JPH01185915A - Formation of thin film - Google Patents

Formation of thin film

Info

Publication number
JPH01185915A
JPH01185915A JP1170288A JP1170288A JPH01185915A JP H01185915 A JPH01185915 A JP H01185915A JP 1170288 A JP1170288 A JP 1170288A JP 1170288 A JP1170288 A JP 1170288A JP H01185915 A JPH01185915 A JP H01185915A
Authority
JP
Japan
Prior art keywords
anode
cathode
magnetic field
thin film
parallel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1170288A
Other languages
Japanese (ja)
Other versions
JP2678277B2 (en
Inventor
Makoto Tanaka
誠 田中
Shinya Tsuda
津田 信哉
Shoichi Nakano
中野 昭一
Michitoshi Onishi
大西 三千年
Yukinori Kuwano
桑野 幸徳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP63011702A priority Critical patent/JP2678277B2/en
Publication of JPH01185915A publication Critical patent/JPH01185915A/en
Application granted granted Critical
Publication of JP2678277B2 publication Critical patent/JP2678277B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To restrain an electron from being diffused to a cathode and an anode, to increase an electron density and to enhance a film-formation speed by a method wherein a magnetic field whose magnetic field intensity in the direction parallel to the cathode and the anode near the cathode and the anode becomes larger than the magnetic field intensity in the vertical direction is formed between the cathode and the anode. CONSTITUTION:A magnetic field whose magnetic field intensity in the direction parallel to a cathode 4 and an anode 5 near the cathode 4 and the anode 5 becomes larger than the magnetic field intensity in the vertical direction is formed between the cathode 4 and the anode 5. Accordingly, a small angle formed by the direction of the magnetic field and an electrode face is smaller than 45 deg. near both electrodes of the cathode 4 and the anode 5; the direction of the magnetic field near both electrodes becomes nearly parallel to both electrode faces. By this setup, it is possible to restrain an electron from being diffused to the anode and the cathode, to increase an electron density and to enhance a film-formation speed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、太陽電池、薄膜トフンジスタ、感光体などに
用いる非晶質半導体薄膜、結晶半導体厚I!llるいは
絶縁体薄膜等の薄膜形成方法に関する。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention relates to amorphous semiconductor thin films used in solar cells, thin film transistors, photoreceptors, etc., and crystalline semiconductors with a thickness of I! The present invention relates to a method for forming a thin film such as an insulator thin film or the like.

〔従来の技術〕[Conventional technology]

一般に、非晶質半導体薄膜を形成する手法として、平行
平板型グロー放電によるプラズマCVD法が知られてお
り、たとえば第4図に示すような装置が用いられる。
Generally, a plasma CVD method using parallel plate glow discharge is known as a method for forming an amorphous semiconductor thin film, and for example, an apparatus as shown in FIG. 4 is used.

第4図において、(1)は反応チャンバ、(2) 、 
(3)は反応チャンバ(1)に形成された反応ガス供給
口および排気口、(4) 、 (5)は反応チャンバ(
1)内に平行に配設された平板状のカソードおよびアノ
ード、(6)はアノード(5)に取り付けられた薄膜形
成用の半導体基板、(7)は高周波電源であシ、正出力
端子がアノード(5)とともにアースされ、負出力端子
がカソード(4)に接続されている。
In FIG. 4, (1) is a reaction chamber, (2),
(3) represents the reaction gas supply port and exhaust port formed in the reaction chamber (1), (4) and (5) represent the reaction chamber (
1) A flat cathode and an anode arranged in parallel within the interior, (6) a semiconductor substrate for thin film formation attached to the anode (5), (7) a high frequency power supply, and a positive output terminal. It is grounded together with the anode (5), and its negative output terminal is connected to the cathode (4).

そして、たとえば非晶質シリコン薄膜を形成する場合、
電源(7)による高周波電圧がカソード(4)。
For example, when forming an amorphous silicon thin film,
The high frequency voltage from the power source (7) is applied to the cathode (4).

