計重量と前記Pの重量の比が(Fe+Ni)/P=3〜10であり、前記Feの重量と前記Niの重量の比がFe/Ni=0.8〜1.2である銅合金を鋳造した後、700〜900℃に加熱後毎分25℃以上の降温速度で300℃以下まで冷却する第1の熱処理と、400〜500℃に加熱して30分〜5時間保持する第2の熱処理とを施すと共に、最終的に50μm以下の厚さまで圧延加工を行うことを特徴とする。
【0010】
また、本発明の電子部品用銅合金箔の製造方法は、0.1〜0.5重量%のFe、0.1〜0.5重量%のNi、0.03〜0.2重量%のP、0.1〜3.0重量%のZn、0.01〜2.0重量%のSn、0.01〜0.3重量%のMg、および残部のCuから成り、前記Feと前記Niの合計重量と前記Pの重量の比が(Fe+Ni)/P=3〜10であり、前記Feの重量と前記Niの重量の比がFe/Ni=0.8〜1.2である銅合金を鋳造した後、700〜900℃に加熱後毎分25℃以上の降温速度で300℃以下まで冷却する第1の熱処理と、400〜500℃に加熱して30分〜5時間保持する第2の熱処理とを施すと共に、最終的に50μm以下の厚さまで圧延加工を行うことを特徴とする。
【0011】
【発明の実施の形態】
以下、本発明の電子部品用銅合金箔の製造方法について更に詳しく説明する。
【0012】
(1)銅合金組成
本発明の電子部品用銅合金箔の合金組成としては、0.1〜0.5重量%のFe、0.1〜0.5重量%のNi、0.03〜0.2重量%のP、0.1〜3.0重量%のZn、0.01〜2.0重量%のSn、および残部のCuから成り、前記Feと前記Niの合計重量と前記Pの重量の比が(Fe+Ni)/P=3〜10であり、前記Feの重量と前記Niの重量の比がFe/Ni=0.8〜1.2のものとする。上記の合金組成にさらに0.01〜0.3重量%のMgを含むこともできる。ここでFe、NiはPと共に添加することによってP化合物を形成し、材料の導電率を良好に保ちながら強度、耐熱性を向上させる働きをする。本発明では、Fe、Ni、Pの組成比を特定の範囲に規定することにより目的とする高強度、高導電率の達成が可能になる。Znは強度の向上効果を持つとともに耐マイグレーション性を大幅に向上させる効果を持つ。さらに、電子部品材料として必要なはんだ濡れ性やSnめっき密着性の改善にも大きな効果がある。Snは強度、耐熱性の向上に大きな効果を持つ。またMgは強度、耐熱性、耐マイグレーション性のそれぞれをさらに改善する働きを持ち、かつ導電率に与える悪影響が少ない添加元素として有効である。
【0013】
(2)元素の組成範囲
Pの組成範囲は0.03〜0.2重量%に規定する。Pの添加量を0.03重量%未満にすると十分な量のP化合物を形成することができず、満足できる強度が得られなくなる。また0.2重量%を超えて添加すると、鋳造時にP化合物の偏析による鋳塊割れが起こりやすくなる。また、上記のPの範囲に対して効果的にP化合物を形成するためには、FeとNiの組成範囲をそれぞれ0.1〜0.5重量%にし、かつそのFeとNiの合計量がPの重量%の3〜10倍になるように規定する必要がある。ここで規定範囲よりFe、Niが過剰になったりPが過剰になったりすると、過剰元素が導電率に悪影響を与え期待する特性が得られない。また、FeとNiは強度と導電率に対して同様の効果を期待して添加するものであるが、Feだけの添加では低強度、高導電率の材料が得られやすく、Niだけの添加では高強度、低導電率の材料が得られやすい。よってバランスのとれた材料を得るためには、FeとNiを1対1の比率で添加することが望ましい。本発明では実用上支障がない範囲として、FeとNiの重量%の比をFe/Ni=0.8〜1.2に規定する。また、Znの組成範囲は、0.1〜3.0重量%、Snの組成範囲は、0.01〜2.0重量%に規定する。また、Mgを添加する場合は、0.01〜0.3%に規定する。Zn、Sn、Mgは規定範囲より少ない添加量では添加の効果が小さく、規定範囲を超えて添加すると導電率に悪影響を与える。
【0014】
(3)第1の熱処理
上記の組成の素材を最終の銅箔厚さまで圧延加工する過程において、その圧延の途中段階で700〜900℃に加熱後300℃以下まで25℃/分以上の速度で冷却する溶体化を目的とした第1の熱処理を行う。溶体化を目的とした第1の熱処理では合金元素を銅中に十分固溶させる必要がある。また、冷却の速度が遅いと冷却中に析出物が形成され、第2の熱処理で粗大な析出物に成長する恐れがある。粗大な析出物は、銅箔の厚さが薄くなった時に破断の起点になる可能性があるとともに、配線形成時にエッチングむらを引き起こす原因となる。そこで、本発明では加熱温度を700〜900℃と高温に規定し、冷却速度を25℃/分以上に規定することで冷却中に析出物が形成されることを防いでいる。溶体化処理に続いて冷間圧延を行うことにより、材料中には析出物形成の起点となる格子欠陥が導入される。これによって、第2の熱処理での微細析出物の形成を促進することができる。
【0015】
(4)第2の熱処理
第1の熱処理後、400〜500℃で30分〜5時間保持する時効を目的とした第2の熱処理を行う。これによってFe、NiがPとの化合物をつくり銅中に微細な形状で析出し、優れた強度、耐熱性と高い導電率を両立させることができる。時効を目的とした第2の熱処理では微細析出物を形成することで導電率、強度を向上させることが重要である。このため、本発明では処理条件を400〜500℃で30分〜5時間に規定している。処理条件がこれより高温、長時間になった場合、析出物が粗大化して前記した破断やエッチングむらの原因となる。また、低温、短時間になった場合は析出が十分に進行せず、導電率、強度とも十分な値が得られない。
【0016】
【実施例】
以下、本発明の実施例について説明する。
