JPH01195643A - Laminating material and rotary anode for x-ray tube - Google Patents

Laminating material and rotary anode for x-ray tube

Info

Publication number
JPH01195643A
JPH01195643A JP1855588A JP1855588A JPH01195643A JP H01195643 A JPH01195643 A JP H01195643A JP 1855588 A JP1855588 A JP 1855588A JP 1855588 A JP1855588 A JP 1855588A JP H01195643 A JPH01195643 A JP H01195643A
Authority
JP
Japan
Prior art keywords
thin film
layer
film layer
laminated
inclined portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1855588A
Other languages
Japanese (ja)
Inventor
Yukio Takabayashi
幸夫 高林
Seiji Yabe
矢部 清司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Tungsten Co Ltd
Original Assignee
Tokyo Tungsten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Tungsten Co Ltd filed Critical Tokyo Tungsten Co Ltd
Priority to JP1855588A priority Critical patent/JPH01195643A/en
Publication of JPH01195643A publication Critical patent/JPH01195643A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a laminating material with small warping deformation on an inclined portion at a high temperature in a large structure by forming a three-layer laminated structure. CONSTITUTION:A substrate 1 has a disk and an inclined portion 1a extended from the peripheral section of this disk and is provided with a truncated cone shape with a uniform thickness as a whole. A through hole 2 is provided at the center of the substrate 1, the material of the substrate 1 is formed with Mo or Mo alloy, for example, a thin film layer 7 made of Re-W alloy containing 5% of Re is laminated on the inclined portion 5 of the outer face 3 inclined by about 10 deg. against the flat face of the substrate 1. A thin film layer 8 made of W or W alloy is laminated on the inclined portion 6 of the inner face 4 of the substrate 1, a three-layer structure is formed with the substrate 1 and the thin film layers 7 and 8. The warping deformation of the inclined portion is eliminated by the three-layer structure of this laminating material, thereby no displacement of the focal point of X-rays occurs.

Description

【発明の詳細な説明】 [産業上の利用分野J 本発明は、高融点金属の張合わせ材料、特に、三層の張
合わせ構造を含む張合わせ材f4及び高負荷用のX線管
用回転陽極に関するものである。
Detailed Description of the Invention [Industrial Field of Application J] The present invention relates to a laminated material of high-melting point metals, particularly a laminated material f4 having a three-layer laminated structure, and a rotating anode for an X-ray tube for high loads. It is related to.

[従来の技術] 一般に、X線管用回転陽極(以下、ターゲットと呼ぶ)
は、その特性として、高負荷に耐え、且つ、高融点であ
ることが要求される。このような要求に応えるターゲッ
トとして、全形若しくは円錐台形状に成形された基材層
上に、Re−W又はRe−Moからなる薄膜層を収り付
けた2層栴遣のものがある。
[Prior art] Generally, a rotating anode for an X-ray tube (hereinafter referred to as a target)
is required to withstand high loads and have a high melting point. As a target that meets these demands, there is a two-layered target in which a thin film layer made of Re-W or Re-Mo is housed on a base material layer formed into a whole shape or a truncated cone shape.

第7図(a)は上記したターゲットの一例を示している
。図示されたように、ターゲットは中央に貫通孔を有す
る円錐台形状の基材層71と、この基材層71の傾斜部
分の外縁面に取り付けられた薄膜層72とを有している
。この例では、基材層71はMoによって形成され、他
方、薄膜層72はRe−Wによって形成されている。こ
の二用横遺体の基材層71の下面の平坦部には、グラフ
ァイトからなる蓄熱材がろう付げにより接合されたター
ゲットも提案されている。
FIG. 7(a) shows an example of the above-mentioned target. As shown in the figure, the target has a truncated conical base layer 71 having a through hole in the center, and a thin film layer 72 attached to the outer edge surface of the inclined portion of the base layer 71. In this example, the base layer 71 is made of Mo, while the thin film layer 72 is made of Re-W. A target in which a heat storage material made of graphite is joined by brazing to the flat part of the lower surface of the base material layer 71 of the second horizontal body has also been proposed.

このようなターゲットの特性をさらに向上させて高、f
i荷用のターゲットとして用いるために、ターゲット自
身を大型化すると共に、厚板化する一方、ターゲットの
蓄熱容量を大きくする方法が採用されている。
By further improving the characteristics of such targets, high f
In order to use the target as a target for heavy loads, a method is adopted in which the target itself is made larger and thicker, and the heat storage capacity of the target is increased.

[発明が解決しようとする課題] このようなターゲットの大型化方法は、一方で熱容量を
増大させることができるものの、ターゲット自身の質量
をも増大させることになり、このため、高速回転中の回
転m横に種々の不都合を生じさせ、また定常回転数に到
達するまで時間を長くしてしまう等の問題があった。
[Problems to be Solved by the Invention] Although this method of increasing the size of the target can increase the heat capacity, it also increases the mass of the target itself. There have been problems such as causing various problems in terms of speed and lengthening the time required to reach a steady rotational speed.