アノード(5)間に印加され、反応チャンバ(1)内に
供給されたシリコンを含むシラシガスなどの反応ガスが
グロー放電によシプラズマ化され、半導体基板(6)上
にプラズマ化したシリコンが堆積して非晶質シリコン薄
膜がエピタキシャル成長する。
A reactive gas such as a silicon-containing silicone gas applied between the anodes (5) and supplied into the reaction chamber (1) is turned into plasma by glow discharge, and the plasmatized silicon is deposited on the semiconductor substrate (6). Then, an amorphous silicon thin film is epitaxially grown.

しかし、このようなグロー放電によるプラズマCVD法
の場合、成膜速度の点において問題があるため、たとえ
ば第34回応用物理学関係連合講演会予稿集(1987
,春季)、第246頁のr29p−F−1マグネトロン
放電法によるa−8i膜の高速成膜」に記載のようなマ
グネトロン放電法にょシ、成膜速度の向上を図シ、スル
ープットの向上および低コスト化を図ることが考えられ
ている。
However, in the case of such plasma CVD method using glow discharge, there is a problem in terms of film formation speed, so for example, the Proceedings of the 34th Applied Physics Association Conference (1987
The magnetron discharge method, as described in "High Speed Deposition of A-8i Film by R29P-F-1 Magnetron Discharge Method" on page 246 (2011), p. 246, aims to improve the film deposition speed, improve throughput, and Efforts are being made to reduce costs.

ところで、このマグネトロン放電法とは、前記したグロ
ー放電によるプラズマCVD法に磁界を併用したもので
あり、第5図に示す装置が用いられる。なお、第5図に
おいて、第4図と同一記号は同一もしくは対応するもの
を示し、第5図中のN、Sは磁石(8)の磁極を示す。
By the way, this magnetron discharge method is a method in which a magnetic field is used in combination with the above-described plasma CVD method using glow discharge, and an apparatus shown in FIG. 5 is used. In FIG. 5, the same symbols as in FIG. 4 indicate the same or corresponding parts, and N and S in FIG. 5 indicate the magnetic poles of the magnet (8).

そして、第5図に示すように、カソード(4)の。And, as shown in FIG. 5, the cathode (4).

アノード(5)と反対側に配設された電磁石あるいは永
久磁石等の磁石(8)によシ、カソード(4)、アノー
ド(5)間に磁界を形成することによシ、高周波電圧の
印加によるグロー放電によシ発生する電子の。
A high-frequency voltage is applied by forming a magnetic field between the cathode (4) and the anode (5) through a magnet (8) such as an electromagnet or a permanent magnet placed on the opposite side of the anode (5). of electrons generated by glow discharge.

磁界の方向に垂直な方向への拡散を抑制でき、成膜速度
の向上を図ることが可能になる。
Diffusion in the direction perpendicular to the direction of the magnetic field can be suppressed, making it possible to improve the film formation rate.

さらに、詳述すると、グロー放電にょシ発生する電子は
、第5図中の1点鎖線に示す磁力線に沿ってサイクロト
ロン運動するため、磁界の方向に垂直な方向への電子の
拡散が抑制され、その結果基板(6)を保持したアノー
ド(5)や反応チャンバ(1)の側壁への電子の拡散が
低減され、反応ガスをプラズマ化する電子密度の低減が
防止されるため、前記した第5図のプラズマCVD法の
場合に比べ、プラズマ中の電子密度が増大することにな
り、このように形成磁界によってプラズマを局所的に閉
じ込めてフリズマの高密度化を図ることにょシ、成膜種
密度の増大を図ることができ、成膜速度の向上を図るこ
とが可能になシ、スループットの向上、低コスト化を図
ることができる。
Furthermore, in detail, since the electrons generated during glow discharge move in a cyclotron along the lines of magnetic force shown by the dashed-dotted line in FIG. 5, the diffusion of the electrons in the direction perpendicular to the direction of the magnetic field is suppressed. As a result, the diffusion of electrons to the anode (5) holding the substrate (6) and the side wall of the reaction chamber (1) is reduced, and a reduction in the electron density that turns the reaction gas into plasma is prevented. Compared to the plasma CVD method shown in the figure, the electron density in the plasma increases, and by confining the plasma locally using the formed magnetic field to increase the density of the frisma, the density of the film forming species increases. It is possible to increase the film formation rate, improve throughput, and reduce costs.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、第5図の場合、カソード(4)の近傍では、磁
界の方向がカソード(4)の面に直角に近いため、カソ
ード(4)への電子の拡散を抑制することができず、電
子密度の高密度化に限界があり、成膜速度の向上にも限
界があるという問題点がある。
However, in the case of Fig. 5, the direction of the magnetic field near the cathode (4) is close to perpendicular to the surface of the cathode (4), so the diffusion of electrons to the cathode (4) cannot be suppressed, and the electrons There is a problem that there is a limit to increasing the density, and there is also a limit to increasing the film forming rate.

