JPS63228650A - Cooling device for heating element - Google Patents

Cooling device for heating element

Info

Publication number
JPS63228650A
JPS63228650A JP6104687A JP6104687A JPS63228650A JP S63228650 A JPS63228650 A JP S63228650A JP 6104687 A JP6104687 A JP 6104687A JP 6104687 A JP6104687 A JP 6104687A JP S63228650 A JPS63228650 A JP S63228650A
Authority
JP
Japan
Prior art keywords
heat
alloy
melting
low
point alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6104687A
Other languages
Japanese (ja)
Inventor
Masaru Ishizuka
勝 石塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP6104687A priority Critical patent/JPS63228650A/en
Publication of JPS63228650A publication Critical patent/JPS63228650A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Control Of Temperature (AREA)

Abstract

PURPOSE:To make it possible to perform parallel cooling and to make an LSI package thin and compact, by conducting heat from heat generating elements to low-melting-point alloy through substrates, fusing the low-melting-point alloy, keeping the temperature of the low-melting-point alloy at a constant temperature as a whole, and effectively radiating the heat through heat radiating fins. CONSTITUTION:A plurality of LSI chips 3, which are heat generating elements, are mounted on one surface of each of two substrates 1. A space 7 is formed at each outer end of a heat conducting container 5. Indium alloy 9 is sealed in the container as low-melting-point alloy. Heat radiating fins 11 are attached to the outer surface of each end part 5a of the heat conducting container 5 by bonding and the like. The heat radiating fins 11 are arranged in parallel so that they are laterally deviated from a plurality of the LSI chips 3 in this constitution. The heat from the LSI chips 3 is laterally conducted through the liquified indium alloy 9 with less thermal resistance. The heat is efficiently radiated through the heat radiating fins 11, which are arranged in parallel with respect to the LSI chips 3.

Description

【発明の詳細な説明】 [発明の目的1 (産業上の利用分野) この発明は例えば大型コンピュータのパッケージの冷却
等に用いる発熱素子用冷却装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention 1 (Field of Industrial Application) The present invention relates to a cooling device for a heat generating element used for cooling a package of a large computer, for example.

(従来の技術) 従来のこの種の発熱素子用冷却装置として、例えば第4
図、第5図に示すようなものがある。
(Prior art) As a conventional cooling device for a heat generating element of this type, for example, a fourth cooling device is used.
There are some as shown in Fig. 5.

この第4図、第5図は、例えば大型コンピュータのLS
Iパッケージに適用した例を示すもので、第5図のもの
では基板101に搭載された発熱素子としてのLSIチ
ップ103に接着剤を介してフィン105を取付けたも
のである。また、第6図のものは、基盤101の一面に
複数のLSIチップ103が搭載され、他面に接着剤を
介してフィン105が取付けられたものである。
FIGS. 4 and 5 show, for example, the LS of a large computer.
This is an example of application to an I package, and in the one shown in FIG. 5, a fin 105 is attached to an LSI chip 103 as a heating element mounted on a substrate 101 via an adhesive. Furthermore, in the one shown in FIG. 6, a plurality of LSI chips 103 are mounted on one side of a base plate 101, and a fin 105 is attached to the other side with an adhesive.

ところでこのような冷却装置の放熱特性は、フィン10
5の放熱面積で決まっているといっても過言ではなく、
フィン105の放熱面を有効に利用するため発熱面から
放熱面までの熱抵抗を小さくすることが肝要である。
By the way, the heat dissipation characteristics of such a cooling device are as follows:
It is no exaggeration to say that it is determined by the heat dissipation area of 5.
In order to effectively utilize the heat dissipation surface of the fins 105, it is important to reduce the thermal resistance from the heat generation surface to the heat dissipation surface.

しかしながら上記のように、フィン105を接着剤を介
して取付ける構造では、フィン105の接着のために基
板101あるいはLSIチップ103の表面に生じてい
る多少のゆがみを加味して、接着剤を多少冬目に塗布す
るものとなっている。
However, as described above, in the structure in which the fins 105 are attached via an adhesive, some distortion of the surface of the substrate 101 or the LSI chip 103 due to the adhesion of the fins 105 must be taken into account, and the adhesive may be slightly removed. It is meant to be applied to the eyes.

このため基板101の面に沿った横方向の熱抵抗が大き
くなるため、フィン105をLSIチップ103に対し
第4図、第5図のように縦方向に配置しなければならず
、横方向へ位置的にずらし、あるいは延長する並列的な
冷却は不可能となっており、LSIパッケージの薄型化
、小型化が不可能となっていた。
For this reason, the thermal resistance in the lateral direction along the surface of the substrate 101 increases, so the fins 105 must be arranged vertically with respect to the LSI chip 103 as shown in FIGS. It has become impossible to perform parallel cooling by shifting or extending the positions, making it impossible to reduce the thickness and size of LSI packages.