例えば、上記した第7図(a)で示される二層張合わせ
構造を存するターゲットは、し−1へサイクル負荷が大
きい高負荷の条件で使用されると、薄Ifi層72はビ
ーム等の照射によって局部的に高温度まで加熱される。
For example, when a target having a two-layer laminated structure shown in FIG. 7(a) is used under high load conditions with a large cycle load, the thin Ifi layer 72 is locally heated to high temperatures.

この場合、薄膜層72と基材層71の熱膨張率の違いに
より、薄膜層72は第7図(b)に示すように凹面状に
変形する。この反り変形は、最も高温となる二層構造体
ターゲ・ソトの円錐面、すなわちX線発生部で大きく、
室温においては、最大的0.3i+nの大きなそり量と
なることがある。
In this case, due to the difference in thermal expansion coefficient between the thin film layer 72 and the base material layer 71, the thin film layer 72 is deformed into a concave shape as shown in FIG. 7(b). This warping deformation is large at the conical surface of the two-layer structure target soto, which is the highest temperature, that is, at the X-ray generation part.
At room temperature, the amount of warpage may be as large as 0.3i+n.

図面を用いてこの反りについて説明する。第9図は、従
来例に係る二fT4構造の張合わせ材料の模式図である
0図示の材料91の線膨張係数をα1、断面積A+、ヤ
ング率El、材料92の線膨張係数をα2、断面積A2
、ヤング率E2とおく、初め応力は生じていないものと
し、この材料91、材*192の温度をそれぞれt、、
t、[C]だけ上y?させることにより材料91、材料
92内に生ずる熱応力をσ1.σ2とすると、 とあられすことができる。
This warpage will be explained using the drawings. FIG. 9 is a schematic diagram of a conventional laminated material with a two-fT4 structure. The linear expansion coefficient of the material 91 shown in the figure is α1, the cross-sectional area A+, Young's modulus El, and the linear expansion coefficient of the material 92 is α2, Cross-sectional area A2
, Young's modulus E2, it is assumed that no stress occurs initially, and the temperatures of material 91 and material *192 are t, ,
t, [C] up y? The thermal stress generated in the materials 91 and 92 is reduced to σ1. If σ2 is assumed, then it can be expressed as follows.

σ1とσ2の正負が逆であるので、反りか発生ずること
が判り、更に材料91をMo(α1は3.7〜5 、3
 x I O−6)、材料92W(α2は4.5〜7X
10−’)、α2くα、であるので、凹状に反ることに
なる。
Since the positive and negative signs of σ1 and σ2 are opposite, it can be seen that warping occurs, and furthermore, the material 91 is made of Mo (α1 is 3.7 to 5, 3
x I O-6), material 92W (α2 is 4.5-7X
10-'), α2 × α, so it will warp in a concave shape.

第7図(a)においては、円錐台形状の傾斜部分のMO
又はMO合金の層71側の熱膨張率が、Re−Wの張合
わせ層72側に比べて大きいので、異種金属張合わせ材
料に生ずる熱応力が原因で、第7図(b)で示されるR
e −W層の面が凹状になるという永久歪すなわち反り
が生ずることになる。そしてこのそり量は、30市の長
さに対して最大0.3市程度であるがターゲラ1−を大
径化するに従い顕著となる。つまり、高負荷用ターゲッ
トとして使用するには、なるべく大型化して蓄熱容量を
大きくしなければならないが、この大型化はそりを生じ
させることになる。
In FIG. 7(a), the MO of the truncated conical inclined part
Or, since the coefficient of thermal expansion on the MO alloy layer 71 side is larger than that on the Re-W lamination layer 72 side, thermal stress generated in the dissimilar metal lamination materials is caused, as shown in FIG. 7(b). R
Permanent strain, ie, warping, occurs in which the surface of the e-W layer becomes concave. The amount of warpage is approximately 0.3 cm at most for a length of 30 cm, but it becomes more noticeable as the diameter of the target lens increases. In other words, in order to use it as a high-load target, it is necessary to increase the heat storage capacity by increasing the size as much as possible, but this increase in size causes warping.

この様な反りは、発生したX線の焦点位置がずれたり、
回転バランスが悪くなるという問題が生ずる。また材料
をグラファイトによって形成し、ろう接ターゲットとし
た場合にはMoよりなる基材層とグラファイトの蓄熱材
のろう行部分に剥離が生じ、熱伝導性が悪くなったり、
破断するという不都合を生じた。
This kind of warping is caused by the focal position of the generated X-rays shifting,
A problem arises in that the rotational balance deteriorates. In addition, when the material is made of graphite and used as a soldering target, separation occurs between the base material layer made of Mo and the soldering part of the graphite heat storage material, resulting in poor thermal conductivity.
This caused the inconvenience of breakage.