無酸素銅を母材にし、0.3wt%のFe、0.3wt%のNi、0.15wt%のP、0.5wt%のZn、0.3wt%のSnを添加した銅合金を、高周波溶解炉で溶製し、直径30mm、長さ250mmのインゴットに鋳造した。これを850℃に加熱して押出加工し、幅20mm、厚さ8mmの板状にした後、厚さ1.0mmまで冷間圧延した。これに850℃で10分間保持する第1熱処理を行った後、水中に投入して約300℃/分の速度で室温(約20℃)まで冷却した。冷却した材料を厚さ0.2mmまで冷間圧延した後、460℃で2時間保持する第2熱処理を施した。さらにこれを厚さ18μmまで冷間圧延した。(試料No.1)次に、0.3wt%のFe、0.3wt%のNi、0.15wt%のP、0.5wt%のZn、0.3wt%のSnに加えて0.05wt%のMgを添加した銅合金を上記と同様に鋳造し、同じ工程で厚さ18μmまで加工した。(試料No.2)更に、表1に示す組成の合金No.3〜No.12を鋳造し、前記と同じ条件で加工、熱処理して厚さ18μmの試料を製造した。得られた試料No.1〜12について引張強さ、耐熱性、導電率の各特性値を測定した。ここで耐熱性は、各試料を1時間保持したときに引張強さが初期値の70%以下に低下する温度を求めることで評価した。測定した結果を表2に示す。
【0017】
【表1】

Figure 2005029826
【0018】
【表2】
Figure 2005029826
【0019】
表2の結果、実施例である試料No.1〜No.4は、いずれも700N/mmを超える引張強さと400℃以上の耐熱性を持ちながら、なおかつ65%IACS(international annealed copper standard)を超える良好な導電率を兼ね備えており、特に、試料No.1は引張強さ726N/mm、軟化温度400℃、導電率66%IACS、また試料No.2は引張強さ750N/mm、軟化温度420℃、導電率66%IACSという良好な特性が得られることが判明した。
【0020】
一方、試料No.5およびNo.6はFe、Ni、Pの含有量が規定範囲から外れた比較例である。試料No.5は特にPの含有量が多すぎることに起因して鋳塊割れが発生した。また、試料No.6は含有量が少ないことによって十分な引張強さ、耐熱性が得られていない。また、試料No.7およびNo.8はFe、Niの合計量とPの量の比率が規定範囲から外れた比較例である。表2の結果より、Fe、Niが過剰になった場合もPが過剰になった場合も導電率が悪くなり、引張強さも良好な値が得られない。試料No.9およびNo.10はFeの量とNiの量の比率が規定範囲から外れた比較例である。Niが過剰になった場合は導電率が悪くなり、Feが過剰になった場合は良好な引張強さが得られない。試料No.11はZnの量を過剰とした比較例であり、試料No.12はSnの量を過剰とした比較例である。表2の結果より、いずれも引張強さや耐熱性は良好であるが、導電率が悪くなる。
【0021】
次に、前記の実施例で示した試料No.1と同じ組成の銅合金について、前記と同様の工程で加工する際、その第1熱処理の加熱条件および冷却条件と第2熱処理の加熱条件を表3に示す条件で実施して試料No.13〜17を製造した。得られた各試料について引張強さ、耐熱性、導電率の各特性値を前記と同様な方法で測定した。測定した結果を表4に示す。
【0022】
【表3】
Figure 2005029826
【0023】
【表4】
Figure 2005029826
【0024】
表4の結果より、実施例による試料No.1およびNo.2が、700N/mm以上の引張強さと400℃以上の耐熱性を持ちながら、なおかつ65%IACSを超える良好な導電率を兼ね備えているのに対して、比較例となる試料No.13〜17はいずれも特性が劣っている。試料No.13は第1熱処理の加熱温度が規定範囲から外れた比較例であり、加熱温度が低すぎると引張強さが低下している。試料No.14は第1熱処理後の冷却速度が遅すぎた場合の比較例であり、この場合も引張強さが低下している。試料No.15およびNo.16は第2熱処理の加熱温度が規定範囲から外れた比較例であり、この場合、引張強さ、導電率の両方において十分な値が得られていない。試料No.17は第2熱処理の加熱保持時間が短すぎる場合の比較例であり、特に導電率が低い値にとどまっている。
【0025】
以上のことより、本発明により規定した銅合金の組成範囲及び第1、第2の熱処理条件を用いることにより、700N/mm以上の引張強さと400℃以上の耐熱性を持ちながら、なおかつ65%IACSを超える良好な導電率を兼ね備えていることが実証された。
【0026】
【発明の効果】
以上のように本発明に係る電子部品用銅合金箔の製造方法によれば、FPCやフィルムキャリアの材料として用いられている従来の圧延銅箔や圧延銅合金箔に比べて十分に高い強度と耐熱性を持ち、なおかつ良好な導電率を維持している銅合金箔を提供することができる。特に、高強度化の達成により樹脂との積層工程で材料が変形したり折れたりすることがなくなり、近年の高密度実装に伴う従来以上のファインピッチ化にも対応できる。また、高耐熱性の達成により従来よりも高温で加圧される二層構造にも対応できる材料が供給できることになる。このことは、FPCやフィルムキャリアの設計においてその設計自由度を大幅に広げることができるという利点にもつながり、その発展に大きく寄与するものである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a copper alloy foil for electronic components used as a conductor for FPC (flexible printed wiring board), a film carrier for TAB (Tape Automated Bonding), and the like.
[0002]
[Prior art]