(発明が解決しようとする問題点) このように従来の装置では、接着剤を介してフィンを取
付けたものであるため、並列的な冷却が不可能であった
(Problems to be Solved by the Invention) As described above, in the conventional device, since the fins are attached via an adhesive, parallel cooling is not possible.

そこでこの発明は、並列的な冷却が可能な発熱素子用冷
却装置の提供を目的とする。
Therefore, an object of the present invention is to provide a cooling device for heat generating elements that can perform parallel cooling.

[発明の構成コ (問題点を解決するための手段) 上記問題を解決するために、この発明は一面に発熱素子
を搭載した基板の他面に低融点合金を封入した伝熱性容
器を形成し、この伝熱性容器に放熱フィンを設ける構成
とした。
[Structure of the Invention (Means for Solving the Problems)] In order to solve the above problems, the present invention forms a heat conductive container in which a heating element is mounted on one side and a low melting point alloy is sealed on the other side of the substrate. , this heat conductive container is provided with radiation fins.

(作用) 発熱素子からの熱は基板を通して、直接または間接に低
融点合金に伝熱される。基板の温度は低融点合金の融点
まで上昇し、融点では低融点合金が完全に液体になるま
で一定期間温度が一定に保たれる。その後低融点合金の
温度はさらに上昇して全体的に一定の温度に保持され、
放熱フィンから有効に放熱される。
(Function) Heat from the heating element is transferred directly or indirectly to the low melting point alloy through the substrate. The temperature of the substrate is increased to the melting point of the low melting point alloy, and at the melting point the temperature is held constant for a period of time until the low melting point alloy becomes completely liquid. After that, the temperature of the low melting point alloy increases further and is maintained at a constant temperature overall,
Heat is effectively radiated from the heat radiation fins.

(実施例) 以下この発明の詳細な説明する。(Example) This invention will be described in detail below.

第1図は、この発明の一実施例に係る断面図である。2
枚の基板1の一面には発熱素子である複数のLSIチッ
プ3が搭載されている。このLSIチップ3は高速スイ
ッチング素子等として構成されており、過度特性の電子
の熱を発生する。
FIG. 1 is a sectional view of an embodiment of the present invention. 2
A plurality of LSI chips 3, which are heating elements, are mounted on one surface of the substrate 1. This LSI chip 3 is configured as a high-speed switching element, etc., and generates heat from electrons with transient characteristics.

前記各基板1の他面間には伝熱性容器5が形成されてい
る。この伝熱性容器5は金属板で成形され、薄型となっ
ており、端部5aは基板1よりもさらに横方向に突出し
ている。さらに伝熱性容器5の外端には空間7が形成さ
れていると共に、内部に低融点合金としてインジウム合
金9が封入されている。低融点合金はビスマス合金等に
することもできる。
A heat conductive container 5 is formed between the other surfaces of each of the substrates 1 . The heat conductive container 5 is formed of a metal plate and is thin, with an end portion 5a protruding further than the substrate 1 in the lateral direction. Furthermore, a space 7 is formed at the outer end of the heat conductive container 5, and an indium alloy 9 as a low melting point alloy is sealed inside. The low melting point alloy can also be a bismuth alloy or the like.

前記伝熱性容器5の端部5aの外面には放熱フィン11
が接着等で取付けられており、この放熱フィン11は複
数のLSIチップ3に対し、横方向にずれて並列的に配
置された構成となっている。
A radiation fin 11 is provided on the outer surface of the end portion 5a of the heat conductive container 5.
are attached by adhesive or the like, and the heat dissipation fins 11 are arranged in parallel with the plurality of LSI chips 3 with offsets in the lateral direction.

さらに、伝熱性容器5には基板1と放熱フィン11に対
向する箇所において複数の貫通穴13が設けられ、基板
1と放熱フィン11の一部が伝熱性容器5の一部を兼ね
るようになっている。基板1と対向する貫通穴13は、
さらにLSIチップ3の位置に対応している。
Furthermore, a plurality of through holes 13 are provided in the heat conductive container 5 at locations facing the substrate 1 and the heat radiation fins 11, so that a portion of the substrate 1 and the heat radiation fins 11 also serves as a part of the heat conductive container 5. ing. The through hole 13 facing the substrate 1 is
Furthermore, it corresponds to the position of the LSI chip 3.

次に作用を説明する。Next, the effect will be explained.