本発明の目的は上記欠点に鑑みてなされており、蓄熱容
量が大きくなっても、すなわち、大型化に際しても円錐
台形状の傾斜部分に反り変形が発生しない三R4横mを
有する張合わせ材料を提供することである。
The object of the present invention has been made in view of the above-mentioned drawbacks, and the object of the present invention is to provide a laminate material having a width of 3R4 in which warping deformation does not occur in the inclined portion of the truncated cone even when the heat storage capacity increases, that is, even when the size increases. It is to provide.

更に、本発明の池の目的は、高負荷においてら、円錐台
形状の傾斜部分に反り変形を発生させないために基材層
と蓄熱材の接合部の!1離や破断が防止でき、安定した
性能を有するX線管用回転陽極を提供することである。
Furthermore, the purpose of the pond of the present invention is to prevent warping of the truncated conical inclined portion under high loads at the joint between the base material layer and the heat storage material. An object of the present invention is to provide a rotating anode for an X-ray tube that can prevent separation and breakage and has stable performance.

し課題を解決するための手段] 本発明によれば、一表面と、この一表面と対向する裏面
とを備え、実質的に断面形状において円錐台形状を持ち
、第1の材7゛1によって形成された基材層と、この基
材層の一表面上、前記円錐台形状の傾斜部分に取付りら
れ、第1の材料とは熱膨張率において異なる第2の材料
によって形成された第1の薄膜層と、基材層の裏面の傾
斜部分に取付けられ、第2の材料と実質的に熱膨張率に
おいて等しい第3の材料によって形成された第2の薄膜
層とを有し、この第1及び第2の薄膜層は前記断面にお
いて実質的に等しい断面を有していることを特徴とする
張合わせ材料が得られる。
[Means for Solving the Problems] According to the present invention, the first material 7'1 has one surface and a back surface opposite to the one surface, has a substantially truncated conical shape in cross section, and a first material formed of a second material having a coefficient of thermal expansion different from that of the first material; a second thin film layer attached to the sloped portion of the back surface of the base layer and formed of a third material having a coefficient of thermal expansion substantially equal to that of the second material; A laminate material is obtained, characterized in that the first and second thin film layers have substantially equal cross-sections in said cross-section.

さらに、本発明によれば、一表面と、この一表面と対向
する裏面とを備え、実質的に断面形状において円錐台形
状を持ち、第1の材料によって形成された基材層と、こ
の基材層の一表面上、前記円錐台形状の傾斜部分に取付
けられ、第1の材料とは熱Wj3脹率において異なる第
2の材料によって形成された第1の薄膜層と、基材層の
裏面の傾斜部分に取イ・1けられ、第2の材料と実質的
に熱膨張率において等しい第3の材料によって形成され
た第2の薄膜層とを有し、この第1及び第2の薄膜層は
前記断面において実質的に等しい断面を有している張合
わせ材料の基材底面に蓄熱材層を有することを特徴とす
るX線管用回転陽極が得られる。
Further, according to the present invention, a base material layer comprising a first surface, a back surface opposite to the first surface, having a substantially truncated conical cross-sectional shape, and formed of a first material; A first thin film layer attached to the truncated conical inclined portion on one surface of the material layer and formed of a second material different in thermal expansion coefficient from the first material, and a back surface of the base material layer. a second thin film layer formed of a third material having a coefficient of thermal expansion substantially equal to that of the second material; A rotating anode for an X-ray tube is obtained, characterized in that the layers have a heat storage material layer on the bottom surface of the base material of the laminated material, the layers having substantially the same cross section in the cross section.

ここで、本発明の張合わせ材料の反り発生防止R横につ
いて説明する。
Here, the method for preventing warping of the laminated material according to the present invention will be explained.

第8図は、本発明に係る張合わせ材料の張合わせ411
I造を示す模式図である。材料81の線膨張係数α3、
断面積A3、ヤング率Esとし、材料82の線膨張係数
α1.1断面積Aa、不断面積A4′、ヤング率E4と
おくと、図示の材料81.4’4 f−’+ 82は初
めは応力は生じていないものとし、この状態から材料8
1、材料82の温度をそれぞれts 、t4 [℃]だ
け上昇させたために材料81、材料82の上部、下部に
生ずる熱応力をそれぞれσ1.σ4.σ4′とおくと、
σ、を圧縮とすれば、(2)式より、 (2)′、(2
1“式が直ちに求まる。
FIG. 8 shows lamination 411 of lamination materials according to the present invention.
It is a schematic diagram showing an I structure. Linear expansion coefficient α3 of material 81,
Assuming that the cross-sectional area A3 and Young's modulus Es are the linear expansion coefficient α1.1 of the material 82, the cross-sectional area Aa, the non-cross-sectional area A4', and the Young's modulus E4, the material 81.4'4 f-'+ 82 shown in the figure is initially It is assumed that no stress is generated, and from this state material 8
1. The thermal stress generated in the upper and lower parts of the material 81 and the material 82 by increasing the temperature of the material 82 by ts and t4 [°C], respectively, is σ1. σ4. Letting σ4′,
If σ is compression, then from equation (2), (2)', (2
1" formula can be found immediately.