Film carriers for FPC and TAB, in which a copper foil is bonded to a polyimide resin film and a wiring pattern is formed by etching as a wiring material and IC packaging material corresponding to miniaturization, weight reduction, and high density of electronic devices Widely used. The copper foil used for such applications has good conductivity, is thin and uniform, has strength that does not cause deformation during the laminating and mounting processes, and during laminating and soldering It is required to have characteristics such as heat resistance that does not soften due to heating, non-uniform etching during wiring formation, and short circuit (migration) of wiring under high temperature and high humidity.
[0003]
Furthermore, in recent years, with the progress of high-density packaging, FPC and film carriers have become finer pitches where the wiring width and spacing are smaller, and accordingly, copper foils that are thinner and have a smaller surface roughness have been developed. It has come to be used. In addition, when the thickness is reduced, the material is likely to be deformed or bent in the process of laminating with the resin, so that it is necessary to further increase the strength of the material.
[0004]
On the other hand, FPC and film carrier are made by laminating copper foil and resin film, but as a conventional structure, a three-layer structure in which a polyimide resin substrate film and copper foil are laminated via an adhesive layer made of epoxy resin. Has been used. However, in recent years, FPC and film carriers have been required to have higher heat resistance than ever because lead-free solder having a higher melting point than conventional solder is used for connection. For this reason, a two-layer structure in which a polyimide resin layer and a copper foil are directly laminated without using an adhesive layer having inferior heat resistance has been widely used. Here, in the case of a three-layer structure, an adhesive such as an epoxy resin is cured by applying pressure at a temperature of 100 to 200 ° C., and a substrate film such as a polyimide resin and a copper foil are bonded. On the other hand, in the case of a two-layer structure, it is necessary to apply pressure at a temperature of 300 to 400 ° C. because the polyimide resin is directly bonded to the copper foil.
[0005]
Thus, the copper foil used for FPC and film carriers is required to have higher strength in order to cope with fine pitch. In addition, by adopting a two-layer structure, it is simultaneously required to be a material having better heat resistance than before. In view of such demands, patent documents are intended to improve strength and heat resistance while maintaining the necessary electrical conductivity for electronic parts by using a copper alloy that is stronger than pure copper. There are those shown in 1 and 2.
