JPS6350477A - Formation of thin film device - Google Patents

Formation of thin film device

Info

Publication number
JPS6350477A
JPS6350477A JP19344786A JP19344786A JPS6350477A JP S6350477 A JPS6350477 A JP S6350477A JP 19344786 A JP19344786 A JP 19344786A JP 19344786 A JP19344786 A JP 19344786A JP S6350477 A JPS6350477 A JP S6350477A
Authority
JP
Japan
Prior art keywords
magnetic field
thin film
power density
film device
gas pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19344786A
Other languages
Japanese (ja)
Inventor
Takashi Kato
隆 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP19344786A priority Critical patent/JPS6350477A/en
Priority to DE8787111993T priority patent/DE3783405T2/en
Priority to EP87111993A priority patent/EP0256557B1/en
Priority to KR1019870009034A priority patent/KR900006486B1/en
Publication of JPS6350477A publication Critical patent/JPS6350477A/en
Priority to US07/740,872 priority patent/US5148259A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To form the title high-quality thin film device by setting the value of (magnetic field intensity)X(RF power density)/(gas density) in a specified range proportional to the activation energy of a deposition reaction to stably control the film thickness. CONSTITUTION:Gaseous Al(CH3)3 diluted with H2 is introduced from a shower nozzle 14 into an evacuated chamber 10, the material is decomposed by the plasma generated through an RF oscillation power source 12 and the RF power and magnetic field of a magnet 15, and an Al thin film is formed on the surface of an Si wafer 11 heated to a specified temp. by a heater 13. In the formation of the CVD thin film device of the above-mentioned structure, the value of (magnetic field intensity)X(RF power density)/(gas pressure) is set in a specified range proportional to the activation energy of a decomposition reaction. In this case, the RF power density is appropriately controlled to 0.5-2.0W/cm<2>, the gas pressure to 1-5Torr, the magnetic field intensity to 200-1,500G, and the (magnetic field intensity)X(RF power density)/(gas pressure) to 20-3,000G.W /cm<2>.Torr.

Description

【発明の詳細な説明】 〔概要〕 本発明は薄膜装置の形成方法において、CVD法による
磁界強度とRFパワー密度との関係が明らかにされてい
ないことによって膜厚を安定に形成し得ない従来方法の
問題点を解決するため、(磁界強度)x(RFパワー密
度)/(ガス圧力)の値を堆積反応の活性化エネルギに
比例した一定範囲に設定することにより、 膜厚を安定に制御し得、高品質の薄膜装置を形成するよ
うにしたものである。
[Detailed Description of the Invention] [Summary] The present invention is a method for forming a thin film device, which is a method for forming a thin film device. In order to solve the problems with this method, we stably control the film thickness by setting the value of (magnetic field strength) x (RF power density) / (gas pressure) within a certain range proportional to the activation energy of the deposition reaction. Therefore, it is possible to form a high quality thin film device.

(産業上の利用分野〕 本発明は薄膜装置の形成方法、特に、磁界を印加された
プラズマを用いてプラズマCVD法による薄膜装置の形
成方法に関する。
(Industrial Application Field) The present invention relates to a method for forming a thin film device, and particularly to a method for forming a thin film device by plasma CVD using plasma to which a magnetic field is applied.

〔従来の技術〕[Conventional technology]

薄膜装置において、配線膜となる7IJ膜を形成する方
法として、磁界を加えたプラズマを用いてエツチングす
る例が従来知られている。この場合、ガス圧力が低いの
で電子の平均自由行程が十分長くなり、これにより、小
さい磁界を用いても効果があった。
In a thin film device, etching using plasma to which a magnetic field is applied has been known as a method for forming a 7IJ film serving as a wiring film. In this case, because the gas pressure was low, the mean free path of the electrons was long enough, so that even a small magnetic field could be used effectively.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

然るに、CVD法においてはガス圧力が高く、電子運動
は磁界とパワーに大きく依存し、従来、磁界とパワーと
の関係が明らかにされていない。
However, in the CVD method, the gas pressure is high and the electron motion largely depends on the magnetic field and power, and the relationship between the magnetic field and power has not been clarified to date.

この結果、従来のCVD法においては1g!厚を安定に
制御して形成し得ず、高品質の薄膜装置を形成し1qな
い問題点があった。
As a result, in the conventional CVD method, 1g! There was a problem in that the thickness could not be stably controlled and a high quality thin film device could not be formed.

〔問題点を解決するための手段〕[Means for solving problems]

磁界を印加されたプラズマを用いたプラズマCVD法に
よって薄膜を形成するに際し、(磁界強度)X(RFパ
ワー密度)/(ガス圧力)の値を堆積反応の活性化エネ
ルギに比例した一定節囲に設定する。
When forming a thin film by the plasma CVD method using plasma to which a magnetic field is applied, the value of (magnetic field strength) x (RF power density) / (gas pressure) is set to a constant range proportional to the activation energy of the deposition reaction. Set.

〔作用〕[Effect]

上記式中、磁界強度を200G〜/1500G、 RF
パワー密度を0.5W / cts 2〜2.0W/C
lR2,ガス圧力を1Torr〜5Torrにし、上記
式の値を20〜3000G−W/Cm2 ・TOrrに
すルコとニヨリ、膜厚を安定に制御し得る。
In the above formula, magnetic field strength is 200G~/1500G, RF
Power density 0.5W/cts 2~2.0W/C
By setting the gas pressure to 1 Torr to 5 Torr and setting the value of the above formula to 20 to 3000 GW/Cm2 .Torr, the film thickness can be stably controlled.