そこで、本発明では、カソード、アノードの画電極への
電子の拡散を抑制し、電子密度の増大を図シ、成膜速度
をさらに向上できるようにすることを目的としている。
Therefore, an object of the present invention is to suppress the diffusion of electrons to the picture electrodes of the cathode and anode, increase the electron density, and further improve the film formation rate.

〔課題を解決するための手段〕[Means to solve the problem]

つぎに、上記目的を達成するための手段を、実施例に対
応する第1図を用いて説明する。
Next, means for achieving the above object will be explained using FIG. 1 corresponding to an embodiment.

すなわち、反応ガスが供給された反応チャンバ(1)内
にカソード(4)およびアノード(5)を平行に配設し
、 前記アノード(5)に薄膜形成用基板(6)を取υ付け
、前記カソード(4)、アノード(5)に高周波電源(
7)による高周波電圧を印加して前記反応ガスをプラズ
マ化し、 前記基板(6)上にプラズマ化した前記反応ガス成分か
らなる薄膜を形成する薄膜形成方法において、本発明で
は、 前記カソード(4)、アノード(5)間に、前記カソー
ド(4)、アノード(5)それぞれの近傍における前記
カソード(4)、アノード(5)に平行な方向の磁界強
度が垂直な方向の磁界強度より大きくなる磁界を形成す
るという技術的手段を講じている。
That is, a cathode (4) and an anode (5) are arranged in parallel in a reaction chamber (1) to which a reaction gas is supplied, a thin film forming substrate (6) is attached to the anode (5), and the A high frequency power source (
In the thin film forming method according to 7), the reaction gas is turned into plasma by applying a high frequency voltage, and a thin film made of the reaction gas component turned into plasma is formed on the substrate (6), in the present invention, the cathode (4) , a magnetic field between the anodes (5) in which the magnetic field strength in the direction parallel to the cathode (4) and the anode (5) is greater than the magnetic field strength in the perpendicular direction in the vicinity of the cathode (4) and the anode (5), respectively. We are taking technical measures to form a

〔作 用〕[For production]

したがって、本発明によると、カソード(4)、アノー
ド(5)それぞれの近傍におけるカソード(4)、アノ
ード(5)に平行な方向の磁界強度が垂直な方向の磁界
強度よシ大きくなる磁界を、カソード(4)、アノード
(5)間に形成するため、カソード(4)、アノード(
5)の画電極それぞれの近傍では、磁界の方向と電極面
とのなす小さい角度は45°よシも小さくなυ、画電極
それぞれの近傍における磁界の方向は画電極面にほぼ平
行となり、従来のようにアノード(5)だけでなく、カ
ソード(4)への電子の拡散も抑制され、電子密度の増
大が図れ、成膜速度のいっそうの向上が望める。
Therefore, according to the present invention, a magnetic field in which the magnetic field strength in the direction parallel to the cathode (4) and the anode (5) in the vicinity of the cathode (4) and the anode (5) is larger than the magnetic field strength in the perpendicular direction, Since it is formed between the cathode (4) and the anode (5), the cathode (4) and the anode (
5) In the vicinity of each picture electrode, the small angle between the direction of the magnetic field and the electrode surface is smaller than 45° υ, and the direction of the magnetic field in the vicinity of each picture electrode is almost parallel to the picture electrode surface, which is different from the conventional method. As shown in the figure, diffusion of electrons not only to the anode (5) but also to the cathode (4) is suppressed, the electron density can be increased, and a further improvement in the film formation rate can be expected.

このとき、磁界の方向と電子の拡散係数との関係につい
て見ると、磁界の方向に垂直々方向への拡散係数Dvは
、磁界ゼロのときの拡散係数をDo。
At this time, looking at the relationship between the direction of the magnetic field and the electron diffusion coefficient, the diffusion coefficient Dv in the direction perpendicular to the direction of the magnetic field is the diffusion coefficient Do when the magnetic field is zero.