[0006]
[Patent Document 1]
Japanese Patent No. 2743668 [Patent Document 2]
Japanese Patent Laid-Open No. 2003-34829
[Problems to be solved by the invention]
However, even in the copper alloy foils obtained by the methods shown in Patent Documents 1 and 2 above, the tensile strength and electrical conductivity are not sufficient, and furthermore, high strength, high heat resistance, and high conductivity are compatible. Copper foil was desired.
[0008]
Therefore, the object of the present invention is to produce a copper alloy foil that can achieve high strength and high heat resistance while maintaining high conductivity, and has characteristics suitable as materials for FPC, film carrier, etc. It is to provide a method.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, the method for producing a copper alloy foil for electronic parts according to the present invention comprises 0.1 to 0.5 wt% Fe, 0.1 to 0.5 wt% Ni, 0.03 to 0 .2 wt% P, 0.1-3.0 wt% Zn, 0.01-2.0 wt% Sn, and the balance Cu, the total weight of the Fe and Ni and the P After casting a copper alloy having a weight ratio of (Fe + Ni) / P = 3 to 10 and a ratio of the weight of Fe to the weight of Ni being Fe / Ni = 0.8 to 1.2, 700 to A first heat treatment that cools to 300 ° C. or less at a temperature drop rate of 25 ° C. or more after heating to 900 ° C. and a second heat treatment that is heated to 400 to 500 ° C. and held for 30 minutes to 5 hours, The rolling process is finally performed to a thickness of 50 μm or less.
[0010]
Moreover, the manufacturing method of the copper alloy foil for electronic components of this invention is 0.1-0.5 weight% Fe, 0.1-0.5 weight% Ni, 0.03-0.2 weight%. P, 0.1-3.0 wt% Zn, 0.01-2.0 wt% Sn, 0.01-0.3 wt% Mg, and the balance Cu, Fe and Ni The ratio of the total weight of P and the weight of P is (Fe + Ni) / P = 3-10, and the ratio of the weight of Fe to the weight of Ni is Fe / Ni = 0.8-1.2 The first heat treatment is cooled to 300 ° C. or lower at a temperature drop rate of 25 ° C. or more after heating to 700 to 900 ° C., and the second is heated to 400 to 500 ° C. and held for 30 minutes to 5 hours. In addition, the heat treatment is performed and the rolling process is finally performed to a thickness of 50 μm or less.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereafter, the manufacturing method of the copper alloy foil for electronic components of this invention is demonstrated in more detail.
[0012]
(1) Copper alloy composition As an alloy composition of the copper alloy foil for electronic parts of this invention, 0.1 to 0.5 weight% Fe, 0.1 to 0.5 weight% Ni, 0.03 to 0 .2 wt% P, 0.1-3.0 wt% Zn, 0.01-2.0 wt% Sn, and the balance Cu, the total weight of the Fe and Ni and the P The weight ratio is (Fe + Ni) / P = 3 to 10, and the ratio of the weight of Fe to the weight of Ni is Fe / Ni = 0.8 to 1.2. The above alloy composition may further contain 0.01 to 0.3% by weight of Mg. Here, Fe and Ni are added together with P to form a P compound, and work to improve strength and heat resistance while maintaining good electrical conductivity of the material. In the present invention, it is possible to achieve the desired high strength and high conductivity by defining the composition ratio of Fe, Ni, and P within a specific range. Zn has an effect of improving strength and greatly improving migration resistance. Furthermore, it has a great effect on the improvement of the solder wettability and Sn plating adhesion necessary for the electronic component material. Sn has a great effect on improving strength and heat resistance. Mg is effective as an additive element that has a function of further improving each of strength, heat resistance, and migration resistance, and has little adverse effect on conductivity.
[0013]
(2) The composition range of the element composition range P is specified to be 0.03 to 0.2% by weight. If the amount of P added is less than 0.03% by weight, a sufficient amount of P compound cannot be formed, and satisfactory strength cannot be obtained. Moreover, when adding over 0.2 weight%, the ingot crack by segregation of P compound will occur easily at the time of casting. In order to effectively form a P compound with respect to the above P range, the composition range of Fe and Ni is 0.1 to 0.5% by weight, respectively, and the total amount of Fe and Ni is It is necessary to prescribe | regulate so that it may become 3 to 10 times the weight% of P. Here, if Fe and Ni are excessive from the specified range or P is excessive, the excess element has an adverse effect on the electrical conductivity and the expected characteristics cannot be obtained. Fe and Ni are added with the expectation of the same effect on strength and conductivity. However, the addition of Fe alone makes it easy to obtain a material with low strength and high conductivity, and the addition of Ni alone. It is easy to obtain a material with high strength and low electrical conductivity. Therefore, in order to obtain a balanced material, it is desirable to add Fe and Ni at a ratio of 1: 1. In the present invention, the ratio of the weight percent of Fe and Ni is defined as Fe / Ni = 0.8 to 1.2 as a practically unaffected range. The composition range of Zn is defined as 0.1 to 3.0% by weight, and the composition range of Sn is defined as 0.01 to 2.0% by weight. Moreover, when adding Mg, it prescribes | regulates to 0.01 to 0.3%. When Zn, Sn, and Mg are added in amounts less than the specified range, the effect of addition is small, and when added beyond the specified range, the conductivity is adversely affected.