(2) ” 、(2)′より図示の材料82の上部と下
部の断面積が等しい場合には、応力σ2.σ、′の大き
さが同じであるからそりは発生しない。
(2)'', (2)', if the cross-sectional areas of the upper and lower parts of the illustrated material 82 are equal, no warping occurs because the magnitudes of the stresses σ2.σ,' are the same.

材料82の上部と下部の断面積を等しくすれば、上下発
生ずるσ2.σ4′は同じ大きさで引っ張り、釣り合う
ので張合わせ材料のそりは発生しない。
If the cross-sectional area of the upper and lower parts of the material 82 is made equal, the upper and lower parts will be generated by σ2. Since σ4' is pulled with the same magnitude and balanced, no warping of the bonded material occurs.

このように張合わせM3’aを有する張合わせ材料及び
X線管用回転陽極の傾斜部分の反りの発生は、傾斜部分
の上下面に発生する熱応力を均等に保つことによって防
止できる。この反り防止の目的で、従来において基材の
一表面上の傾斜部分に薄膜層を有する張合わせO1造体
の裏面の傾斜部分にも薄膜層を張合わせた三重構造とし
ている。
In this way, the occurrence of warping of the laminate material having the laminate M3'a and the inclined portion of the rotary anode for an X-ray tube can be prevented by keeping the thermal stress generated on the upper and lower surfaces of the sloping portion even. In order to prevent this warping, conventionally, a laminated O1 structure having a thin film layer on the sloped part on one surface of the base material has a triple structure in which a thin film layer is also laminated on the sloped part of the back surface.

さらに、裏面に張合わせる薄膜層は一表面の張合わせ材
料の底面には、熱容量の大きな蓄熱材が設けられるので
同一形状は不可能である。このため表面の薄膜層と裏面
の薄膜層により基材層が実質的に同一の膨張率を保持で
きるようにW又はW合金のX線発生部と同一の断面積を
存するよう構成することにより、表裏の薄膜層の断面形
状が異っても反りl!Jj止が行われる。
Furthermore, the thin film layer bonded to the back surface cannot have the same shape because a heat storage material with a large heat capacity is provided on the bottom surface of one surface of the bonding material. For this reason, by configuring the base material layer to have the same cross-sectional area as the X-ray generating part of W or W alloy so that the thin film layer on the front surface and the thin film layer on the back surface can maintain substantially the same expansion coefficient. Even if the cross-sectional shapes of the front and back thin film layers are different, it will warp! A JJ stop is performed.

また、本発明においては、張合わぜm遺体の基、1′4
と、蓄熱材との接合は従来用いられているl) dらし
くはRu−Pd等のろう材が高温抗折力や融点等にすぐ
れており使用できるが、接合方法の種類には限定されな
い。
In addition, in the present invention, the base of the strung m corpse, 1'4
A brazing filler metal such as Ru-Pd, which has excellent high-temperature transverse rupture strength and melting point, can be used for bonding with a heat storage material, which has been conventionally used, but the type of bonding method is not limited.

[実施例] 本発明の実施例について図面を参照して説明する。[Example] Embodiments of the present invention will be described with reference to the drawings.

実施例1 第1図は本発明の実施例に係る張合わせ構造体を示す断
面図である。図に示すように、基材1は円板とこの円板
の周辺部から延在する傾斜部分121とを有し、全体と
して−様な厚さの円錐台形状を備えている。ここでは、
図の上方向に向けられた凸状の基材1の表面5を外面3
と呼び、下方向に向けられた凹状の他面4を内面と呼ぶ
、そして基材1の中心に貫通孔2が設けられている。
Example 1 FIG. 1 is a sectional view showing a laminated structure according to an example of the present invention. As shown in the figure, the base material 1 has a disk and an inclined portion 121 extending from the periphery of the disk, and has an overall truncated cone shape with a -like thickness. here,
The surface 5 of the convex base material 1 directed upward in the figure is the outer surface 3
The other concave surface 4 facing downward is called the inner surface, and a through hole 2 is provided in the center of the base material 1.