素電荷をe、電子質量をm、磁界強度をB、平均衝突時
間をτとすると、 Dv=Do / (1+ (air)” )となる。こ
こで、ωはサイクロトロン周波数で。
If the elementary charge is e, the electron mass is m, the magnetic field strength is B, and the average collision time is τ, then Dv=Do/(1+(air)'').Here, ω is the cyclotron frequency.

ω=−となシ、電子の平均自由行程を!、電子の速度を
Vとすると、τ=l/vと表わされる。
ω=- and the mean free path of the electron! , where the velocity of the electron is V, it is expressed as τ=l/v.

一方、磁界の方向に平行な方向への拡散係数Dpは、 Dp = Do             ・・・■と
なるため、たとえばB = 500(Gauss)、 
r= 10(nsec、:]の条件下では、前記■、■
式よυDp/Dv;10’ となり、磁界に平行な方向への電子の拡散係数は、垂直
な方向に比べてはるかに大きく、磁界の方向をカソード
(4)およびアノード(5)に、よシ平行にするほど、
カソード(4)、アノード(5)への電子の拡散がいっ
そう抑制されることになる。
On the other hand, the diffusion coefficient Dp in the direction parallel to the direction of the magnetic field is Dp = Do...■, so for example, B = 500 (Gauss),
Under the condition of r=10 (nsec, :], the above ■, ■
The equation is υDp/Dv; 10', and the electron diffusion coefficient in the direction parallel to the magnetic field is much larger than in the perpendicular direction. The more parallel you are, the more
The diffusion of electrons to the cathode (4) and anode (5) is further suppressed.

〔実施例〕〔Example〕

つぎに、本発明を、その実施例を示した第1図ないし第
3図とともに詳細に説明する。
Next, the present invention will be explained in detail with reference to FIGS. 1 to 3 showing embodiments thereof.

(実施例1) まず、実施例1を示した第1図および第2図について説
明する。なお、第1図において、第5図と同一記号は同
一もしくは対応するものを示す。
(Example 1) First, FIG. 1 and FIG. 2 showing Example 1 will be explained. Note that in FIG. 1, the same symbols as in FIG. 5 indicate the same or corresponding items.

そして、第1図に示すように、カソード(4)、アノー
ド(5)間のほぼ中央に、カソード(4)オよびアノー
ド(5)のほぼ全面に平行に所定間隔で複数個の通電用
ワイヤ(9)を配設し、各ワイヤ(9)に、たとえば同
図中のX印に示すように電流を通流し、カソード(4)
、アノード(5)間に同図中の1点鎖線矢印に示すよう
な磁界を形成する。
As shown in FIG. 1, a plurality of energizing wires are placed approximately in the center between the cathode (4) and the anode (5) at predetermined intervals in parallel to the entire surface of the cathode (4) and the anode (5). (9), a current is passed through each wire (9) as shown by the X mark in the figure, and the cathode (4) is connected to the cathode (4).
, a magnetic field is formed between the anodes (5) as shown by the one-dot chain arrow in the figure.

このとき、第2図(a)に示すように、磁界Bがたとえ
ばアノード(5)に平行であれば、電子が同図(a)中
の1点鎖線に示すようにアノード(5)に平行な磁界B
 K ?’oつてサイクロトロン運動しても、電子はア
ノード(5)に到達しに<<、アノード(5)に拡散す
る電子は極めて少数となシ、カソード(4)に対しても
同様になる。
At this time, as shown in Figure 2(a), if the magnetic field B is parallel to the anode (5), the electrons will be parallel to the anode (5) as shown by the dashed line in Figure 2(a). magnetic field B
K? Even with the cyclotron movement, the electrons reach the anode (5) and the number of electrons that diffuse to the anode (5) is extremely small.The same applies to the cathode (4).

一方、第2図(′b)に示すように、磁界Bがアノード
(5)に平行でないときには、磁界Bをアノード(5)
に平行な成分Bpと垂直な成分Byとに分けると、Bp
>Byの条件を満足し、アノード(5)の近傍における
磁界の方向と電極面とのなす角を45°よりも小さくす
ることによυ、アノード(5)に到達する電子の数をよ
シ少なくすることができ、カソード(4)に対しても同
様である。
On the other hand, as shown in Fig. 2('b), when the magnetic field B is not parallel to the anode (5), the magnetic field B is connected to the anode (5).
Dividing into a component Bp parallel to Bp and a component By perpendicular to Bp
By satisfying the condition of The same applies to the cathode (4).