[0014]
(3) First heat treatment In the process of rolling the material having the above composition to the final copper foil thickness, heated to 700 to 900 ° C. in the middle of the rolling and then at a rate of 25 ° C./min to 300 ° C. or less. A first heat treatment for the purpose of solution cooling is performed. In the first heat treatment for the purpose of solution treatment, it is necessary to sufficiently dissolve the alloy element in copper. In addition, when the cooling rate is slow, precipitates are formed during cooling, and there is a risk of growing into coarse precipitates in the second heat treatment. Coarse precipitates may become a starting point of fracture when the thickness of the copper foil is reduced, and cause uneven etching during wiring formation. Therefore, in the present invention, the heating temperature is regulated to 700 to 900 ° C. and the cooling rate is regulated to 25 ° C./min or more, thereby preventing the formation of precipitates during cooling. By performing cold rolling subsequent to the solution treatment, lattice defects serving as starting points for precipitate formation are introduced into the material. Thereby, formation of fine precipitates in the second heat treatment can be promoted.
[0015]
(4) Second heat treatment After the first heat treatment, a second heat treatment for aging is performed at 400 to 500 ° C. for 30 minutes to 5 hours. As a result, Fe and Ni can form a compound with P and precipitate in copper in a fine shape, so that both excellent strength, heat resistance and high conductivity can be achieved. In the second heat treatment for the purpose of aging, it is important to improve conductivity and strength by forming fine precipitates. For this reason, in this invention, process conditions are prescribed | regulated at 400-500 degreeC for 30 minutes-5 hours. When the processing conditions are higher than this and for a long time, the precipitates become coarse and cause the above-mentioned breakage and etching unevenness. In addition, when the temperature is low and the time is short, the precipitation does not proceed sufficiently, and sufficient values of conductivity and strength cannot be obtained.
[0016]
【Example】
Examples of the present invention will be described below.
A copper alloy containing oxygen-free copper as a base material and containing 0.3 wt% Fe, 0.3 wt% Ni, 0.15 wt% P, 0.5 wt% Zn, and 0.3 wt% Sn is used as a high frequency. It was melted in a melting furnace and cast into an ingot having a diameter of 30 mm and a length of 250 mm. This was heated to 850 ° C. and extruded to form a plate having a width of 20 mm and a thickness of 8 mm, and then cold-rolled to a thickness of 1.0 mm. This was subjected to a first heat treatment held at 850 ° C. for 10 minutes, and then poured into water and cooled to room temperature (about 20 ° C.) at a rate of about 300 ° C./min. The cooled material was cold-rolled to a thickness of 0.2 mm, and then subjected to a second heat treatment held at 460 ° C. for 2 hours. Further, this was cold-rolled to a thickness of 18 μm. (Sample No. 1) Next, 0.3 wt% Fe, 0.3 wt% Ni, 0.15 wt% P, 0.5 wt% Zn, 0.3 wt% Sn in addition to 0.05 wt% A copper alloy to which Mg was added was cast in the same manner as described above, and processed to a thickness of 18 μm in the same process. (Sample No. 2) Further, alloy No. having the composition shown in Table 1 was used. 3-No. No. 12 was cast, processed and heat-treated under the same conditions as described above, and a sample having a thickness of 18 μm was produced. The obtained sample No. Each characteristic value of tensile strength, heat resistance, and conductivity was measured for 1-12. Here, the heat resistance was evaluated by determining the temperature at which the tensile strength decreased to 70% or less of the initial value when each sample was held for 1 hour. Table 2 shows the measurement results.
[0017]
[Table 1]
Figure 2005029826
[0018]
[Table 2]
Figure 2005029826
[0019]
As a result of Table 2, sample No. 1-No. No. 4 has both a tensile strength exceeding 700 N / mm 2 and a heat resistance of 400 ° C. or more, and also has a good electrical conductivity exceeding 65% IACS (International Annealed Copper Standard). No. 1 is tensile strength 726 N / mm 2 , softening temperature 400 ° C., conductivity 66% IACS. It was found that No. 2 has good properties such as a tensile strength of 750 N / mm 2 , a softening temperature of 420 ° C., and a conductivity of 66% IACS.