基材1の材料はMo又はMo合金で形成されている。基
材1の平坦面に対し約10°傾斜した外面3の傾斜部分
5上には、5%のReを含むRe−W合金からなる薄膜
層7が張合わされている。
The material of the base material 1 is made of Mo or Mo alloy. A thin film layer 7 made of a Re-W alloy containing 5% Re is laminated onto the inclined portion 5 of the outer surface 3 which is inclined by about 10 degrees with respect to the flat surface of the base material 1.

また、基材1の内面4の傾斜部分6にもW又はW合金か
らなる薄膜層8が張合わされており、これら基材1、薄
膜層7及び8によって、三層構造の構造体を形成してい
る。薄膜層7と薄膜層8は図示された中心を通る横断面
において実質上、同一の面積を有している。このことは
、薄膜層7及び8は実質的に同じ厚さを有すると共に、
平面的に見た場合にも、同一の形状即ち、合同の関係を
有していることを意味している。
Further, a thin film layer 8 made of W or W alloy is laminated to the inclined portion 6 of the inner surface 4 of the base material 1, and the base material 1 and the thin film layers 7 and 8 form a three-layer structure. ing. Thin film layer 7 and thin film layer 8 have substantially the same area in a cross section through the center of the illustration. This means that thin film layers 7 and 8 have substantially the same thickness and
Even when viewed from above, it means that they have the same shape, that is, they have a congruent relationship.

実施例2 第2図は、本発明の実施例に係るX線管用回転電極のf
4体的構成を示す断面図である。この図において、X線
管用回転電極の基材10は、第1図と路間−の円錐台形
状を有しているが、第1図の基材1に比較して、内面に
おける#?’! 31部分が短くなっており、結果とし
て、内面の平坦部分が広くなっている。基材10の中央
部には、貫通孔11が設けられており、且つ、基材10
の内面中央の平坦面部分には、ろう材を介して蓄熱材1
2が接合されている。この蓄熱材12は高純度、高密度
のグラファイトによって形成されている。基材10はM
o又はMo合金よりなる基+410の一つの傾斜面13
上に5%Re−W合金よりなる薄11i層14が張合わ
されて形成されている。また、基材に取り付けられた蓄
熱材12を囲む基材10の傾斜部分15上には、Wまた
はW合金からなる薄膜層16が張合わされている9図に
示すように、外面上の薄膜層14は内面上の薄IB!層
に比べて厚さにおいて薄いか、接合面積において広い、
結果として、薄膜層14と薄膜層16は図示された横断
面において、実質上方いに等しい面積となるように薄膜
層14及び16の厚さ及び接合面積(幅)か選択されて
いる。このように、薄膜層16の厚さを7’7’ くす
るのは、蓄熱材12の外径に合わせて基材10の内面を
広く露出させる必要があり、薄膜層16はその大きさに
当然ながら制約を受けるためである。このように、薄膜
層14と16の断面積を等しくすることにより、傾斜部
分10a表面の薄膜層14のVJj服率は、同温度のM
o膨膨張より小さい。従って、Moからなる基材10の
膨張に際して、基材10両面の外縁部10aを等しい膨
張率の物質で押える形となり、またこの熱応力は両面と
も均等であるので基材層10の傾斜部分10aに反りを
生じさせない。
Example 2 FIG. 2 shows the f of a rotating electrode for an X-ray tube according to an example of the present invention.
It is a sectional view showing a four-body configuration. In this figure, the base material 10 of the rotating electrode for an X-ray tube has a truncated conical shape between the lines in FIG. 1, but compared to the base material 1 in FIG. '! 31 portion is shortened, and as a result, the flat portion of the inner surface is widened. A through hole 11 is provided in the center of the base material 10, and the base material 10
The heat storage material 1 is placed on the flat surface at the center of the inner surface of the
2 are joined. This heat storage material 12 is made of high-purity, high-density graphite. The base material 10 is M
One inclined surface 13 of the group +410 made of o or Mo alloy
A thin 11i layer 14 made of 5% Re-W alloy is laminated thereon. In addition, a thin film layer 16 made of W or W alloy is laminated on the inclined portion 15 of the base material 10 surrounding the heat storage material 12 attached to the base material. As shown in FIG. 14 is thin IB on the inner surface! Thinner in thickness or wider in bonding area than the layer,
As a result, the thicknesses and bonding areas (widths) of the thin film layers 14 and 16 are selected such that the thin film layers 14 and 16 have substantially equal areas in the illustrated cross-section. In this way, making the thickness of the thin film layer 16 7'7' requires exposing the inner surface of the base material 10 widely in accordance with the outer diameter of the heat storage material 12, and the thin film layer 16 is This is because, of course, there are restrictions. In this way, by making the cross-sectional areas of the thin film layers 14 and 16 equal, the VJj absorption rate of the thin film layer 14 on the surface of the inclined portion 10a can be adjusted to
o Smaller than swelling. Therefore, when the base material 10 made of Mo expands, the outer edge portions 10a on both sides of the base material 10 are held down by a substance with the same expansion coefficient, and since this thermal stress is equal on both surfaces, the inclined portion 10a of the base material layer 10 Does not cause warping.