LSIチップ3の発熱は、基板1から伝熱性容器5を介
してインジウム合金9に伝えられる。基板1がインジウ
ム合金9の融点に達すると、インジウム合金9は固体か
ら液体となる。そして、インジウム合金9が固体から液
体となる相変化の途中では、第2図に示すように一定時
間一定温度に保たれ、完全に液体になるとさらに温度が
上昇する。
Heat generated by the LSI chip 3 is transmitted from the substrate 1 to the indium alloy 9 via the heat conductive container 5. When the substrate 1 reaches the melting point of the indium alloy 9, the indium alloy 9 changes from solid to liquid. During the phase change of the indium alloy 9 from solid to liquid, the temperature is maintained at a constant temperature for a certain period of time as shown in FIG. 2, and when the indium alloy 9 becomes completely liquid, the temperature further increases.

なおインジウム合金9は固定から液体になると多少11
!!l1fflするが、この膨張は伝熱性容器5の外端
に形成された空間7によって吸収される。
In addition, indium alloy 9 becomes somewhat 11 when it changes from fixed to liquid.
! ! l1ffl, but this expansion is absorbed by the space 7 formed at the outer end of the heat conductive container 5.

そしてこのようにり、SIチップ3の発熱は、液体とな
ったインジウム合金9を介して横方向に熱抵抗が少なく
伝熱され、LSIチップ3に対して並列的に配置された
放熱フィン11から効率よく放熱される。またLSIチ
ップ3からの熱は非定常的に出てくるが、一旦熱はイン
ジウム合金9で貯えられるので急激、且つ局部的な温度
上昇は避けられ、定常的な放熱が期待できると共に、基
板の温度分布も一様となる。
In this way, the heat generated by the SI chip 3 is transferred laterally through the liquid indium alloy 9 with low thermal resistance, and from the heat dissipation fins 11 arranged in parallel to the LSI chip 3. Heat is dissipated efficiently. Furthermore, heat from the LSI chip 3 is emitted unsteadily, but since the heat is temporarily stored in the indium alloy 9, sudden and local temperature rises can be avoided, steady heat dissipation can be expected, and the substrate The temperature distribution also becomes uniform.

さらにこの実施例では伝熱性容器5に貫通穴13を設け
ているため、基板1や放熱フィン11の接触面がゆがん
でいても、液体となったインジウム合金9が直接接する
ことができ、従来のグリースを用いた放熱フィンの接着
に比べると、熱抵抗が著しく小さなものとなっている。
Furthermore, in this embodiment, since the through hole 13 is provided in the heat conductive container 5, even if the contact surfaces of the substrate 1 and the radiation fins 11 are distorted, the indium alloy 9 that has become a liquid can come into direct contact with it, which is different from the conventional method. Thermal resistance is significantly lower than when the heat dissipation fins are bonded using grease.

第3図は、この発明の伯の実施例に係り、第一図の実施
例に対し、伝熱性容器15に第1図における貫通穴13
を設けないようにしたものである。
FIG. 3 shows a third embodiment of the present invention, in which a through hole 13 in a heat conductive container 15 in FIG.
This is done so that no .

この実施例では、インジウム合金9が基板1や放熱フィ
ン11に直接接することはできないが、LSIデツプ3
の発熱がインジウム合金9を介して横方向に熱抵抗を小
さく伝熱され、放熱フィン11から効率よく放熱される
ことは第1図の実施例と同様である。
In this embodiment, the indium alloy 9 cannot be in direct contact with the substrate 1 or the radiation fins 11, but the LSI deep 3
As in the embodiment shown in FIG. 1, the heat generated is transferred laterally through the indium alloy 9 with a small thermal resistance, and is efficiently radiated from the radiation fins 11.

(発明の効果) 以上より明らかなように、この発明の構成によれば発熱
素子の発熱が低融点合金を溶融し、この低融点合金の温
度が全体で一定に保持され、放熱フィンからの放熱を効
率よく行なわせる。したがって、発熱素子に対して放熱
フィンを並列的に配置することができ、並列的な冷却が
可能となり、装置の小型化・薄型化が可能となる。
(Effects of the Invention) As is clear from the above, according to the configuration of the present invention, the heat generated by the heating element melts the low melting point alloy, the temperature of the low melting point alloy is kept constant throughout, and the heat is radiated from the heat radiating fins. be carried out efficiently. Therefore, the heat dissipation fins can be arranged in parallel to the heat generating element, and cooling can be performed in parallel, allowing the device to be made smaller and thinner.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例に係る断面図、第2図はイ
ンジウム合金の相変化説明図、第3図は他の実施例に係
る断面図、第4図、第5図は従来例に係る断面図である
。 1・・・基板   3・・・LSrチップ(発熱素子)
5.15・・・伝熱性容器 9・・・インジウム合金(低融点合金)11・・・放熱
フィン
Fig. 1 is a cross-sectional view of one embodiment of the present invention, Fig. 2 is an explanatory diagram of phase change of an indium alloy, Fig. 3 is a cross-sectional view of another embodiment, and Figs. 4 and 5 are conventional examples. FIG. 1...Substrate 3...LSr chip (heating element)
5.15...Heat conductive container 9...Indium alloy (low melting point alloy) 11...Radiating fin