[0020]
On the other hand, sample No. 5 and no. 6 is a comparative example in which the contents of Fe, Ni, and P deviate from the specified range. Sample No. No. 5 caused ingot cracking due to the excessive P content. Sample No. No. 6 does not have sufficient tensile strength and heat resistance due to its low content. Sample No. 7 and no. 8 is a comparative example in which the ratio between the total amount of Fe and Ni and the amount of P is out of the specified range. From the results shown in Table 2, the electrical conductivity is deteriorated and the tensile strength is not good when both Fe and Ni are excessive and when P is excessive. Sample No. 9 and no. 10 is a comparative example in which the ratio of the amount of Fe and the amount of Ni deviates from the specified range. When Ni becomes excessive, the electrical conductivity deteriorates, and when Fe becomes excessive, good tensile strength cannot be obtained. Sample No. 11 is a comparative example in which the amount of Zn was excessive. 12 is a comparative example in which the amount of Sn is excessive. From the results in Table 2, the tensile strength and heat resistance are all good, but the conductivity is poor.
[0021]
Next, the sample No. shown in the above-mentioned example was used. When the copper alloy having the same composition as that of No. 1 was processed in the same process as described above, the heating conditions and cooling conditions of the first heat treatment and the heating conditions of the second heat treatment were carried out under the conditions shown in Table 3, and Sample No. 13-17 were produced. About each obtained sample, each characteristic value of tensile strength, heat resistance, and electrical conductivity was measured by the method similar to the above. Table 4 shows the measurement results.
[0022]
[Table 3]
Figure 2005029826
[0023]
[Table 4]
Figure 2005029826
[0024]
From the results of Table 4, sample No. 1 and no. 2 has a tensile strength of 700 N / mm 2 or more and a heat resistance of 400 ° C. or more, and also has a good conductivity exceeding 65% IACS. 13 to 17 are all inferior in characteristics. Sample No. 13 is a comparative example in which the heating temperature of the first heat treatment deviates from the specified range. When the heating temperature is too low, the tensile strength is lowered. Sample No. No. 14 is a comparative example when the cooling rate after the first heat treatment is too slow, and in this case, the tensile strength is also lowered. Sample No. 15 and no. Reference numeral 16 is a comparative example in which the heating temperature of the second heat treatment is out of the specified range. In this case, sufficient values are not obtained in both tensile strength and conductivity. Sample No. 17 is a comparative example in which the heat holding time of the second heat treatment is too short, and the electrical conductivity is particularly low.
[0025]
From the above, by using the composition range of the copper alloy defined by the present invention and the first and second heat treatment conditions, while having a tensile strength of 700 N / mm 2 or more and heat resistance of 400 ° C. or more, and 65 It has been demonstrated that it has a good conductivity exceeding% IACS.
[0026]
【The invention's effect】
As described above, according to the method for producing a copper alloy foil for electronic parts according to the present invention, the strength is sufficiently high as compared with conventional rolled copper foil and rolled copper alloy foil used as materials for FPC and film carriers. A copper alloy foil having heat resistance and maintaining good electrical conductivity can be provided. In particular, the achievement of high strength prevents the material from being deformed or bent in the process of laminating with the resin, and can cope with finer pitches than conventional with the recent high-density mounting. Moreover, the material which can respond also to the two-layer structure pressurized at higher temperature than before can be supplied by achieving high heat resistance. This leads to the advantage that the design flexibility can be greatly expanded in the design of FPC and film carrier, and greatly contributes to the development.