上な薄膜層の等面積構造は、張合わぜ材V]底面にろう
付されるグラファイトの熱容量をできるだけ大きくしよ
うとした結果である。
The equal area structure of the upper thin film layer is the result of trying to maximize the heat capacity of the graphite brazed to the bottom surface of the laminated material V.

本発明の実施例に係る張合わせ材料の反り量の測定につ
いて説明する。第3図は、本発明に係る張合わせ材ネ1
の試験片の一例を示している。この図の試験片は、−辺
か15n+n+、長さが30111tIの角柱状のMo
基材18を備え、この基材18の上面にノ1さA m+
nの5%Re−Wよりなる薄膜層19、Mo基材18の
底面に厚さAIII++の純Wよりなる薄j模層20が
設けられている。第4図は、比較例に係る張合わせ材料
の試験片を示している。この図の試験片は、−辺が15
關、長さが30關の角柱状の基材40を有し、この基材
40の上面には、1ブさBwの5%Re−W合金からな
る薄1[WNJlttが張合わされている。
Measurement of the amount of warpage of a laminated material according to an example of the present invention will be explained. FIG. 3 shows the laminate material 1 according to the present invention.
An example of a test piece is shown. The test piece in this figure is a prismatic Mo
A base material 18 is provided, and a hole A m+ is provided on the upper surface of the base material 18.
A thin film layer 19 made of 5% Re-W of n, and a thin layer 20 made of pure W having a thickness of AIII++ are provided on the bottom surface of the Mo base material 18. FIG. 4 shows a test piece of a laminated material according to a comparative example. The test piece in this figure has a negative side of 15
It has a prismatic base material 40 with a length of 30 mm, and a thin layer 1 [WNJltt made of a 5% Re-W alloy with a thickness of 1 Bw is laminated on the upper surface of the base material 40.

第5図は、ヒートサイクル試験方法を示す。FIG. 5 shows the heat cycle test method.

l記した実施例に係るA = 1 m+及びA−2m+
の試験片と比較例に係るB = 1 +n+n及び[3
= 2 n+m試験片にヒートサイクル試験を施した9
ヒートサイクル試験方法は次のように行わ7′[た。第
、5図のような、タングステン板の通電抵抗加熱体21
の上に載置して、電源を0N−OFFさせて試験を次の
様な試験条件にて行った。
A = 1 m+ and A-2m+ according to the embodiments described.
B = 1 + n + n and [3
= 2 n+m test piece subjected to heat cycle test 9
The heat cycle test method was carried out as follows. A tungsten plate current-carrying resistance heating element 21 as shown in FIG.
The test was conducted under the following test conditions by placing the device on top of the device and turning the power ON and OFF.

加熱温度は1100°C〜2100°Cの範囲内、R温
時間は1分間程度、降温時間は30秒程度、サイクル回
数は30回であった。
The heating temperature was within the range of 1100° C. to 2100° C., the R heating time was about 1 minute, the cooling time was about 30 seconds, and the number of cycles was 30 times.

上記し−トサイクル処理の後、試験片を室温にて触針式
形状測定機を使用してそり量を測定した。
After the above-mentioned cycle treatment, the amount of warpage of the test piece was measured at room temperature using a stylus shape measuring machine.

第6図は、第3図及び第4図の試験片のヒートサイクル
試験片の長さ方向のそりを示す側面図であるにの図にお
いて、試験片のそりはj (μl)で示される。−辺1
〕、長さLはそれぞれ15+n+n。
FIG. 6 is a side view showing warpage in the length direction of the heat cycle test piece of the test piece of FIGS. 3 and 4. In the figure, the warpage of the test piece is indicated by j (μl). -side 1
], the length L is 15+n+n, respectively.

30tnm″′C″ある。There is 30tnm″'C″.

表1は実施例に係る試験片及び比較例に係る試験片の測
定結果を示す。
Table 1 shows the measurement results of the test piece according to the example and the test piece according to the comparative example.

以下余白 表    1 この表から明らかな様に、比較例に係る二層の張合わせ
M4造試片はそり量が大きく、また薄膜層の厚さBが大
きくなるとそりが小さくなる傾向がある。つまり薄膜層
は厚さのバラツキがあると、反り量に1 gを与えるこ
とが解る。これに対して、実施例に係る三層の張合せ4
1111造の試片は、殆ど反りが発生しない。さらに厚
さにバラツキがあってもそり量に与える影響が少ないこ
とが判明した。
Margin table below 1 As is clear from this table, the two-layer laminated M4 specimen according to the comparative example has a large amount of warpage, and as the thickness B of the thin film layer increases, the warpage tends to decrease. In other words, it can be seen that if there is variation in the thickness of the thin film layer, 1 g will be added to the amount of warpage. In contrast, the three-layer lamination 4 according to the example
The specimen made in 1111 has almost no warping. Furthermore, it was found that even if there were variations in thickness, there was little effect on the amount of warpage.