したがって、少なくともカソード(4)、アノード(5
)それぞれの近傍において、カソード(4)およびアノ
ード(5)に平行な方向の磁界強度が垂直な方向の磁界
強度より大きくなるように、各ワイヤ(9)の数および
配設間隔等を設定することにより、カソード(4)、ア
ノード(5)にほぼ平行な磁界を形成でき、従来の第5
図に示すマグネトロン放電法の場合に比べ、カソード(
4)およびアノード(5)への電子の拡散を低減するこ
とができる。
Therefore, at least the cathode (4), the anode (5)
) The number and spacing of each wire (9) are set so that the magnetic field strength in the direction parallel to the cathode (4) and the anode (5) is greater than the magnetic field strength in the perpendicular direction in each vicinity. By doing so, it is possible to form a magnetic field almost parallel to the cathode (4) and anode (5).
Compared to the magnetron discharge method shown in the figure, the cathode (
4) and the diffusion of electrons to the anode (5) can be reduced.

なお、反応チャンバ(1)の側壁(以下チャンバ壁とい
う)への電子の拡散に関しては、各ワイヤ(9)による
形成磁界がチャンバ壁に平行であることが望ましいが、
第2図(C)中にクロスハツチングを施こしたカソード
(4)、アノード(5)間のプラズマ存在領域での強い
磁界Bによシ、電子のチャンバ壁への拡散が抑制される
ことになるため、チャンバ壁の近傍における磁界強度と
しては、チャンバ壁に垂直な方向への磁界強度が、各ワ
イヤ(9)による形成磁界Bの最大強度の172よりも
小さい程度になるようにすればよい。
Regarding the diffusion of electrons to the side wall of the reaction chamber (1) (hereinafter referred to as chamber wall), it is desirable that the magnetic field formed by each wire (9) be parallel to the chamber wall.
Due to the strong magnetic field B in the plasma existing region between the cathode (4) and anode (5) cross-hatched in Figure 2 (C), the diffusion of electrons to the chamber wall is suppressed. Therefore, the magnetic field strength near the chamber wall should be such that the magnetic field strength in the direction perpendicular to the chamber wall is smaller than 172, which is the maximum strength of the magnetic field B formed by each wire (9). good.

したがって、前記実施例によると、カソード(4)。Thus, according to the embodiment, the cathode (4).

アノード(5)間に、カソード(4)、アノード(5)
に平行に配設した各ワイヤ(9)への通電によυ、カソ
ード(4)、アノード(5)それぞれの近傍におけるカ
ソード(4)、アノード(5)に平行な方向の磁界強度
が垂直な方向の磁界強度よシ大きくなる磁界を、カソー
ド(4)、アノード(5)間に形成したため、従来のよ
うにアノード(5)だけでなく、カソード(4)への電
子の拡散をも抑制することができ、電子密度の増大を図
ることができ、反応ガスのプラズマを効率よく閉じ込め
てプラズマの高密度化を図υ、成膜種密度を増大させて
成膜速度を従来よシもさらに向上することができる。
Between the anode (5), the cathode (4), the anode (5)
By energizing each wire (9) arranged parallel to A magnetic field that is stronger than the magnetic field strength in the direction is created between the cathode (4) and anode (5), suppressing the diffusion of electrons not only to the anode (5) as in the conventional case but also to the cathode (4). It is possible to increase the electron density, efficiently confine the plasma of the reactant gas and increase the density of the plasma, and increase the density of the film-forming species to further improve the film-forming speed compared to conventional methods. can do.

(実施例2) つぎに、実施例2を示した第3図について説明する。(Example 2) Next, FIG. 3 showing the second embodiment will be explained.