Claims (2)

0.1〜0.5重量%のFe、0.1〜0.5重量%のNi、0.03〜0.2重量%のP、0.1〜3.0重量%のZn、0.01〜2.0重量%のSn、および残部のCuから成り、前記Feと前記Niの合計重量と前記Pの重量の比が(Fe+Ni)/P=3〜10であり、前記Feの重量と前記Niの重量の比がFe/Ni=0.8〜1.2である銅合金を鋳造した後、700〜900℃に加熱後毎分25℃以上の降温速度で300℃以下まで冷却する第1の熱処理と、400〜500℃に加熱して30分〜5時間保持する第2の熱処理とを施すと共に、最終的に50μm以下の厚さまで圧延加工を行うことを特徴とする電子部品用銅合金箔の製造方法。0.1-0.5 wt% Fe, 0.1-0.5 wt% Ni, 0.03-0.2 wt% P, 0.1-3.0 wt% Zn, The ratio of the total weight of the Fe and Ni and the weight of P is (Fe + Ni) / P = 3-10, and is composed of 01 to 2.0% by weight of Sn and the balance of Cu. After casting a copper alloy having a Ni weight ratio of Fe / Ni = 0.8 to 1.2, the steel is heated to 700 to 900 ° C. and then cooled to 300 ° C. or less at a temperature drop rate of 25 ° C. or more per minute. A copper for electronic parts, characterized in that a heat treatment of No. 1 and a second heat treatment that is heated to 400 to 500 ° C. and held for 30 minutes to 5 hours and finally rolled to a thickness of 50 μm or less Manufacturing method of alloy foil. 0.1〜0.5重量%のFe、0.1〜0.5重量%のNi、0.03〜0.2重量%のP、0.1〜3.0重量%のZn、0.01〜2.0重量%のSn、0.01〜0.3重量%のMg、および残部のCuから成り、前記Feと前記Niの合計重量と前記Pの重量の比が(Fe+Ni)/P=3〜10であり、前記Feの重量と前記Niの重量の比がFe/Ni=0.8〜1.2である銅合金を鋳造した後、700〜900℃に加熱後毎分25℃以上の降温速度で300℃以下まで冷却する第1の熱処理と、400〜500℃に加熱して30分〜5時間保持する第2の熱処理とを施すと共に、最終的に50μm以下の厚さまで圧延加工を行うことを特徴とする電子部品用銅合金箔の製造方法。0.1-0.5 wt% Fe, 0.1-0.5 wt% Ni, 0.03-0.2 wt% P, 0.1-3.0 wt% Zn, It is composed of 01 to 2.0 wt% Sn, 0.01 to 0.3 wt% Mg, and the balance Cu, and the ratio of the total weight of Fe and Ni to the weight of P is (Fe + Ni) / P After casting a copper alloy in which the ratio of the weight of Fe to the weight of Ni is Fe / Ni = 0.8 to 1.2 after heating to 700 to 900 ° C., 25 ° C. per minute The first heat treatment that is cooled to 300 ° C. or lower at the above temperature drop rate and the second heat treatment that is heated to 400 to 500 ° C. and held for 30 minutes to 5 hours are finally rolled to a thickness of 50 μm or less. The manufacturing method of the copper alloy foil for electronic components characterized by performing processing.
JP2003195221A 2003-07-10 2003-07-10 Method for manufacturing copper alloy foil for electronic component Pending JP2005029826A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003195221A JP2005029826A (en) 2003-07-10 2003-07-10 Method for manufacturing copper alloy foil for electronic component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003195221A JP2005029826A (en) 2003-07-10 2003-07-10 Method for manufacturing copper alloy foil for electronic component

Publications (1)

Publication Number Publication Date
JP2005029826A true JP2005029826A (en) 2005-02-03

Family

ID=34206132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003195221A Pending JP2005029826A (en) 2003-07-10 2003-07-10 Method for manufacturing copper alloy foil for electronic component

Country Status (1)

Country Link
JP (1) JP2005029826A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010285671A (en) * 2009-06-15 2010-12-24 Hitachi Cable Ltd High-strength and high-electrical conductivity copper alloy and method of producing the same
JP2012087381A (en) * 2010-10-20 2012-05-10 Hitachi Cable Ltd Extrusion article and method for manufacturing the same
JP2012122095A (en) * 2010-12-08 2012-06-28 Hitachi Cable Ltd Copper alloy material for electric and electronic component
WO2013103149A1 (en) * 2012-01-06 2013-07-11 三菱マテリアル株式会社 Copper alloy for electronic/electric device, copper alloy thin plate for electronic/electric device, method for manufacturing copper alloy for electronic/electric device, and conductive part and terminal for electronic/electric device
EP2339039A3 (en) * 2006-07-21 2014-01-22 Kabushiki Kaisha Kobe Seiko Sho Copper alloy sheet for electric and electronic part
US9653191B2 (en) 2012-12-28 2017-05-16 Mitsubishi Materials Corporation Copper alloy for electric and electronic device, copper alloy sheet for electric and electronic device, conductive component for electric and electronic device, and terminal

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2339039A3 (en) * 2006-07-21 2014-01-22 Kabushiki Kaisha Kobe Seiko Sho Copper alloy sheet for electric and electronic part
US9644250B2 (en) 2006-07-21 2017-05-09 Kobe Steel, Ltd. Copper alloy sheet for electric and electronic part
US9631260B2 (en) 2006-07-21 2017-04-25 Kobe Steel, Ltd. Copper alloy sheets for electrical/electronic part
JP2010285671A (en) * 2009-06-15 2010-12-24 Hitachi Cable Ltd High-strength and high-electrical conductivity copper alloy and method of producing the same
JP2012087381A (en) * 2010-10-20 2012-05-10 Hitachi Cable Ltd Extrusion article and method for manufacturing the same