I発明の効果] 以上説明した通り、本発明によれば、蓄熱容量が大きく
なってもすなわち大型化に際しても、高温において、傾
斜部分の反り変形の少ない張合わせ材料を得ることがで
きるととらに、この張合わせ召料の三層構造により、傾
斜部分の反り変形のないため、X線の焦点の位]σずれ
を生じない、回転バランスの良い安定した高負荷用X線
管用回転陽・極を提供することができる。
I. Effects of the Invention] As explained above, according to the present invention, even when the heat storage capacity increases, that is, when the size is increased, it is possible to obtain a laminated material with less warping deformation of the inclined portion at high temperatures. Due to the three-layer structure of this laminated material, there is no warp deformation of the inclined part, so the rotating anode/pole for high-load X-ray tubes is stable with good rotational balance and does not cause deviation of the X-ray focal point. can be provided.

さらに、本発明によれば、傾斜部分の反り変形が少ない
ので、X線管用回転陽極の基材と蓄熱材のろう材等によ
る接合部の剥離や破断を防止できる。
Further, according to the present invention, there is little warping deformation of the inclined portion, so that peeling or breakage of the joint between the base material of the rotary anode for an X-ray tube and the brazing material of the heat storage material can be prevented.

以下余白Margin below

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の実施例に係る張合わせ材料の三層構
造を示す図、第2図は、本発明の実施例に係るX線管用
回転用陽極を示す断面図、第3図は、本発明の実施例に
係るし−トサイクル試験片を示す斜視図、第4図は、比
較例に係るし−トサイクル試験片を示す図、第5図は、
本発明の実施例に係るし−トサイクル試験方法を示す図
、第6図はヒートサイクル試験片の反りの説明図、第7
図(a)は、従来例に係る張合わせ材料の二層構造を示
す図、第7図(b)は、第7図(a)の張合わせ材料の
反り変形の説明に供する図、第8図は、本発明に係る張
合わせ材料の反り変形の説明に供する図、第9図は従来
の張合わせ材料の反り変形の説明に供する図である。 図中1及び10は基材層、2及び11は貫通孔、5及び
13は表面傾斜部分、6及び15は裏面傾斜部分、7及
び14は薄WA層、8及び16は薄膜層、12は蓄熱材
である。 第1図 第2図 第3図 第4図 第5図 第6図
FIG. 1 is a diagram showing a three-layer structure of a laminated material according to an embodiment of the present invention, FIG. 2 is a sectional view showing a rotating anode for an X-ray tube according to an embodiment of the present invention, and FIG. , FIG. 4 is a perspective view showing a first cycle test piece according to an example of the present invention, FIG. 4 is a diagram showing a first cycle test piece according to a comparative example, and FIG.
A diagram showing a heat cycle test method according to an embodiment of the present invention, FIG. 6 is an explanatory diagram of warping of a heat cycle test piece, and FIG.
FIG. 7(a) is a diagram showing a two-layer structure of the laminated material according to the conventional example, FIG. 7(b) is a diagram for explaining the warping deformation of the laminated material in FIG. The figure is a diagram for explaining the warping deformation of the laminated material according to the present invention, and FIG. 9 is a diagram for explaining the warping deformation of the conventional laminated material. In the figure, 1 and 10 are base material layers, 2 and 11 are through holes, 5 and 13 are surface sloped portions, 6 and 15 are back surface sloped portions, 7 and 14 are thin WA layers, 8 and 16 are thin film layers, and 12 are It is a heat storage material. Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6

Claims (1)