Claims (3)

【特許請求の範囲】[Claims] (1)一面に発熱素子を搭載した基板の他面に低融点合
金を封入した伝熱性容器を形成し、この伝熱性容器に放
熱フィンを設けたことを特徴とする発熱素子用冷却装置
(1) A cooling device for a heat-generating element, characterized in that a heat-generating element is mounted on one side of a substrate, a heat-conductive container filled with a low-melting-point alloy is formed on the other side, and a heat-radiating fin is provided on the heat-conductive container.
(2)前記基板の一部が、前記伝熱性容器の一部を兼ね
ていることを特徴とする特許請求の範囲第10項記載の
発熱素子用冷却装置。
(2) A cooling device for a heat generating element according to claim 10, wherein a part of the substrate also serves as a part of the heat conductive container.
(3)前記フィンの一部が、前記伝熱性容器の一部を兼
ねていることを特徴とする特許請求の範囲第1項、第2
項記載の発熱素子用冷却装置。
(3) A portion of the fin also serves as a portion of the heat conductive container.
A cooling device for a heat generating element as described in 2.
JP6104687A 1987-03-18 1987-03-18 Cooling device for heating element Pending JPS63228650A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6104687A JPS63228650A (en) 1987-03-18 1987-03-18 Cooling device for heating element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6104687A JPS63228650A (en) 1987-03-18 1987-03-18 Cooling device for heating element

Publications (1)

Publication Number Publication Date
JPS63228650A true JPS63228650A (en) 1988-09-22

Family

ID=13159898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6104687A Pending JPS63228650A (en) 1987-03-18 1987-03-18 Cooling device for heating element

Country Status (1)

Country Link
JP (1) JPS63228650A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4991002A (en) * 1990-02-14 1991-02-05 Motorola Inc. Modular power device assembly
US5083368A (en) * 1990-02-14 1992-01-28 Motorola Inc. Method of forming modular power device assembly
US8513800B2 (en) 2006-09-19 2013-08-20 Fujitsu Semiconductor Limited Semiconductor device and method for manufacturing the same
CN105607669A (en) * 2016-01-26 2016-05-25 南京航空航天大学 Aqueous solution dispersion system temperature control system based on ammonium nitrate precipitation

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4991002A (en) * 1990-02-14 1991-02-05 Motorola Inc. Modular power device assembly
US5083368A (en) * 1990-02-14 1992-01-28 Motorola Inc. Method of forming modular power device assembly
US8513800B2 (en) 2006-09-19 2013-08-20 Fujitsu Semiconductor Limited Semiconductor device and method for manufacturing the same
CN105607669A (en) * 2016-01-26 2016-05-25 南京航空航天大学 Aqueous solution dispersion system temperature control system based on ammonium nitrate precipitation

Similar Documents

Publication Publication Date Title
US5223747A (en) Heat dissipating device
JP3241639B2 (en) Multi-chip module cooling structure and method of manufacturing the same
JPH1174425A (en) High-performance heat sink for flip-chip package
JPS6323658B2 (en)
JP2001168256A (en) Heat dissipation structure for semiconductor component and semiconductor device provided with that
JP2861981B2 (en) Cooling structure of semiconductor device
US4897764A (en) Conductive cooling cup module
JPH0541471A (en) Semiconductor integrated circuit device
JP2000332171A (en) Heat dissipation structure of heat generating element and module having that structure
JP6281622B1 (en) Cooling device, mounting method, cooling structure
JPS63228650A (en) Cooling device for heating element
JPH04291750A (en) Head radiating fin and semiconductor integrated circuit device
EP3693991A1 (en) Heat sink design for flip chip ball grid array
JPS6142864B2 (en)
JPH1065072A (en) Heat radiating electrode structure
JP2521624Y2 (en) Semiconductor device
JPH05315480A (en) Radiator
JPH05160306A (en) Heat radiation structure
JP2006073744A (en) Heat sink
JP2798656B2 (en) Circuit board
JP2796931B2 (en) Ceramic package and package base for semiconductor device storage
EP0523387A2 (en) Semiconductor chip module and method for manufacturing the same
JPH02240953A (en) Semiconductor device
JPH04139753A (en) Heat transfer cap
JPS6267842A (en) Semiconductor device