JP2012122095A (en) * 2010-12-08 2012-06-28 Hitachi Cable Ltd Copper alloy material for electric and electronic component
CN102560181A (en) * 2010-12-08 2012-07-11 日立电线株式会社 Copper alloy material for electrical and electronic component
KR101437307B1 (en) 2012-01-06 2014-09-03 미쓰비시 마테리알 가부시키가이샤 Copper alloy for electronic/electric device, copper alloy thin plate for electronic/electric device, method for manufacturing copper alloy for electronic/electric device, and conductive part and terminal for electronic/electric device
CN103502489A (en) * 2012-01-06 2014-01-08 三菱综合材料株式会社 Copper alloy for electronic/electric device, copper alloy thin plate for electronic/electric device, method for manufacturing copper alloy for electronic/electric device, and conductive part and terminal for electronic/electric device
US8951369B2 (en) 2012-01-06 2015-02-10 Mitsubishi Materials Corporation Copper alloy for electronic/electric device, copper alloy thin plate for electronic/electric device, method of producing copper alloy for electronic/electric device, conductive component for electronic/electric device and terminal
CN103502489B (en) * 2012-01-06 2015-11-25 三菱综合材料株式会社 The manufacture method of electronic electric equipment copper alloy, electronic electric equipment copper alloy thin plate, electronic electric equipment copper alloy, electronic electric equipment conducting element and terminal
CN105154713A (en) * 2012-01-06 2015-12-16 三菱综合材料株式会社 Copper alloy for electronic/electric device, copper alloy thin plate for electronic/electric device, and conductive part and terminal for electronic/electric device
AU2013207042B2 (en) * 2012-01-06 2016-07-21 Mitsubishi Materials Corporation Copper alloy for electronic/electric device, copper alloy thin plate for electronic/electric device, method for manufacturing copper alloy for electronic/electric device, and conductive part and terminal for electronic/electric device
JP5303678B1 (en) * 2012-01-06 2013-10-02 三菱マテリアル株式会社 Copper alloy for electronic and electrical equipment, copper alloy sheet for electronic and electrical equipment, conductive parts and terminals for electronic and electrical equipment
WO2013103149A1 (en) * 2012-01-06 2013-07-11 三菱マテリアル株式会社 Copper alloy for electronic/electric device, copper alloy thin plate for electronic/electric device, method for manufacturing copper alloy for electronic/electric device, and conductive part and terminal for electronic/electric device
US9653191B2 (en) 2012-12-28 2017-05-16 Mitsubishi Materials Corporation Copper alloy for electric and electronic device, copper alloy sheet for electric and electronic device, conductive component for electric and electronic device, and terminal

Similar Documents

Publication Publication Date Title
KR910001420B1 (en) Film carrier and method of manufacturing same
JP4662834B2 (en) Copper or copper alloy foil for circuit
KR100466062B1 (en) Copper-alloy foil to be used for laminate sheet
JP2004060018A (en) Copper foil for electronic part
KR102470725B1 (en) Copper foil for flexible printed circuit, and copper clad laminate, flexible printed circuit and electronic device using copper foil
JP2005029826A (en) Method for manufacturing copper alloy foil for electronic component
JP6360654B2 (en) Rolled copper foil for flexible printed wiring boards
JP3911173B2 (en) Rolled copper foil for copper clad laminate and method for producing the same (2)
JP2005086158A (en) Electronic parts and its manufacturing method
JP2809673B2 (en) Copper alloy rolled foil for flexible printing
JP4254488B2 (en) Copper foil for electronic parts and manufacturing method thereof
JP2013055162A (en) Copper foil for flexible printed wiring board, copper clad laminate, flexible printed wiring board, and electronic apparatus
JP7000120B2 (en) Aluminum foil and electronic component wiring boards using it, and their manufacturing methods
JPH11264040A (en) Copper alloy foil
WO2018180920A1 (en) Rolled copper foil
TW201250883A (en) METHOD FOR MANUFACTURING Sn ALLOY BUMP
TWI718025B (en) Copper foil for flexible printed circuit boards, copper-clad laminates, flexible printed circuit boards and electronic devices using the same
JP2001073186A (en) Production of parts for wiring laminated with insulating film
JP4550263B2 (en) Copper alloy foil for laminates
JP4798894B2 (en) Copper alloy foil for laminates
JPH0616523B2 (en) Film carrier and manufacturing method thereof
US8246765B2 (en) Method for inhibiting growth of tin whiskers
JP4798890B2 (en) Copper alloy foil for laminates
JP2531777B2 (en) Copper alloy rolled foil for flexible printing
KR20190015108A (en) Copper foil for flexible printed circuit, copper clad laminate using the same, flexible printed circuit and electronic device