第3図において、第1図と同一記号は同一もしくは対応
するものを示し、第1図と異なる点は、反応チャンバ(
1)内のほぼ中央に2個のカソード(4)を近接して平
行に配設し、反応チャンバ(1)内に両力ソード(4)
それぞれに対向して2個のアノード(5)を平行に配設
し、両アノード(5)に基板(6)をそれぞれ取り付け
、両力ソード(4)間に複数個の通電用ワイヤ00を配
設し、各ワイヤαOにたとえば同図中のX印のように電
流を通流し、同図中の1点鎖線矢印に示すように、両力
ソード(4)の周囲に磁界を形成するようにした点であ
る。なお、第3図中のαηは両力ソード(4)の保持具
である。
In Fig. 3, the same symbols as in Fig. 1 indicate the same or corresponding parts, and the difference from Fig. 1 is that the reaction chamber (
1) Two cathodes (4) are disposed close to each other in parallel approximately in the center of the reaction chamber (1).
Two anodes (5) are arranged in parallel to face each other, a substrate (6) is attached to both anodes (5), and a plurality of energizing wires 00 are arranged between both power swords (4). A current is passed through each wire αO as shown by the X mark in the same figure, and a magnetic field is formed around the double-force sword (4) as shown by the dashed-dotted line arrow in the same figure. This is the point. Note that αη in FIG. 3 is a holder for the double-handed sword (4).

このとき、両力ソード(4)は両アノード(5)よりも
若干小なる寸法に形成しておく。
At this time, the two-power sword (4) is formed to have a slightly smaller dimension than both the anodes (5).

したがって、前記実施例によると、両力ソード(4)間
に配設した各ワイヤaOへの通電により、両力ソード(
4)2両アノード(5)それぞれの近傍におけるカソー
ド(4)、アノード(5)に平行な方向の磁界強度が垂
直な方向の磁界強度よυ大きくなる磁界を、一方のカソ
ード(4)、アノード(5)間および他方のカソード(
4)、アノード(5)間に形成することができ、前記し
た実施例1と同様の効果を得ることができるほか、2枚
の基板(6)上に同時に薄膜を形成することができる。
Therefore, according to the above embodiment, by energizing each wire aO disposed between the double power swords (4), the double power swords (4) are energized.
4) Two anodes (5) A magnetic field in which the magnetic field strength in the direction parallel to the cathode (4) and the anode (5) is larger than the magnetic field strength in the perpendicular direction near each of the cathode (4) and the anode (5) between and the other cathode (
4), it can be formed between the anodes (5), and not only can the same effects as in Example 1 described above be obtained, but also thin films can be formed on two substrates (6) at the same time.

なお、基板(6)上に形成する薄膜は、半導体薄膜に限
らず、絶縁体薄膜であってもよい。
Note that the thin film formed on the substrate (6) is not limited to a semiconductor thin film, but may be an insulating thin film.

〔発明の効果〕〔Effect of the invention〕

以上のように、本発明の薄膜形成方法によると、カソー
ド、アノードそれぞれの近傍におけるカソード、アノー
ドに平行な方向の磁界強度が垂直な方向の磁界強度より
大きくなる磁界を、カソード。
As described above, according to the thin film forming method of the present invention, a magnetic field in which the magnetic field intensity in the direction parallel to the cathode and the anode is larger than the magnetic field intensity in the perpendicular direction near the cathode and the anode, respectively, is applied to the cathode.

アノード間に形成するため、従来のようにアノードだけ
でなく、カソードへの電子の拡散をも抑制することがで
き、電子密度の増大を図ることができ、反応ガスのプラ
ズマを効率よく閉じ込めてプラズマの高密度化を図シ、
成膜種密度を増大させて成膜速度を従来よりもさらに向
上することができる。
Since it is formed between the anodes, it is possible to suppress the diffusion of electrons not only to the anode but also to the cathode as in the past, increasing the electron density, and efficiently confining the plasma of the reaction gas. Figure out the densification of
By increasing the density of film-forming species, the film-forming speed can be further improved compared to the conventional method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第3図は本発明の薄膜形成方法の実施例を
示し、第1図は実施例1の一部切断正面図、第2図(a
)〜(C)は第1図の動作説明図、第3図は実施例2の
一部切断正面図、第4図および第5図はそれぞれ従来例
の正面図および一部切断正面図である。 (1)・・・反応チャンバ、(4)・・・カソード、(
5)・・・アノード、(6)・・・基板、(7)・・・
高周波電源。
1 to 3 show examples of the thin film forming method of the present invention, FIG. 1 is a partially cutaway front view of Example 1, and FIG.
) to (C) are operation explanatory diagrams of FIG. 1, FIG. 3 is a partially cutaway front view of the second embodiment, and FIGS. 4 and 5 are a front view and partially cutaway front view of the conventional example, respectively. . (1)...Reaction chamber, (4)...Cathode, (
5)... Anode, (6)... Substrate, (7)...
High frequency power supply.