【特許請求の範囲】 1、一表面と、この一表面と対向する裏面とを備え、実
質的に断面形状において円錐台形状を持ち、第1の材料
によつて形成された基材層と、該基材層の一表面上、前
記円錐台形状の傾斜部分に取付けられ、前記第1の材料
とは熱膨脹率において異なる第2の材料によって形成さ
れた第1の薄膜層と、前記基材層の裏面の傾斜部分に取
付けられ、前記第2の材料と実質的に熱膨脹率において
等しい第3の材料によって形成された第2の薄膜層とを
有し、前記第1及び第2の薄膜層は前記断面において実
質的に等しい断面積を有していることを特徴とする張合
わせ材料。 2、第2の薄膜層は重量で5%のReを含むRe−W合
金からなることを特徴とする第1の請求項記載の張合わ
せ材料。 3、第2の薄膜層と第3の薄膜層は断面同形状であるこ
とを特徴とする第1又は第2の請求項記載の張合わせ材
料。 4、第1の請求項又は第2の請求項記載の張合わせ材料
の基材底面に蓄熱材層を有することを特徴とするX線管
用回転陽極。
[Scope of Claims] 1. A base material layer comprising one surface and a back surface opposite to this one surface, having a substantially truncated conical cross-sectional shape, and formed of a first material; A first thin film layer attached to the truncated conical inclined portion on one surface of the base layer and formed of a second material having a coefficient of thermal expansion different from that of the first material, and the base layer. a second thin film layer formed of a third material having a coefficient of thermal expansion substantially equal to that of the second material, the first and second thin film layers being attached to the sloped portion of the back surface of the A laminate material having substantially equal cross-sectional areas in the cross section. 2. The laminate material according to claim 1, wherein the second thin film layer is made of a Re-W alloy containing 5% Re by weight. 3. The laminated material according to claim 1 or 2, wherein the second thin film layer and the third thin film layer have the same cross-sectional shape. 4. A rotating anode for an X-ray tube, characterized in that it has a heat storage material layer on the bottom surface of the base material of the laminated material according to claim 1 or claim 2.
JP1855588A 1988-01-30 1988-01-30 Laminating material and rotary anode for x-ray tube Pending JPH01195643A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1855588A JPH01195643A (en) 1988-01-30 1988-01-30 Laminating material and rotary anode for x-ray tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1855588A JPH01195643A (en) 1988-01-30 1988-01-30 Laminating material and rotary anode for x-ray tube

Publications (1)

Publication Number Publication Date
JPH01195643A true JPH01195643A (en) 1989-08-07

Family

ID=11974874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1855588A Pending JPH01195643A (en) 1988-01-30 1988-01-30 Laminating material and rotary anode for x-ray tube

Country Status (1)

Country Link
JP (1) JPH01195643A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003075592A (en) * 2001-08-30 2003-03-12 Canon Inc Scintillator, and radiation detector and system
JP2006162535A (en) * 2004-12-10 2006-06-22 Ushio Inc Electron beam tube
JP2007093545A (en) * 2005-09-30 2007-04-12 Toshiba Corp Radiation detector

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52113188A (en) * 1976-03-08 1977-09-22 Machlett Lab Inc Rotary anode target and xxray tube using same
JPS5925152A (en) * 1982-07-17 1984-02-09 エヌ・ベ−・フイリツプス・フル−イランペンフアブリケン Rotary anode x-ray tube

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52113188A (en) * 1976-03-08 1977-09-22 Machlett Lab Inc Rotary anode target and xxray tube using same
JPS5925152A (en) * 1982-07-17 1984-02-09 エヌ・ベ−・フイリツプス・フル−イランペンフアブリケン Rotary anode x-ray tube

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003075592A (en) * 2001-08-30 2003-03-12 Canon Inc Scintillator, and radiation detector and system
JP4587432B2 (en) * 2001-08-30 2010-11-24 キヤノン株式会社 Scintillator panel, radiation detection apparatus and system
JP2006162535A (en) * 2004-12-10 2006-06-22 Ushio Inc Electron beam tube
JP2007093545A (en) * 2005-09-30 2007-04-12 Toshiba Corp Radiation detector

Similar Documents

Publication Publication Date Title
US4482912A (en) Stacked structure having matrix-fibered composite layers and a metal layer
JPH03230552A (en) Joint material for packaging semiconductor device
JPS63261831A (en) Method of jointing layers and apparatus for implementing joint
JPH01195643A (en) Laminating material and rotary anode for x-ray tube
JPH0574824A (en) Manufacture of semiconductor device and semiconductor device
JPS6095841A (en) Target for x-ray tube
JPS5946415B2 (en) Manufacturing method of semiconductor device
JP2001021782A (en) Method and device for supporting optical element
JPS5842243A (en) Supporting electrode plate for semiconductor element
JPS60235430A (en) Semiconductor device
JPS61240666A (en) Semiconductor device
JP2001023554A (en) Anode for x-ray tube and its manufacture
JPS59169694A (en) Solder and joining method thereof
JP2844991B2 (en) Solder foil for semiconductor device and method of manufacturing the same
JP2024062137A (en) Thermal Conductive Materials
JPS63228650A (en) Cooling device for heating element
JPH1041443A (en) Semiconductor device
JP2586423B2 (en) Hybrid integrated circuit
JPH1197618A (en) Bonding of silicon wafer
JPH069906B2 (en) Composite material consisting of graphite and copper or copper alloy
JPS59211290A (en) Semiconductor device
JPH01183841A (en) Lead frame
JPS5834932A (en) Semiconductor device
CN111778475A (en) Mask plate
JPS6249739B2 (en)