Claims (1)

【特許請求の範囲】[Claims] (1)反応ガスが供給された反応チャンバ内にカソード
およびアノードを平行に配設し、 前記アノードに薄膜形成用基板を取り付け、前記カソー
ド、アノードに高周波電源による高周波電圧を印加して
前記反応ガスをプラズマ化し、前記基板上にプラズマ化
した前記反応ガス成分からなる薄膜を形成する薄膜形成
方法において、前記カソード、アノード間に、前記カソ
ード、アノードそれぞれの近傍における前記カソード、
アノードに平行な方向の磁界強度が垂直な方向の磁界強
度より大きくなる磁界を形成したことを特徴とする薄膜
形成方法。
(1) A cathode and an anode are arranged in parallel in a reaction chamber supplied with a reaction gas, a thin film forming substrate is attached to the anode, and a high frequency voltage from a high frequency power source is applied to the cathode and anode to remove the reaction gas. In the thin film forming method of forming a thin film on the substrate made of the reactive gas component which has been turned into plasma, the cathode is placed between the cathode and the anode and in the vicinity of each of the cathode and the anode;
A method for forming a thin film, characterized in that a magnetic field is formed in which the magnetic field strength in the direction parallel to the anode is greater than the magnetic field strength in the perpendicular direction.
JP63011702A 1988-01-20 1988-01-20 Thin film formation method Expired - Fee Related JP2678277B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63011702A JP2678277B2 (en) 1988-01-20 1988-01-20 Thin film formation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63011702A JP2678277B2 (en) 1988-01-20 1988-01-20 Thin film formation method

Publications (2)

Publication Number Publication Date
JPH01185915A true JPH01185915A (en) 1989-07-25
JP2678277B2 JP2678277B2 (en) 1997-11-17

Family

ID=11785377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63011702A Expired - Fee Related JP2678277B2 (en) 1988-01-20 1988-01-20 Thin film formation method

Country Status (1)

Country Link
JP (1) JP2678277B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59187136U (en) * 1983-05-30 1984-12-12 三洋電機株式会社 Semiconductor thin film forming equipment

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59187136U (en) * 1983-05-30 1984-12-12 三洋電機株式会社 Semiconductor thin film forming equipment

Also Published As

Publication number Publication date
JP2678277B2 (en) 1997-11-17

Similar Documents

Publication Publication Date Title
US4599135A (en) Thin film deposition
JPH0635323B2 (en) Surface treatment method
US20100255667A1 (en) Substrate cleaning method for removing oxide film
JP2000068227A (en) Method for processing surface and device thereof
JPH01185915A (en) Formation of thin film
JP2626339B2 (en) Thin film forming equipment
JP3420960B2 (en) Electronic device manufacturing apparatus and electronic device manufacturing method
JPH09263948A (en) Formation of thin film by using plasma, thin film producing apparatus, etching method and etching device
CN116536650B (en) Film growth interface optimization method for film growth optimization
JPH0614478Y2 (en) Thin film forming equipment
JP2661906B2 (en) Plasma processing equipment
JPH0758083A (en) Semiconductor manufacturing apparatus
JPS6039822A (en) Thin film forming device
JPH06330305A (en) Film forming method by sputtering
KR102617710B1 (en) Substrate treatment apparatus
JPH01188678A (en) Plasma vapor growth apparatus
JPS6348817A (en) Epitaxial growth method
JPS62131513A (en) Multichamber isolation type plasma cvd device
JPS62286227A (en) Dry etching apparatus
JP3095565B2 (en) Plasma chemical vapor deposition equipment
JP2732294B2 (en) Thin film formation method
JPS619577A (en) Plasma chemical vapor phase growing method
JPS6277465A (en) Formation of amorphous silicon film
JPS6350477A (en) Formation of thin film device
JPH01243359A (en) Plasma doping

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

LAPS Cancellation because of no payment of annual fees