〔実施例〕〔Example〕

第2図はプラズマ中の電子運動を示した図であり、同図
(A)は磁界を印加しない場合、同図(B)は磁界を印
加した場合である。同図(A)において、磁界を加えな
い場合、プラズマ中の電子eは電界Eと逆方向に粒子A
と衝突しながら移動する。
FIG. 2 is a diagram showing electron movement in plasma, where (A) shows the case where no magnetic field is applied, and (B) shows the case where a magnetic field is applied. In the same figure (A), when no magnetic field is applied, electrons e in the plasma move toward particles A in the opposite direction to the electric field E.
move while colliding with

これに対して磁界を加えた場合、同図(B)に示す如く
、電子eは、re  (ラーマ半径)=3.4X (E
■/B)<a+)の式で示される円運動を行なって曲げ
られる。ここに、Bは磁界強度(ガウス)、■は電子エ
ネルギ(eV)である。このため、電子の走行距離λe
が長くなり、これにより、粒子Aとの衝突が多くなって
ガス粒子はより多く励起され、結果的に、反応が促進さ
れることになる。
When a magnetic field is applied to this, as shown in the same figure (B), the electron e becomes re (Rama radius) = 3.4X (E
(2)/B)<a+) It is bent by performing a circular motion expressed by the equation. Here, B is the magnetic field strength (Gauss), and ■ is the electron energy (eV). Therefore, the electron travel distance λe
becomes longer, thereby increasing the number of collisions with particles A, thereby exciting more gas particles, and as a result, the reaction is promoted.

従来のエツチングでは、ガス圧力が104Torrと低
いためにλe >reの条件が満足され、圧力。
In conventional etching, the gas pressure is as low as 104 Torr, so the condition of λe >re is satisfied, and the pressure is low.

パワー、ソースガス聞依存性に特異性が見られなかった
No specificity was observed in power and source gas dependence.

そこで、本出願人は、プラズマCVD法に磁界を印加す
る場合、ガス圧力が0.5〜5Torrと高いことによ
るガス圧力、RFパワー、磁界強度に一定の条件がある
ことを見出した。
Therefore, the present applicant has found that when applying a magnetic field in plasma CVD, there are certain conditions regarding the gas pressure, RF power, and magnetic field strength due to the gas pressure being as high as 0.5 to 5 Torr.

第1図は本発明方法による膜形成を説明する図を示す。FIG. 1 shows a diagram illustrating film formation by the method of the present invention.

このものは、磁界を加えたプラズマCVD法であるので
、MP−CVD法と称す。同図に示す如く、真空とされ
た平行平板型プラズマチャンバ10内に3iウエハ11
を貯ぎ、13.56 MHzのRF発振電源12及び3
iウエハ11下方のチャンバ10外部にヒータ13及び
マグネット15を設置する。マグネッ1−15によって
磁界を印加し、かつ、有機金属のトリメデルAe (A
2(CI−13) 3 )  (TMA)ガスを水素ガ
スで希釈し、上部電極のシャワー状ノズル14からチャ
ンバ10内に導入する。この場合、トリメチルAeは融
点(15℃)以下の5℃程度に冷却して用いる。
Since this method is a plasma CVD method in which a magnetic field is applied, it is called an MP-CVD method. As shown in the figure, a 3i wafer 11 is placed in a parallel plate plasma chamber 10 that is evacuated.
13.56 MHz RF oscillation power supplies 12 and 3
A heater 13 and a magnet 15 are installed outside the chamber 10 below the i-wafer 11. A magnetic field is applied by magnet 1-15, and an organic metal trimedel Ae (A
2 (CI-13) 3) (TMA) gas is diluted with hydrogen gas and introduced into the chamber 10 from the shower-like nozzle 14 of the upper electrode. In this case, trimethyl Ae is used after being cooled to about 5° C. below its melting point (15° C.).

第3図は第1図中S;ウェハ11上での磁界強度分布図
であり、水平方向成分と垂直方向成分とに分けて描いで
ある。ここで、磁界によるプラズマ中の電子eの運動は
ヘリカル運動(第4図(A))及びサイクロイド運動く
同図(B))の2種に大別サレ、ヘリカル運動は垂直磁
界にまつわりつく運動で、サイクロイド運動は水平磁界
によって曲げられた電子が陰極にはね返され乍らドリフ
トする運動である。ループ状に印加された磁界では第3
図に示す磁界分布となるので、Siウェハ11の中心線
上ではサイクロイド運動、その左右周辺ではヘリカル運
動が主体となる。
FIG. 3 is a magnetic field strength distribution diagram on the wafer 11 shown at S in FIG. 1, and is drawn divided into a horizontal component and a vertical component. Here, the motion of electrons in the plasma due to the magnetic field can be roughly divided into two types: helical motion (Figure 4 (A)) and cycloid motion (Figure 4 (B)). Helical motion is a motion related to a perpendicular magnetic field. , cycloidal motion is a motion in which electrons are bent by a horizontal magnetic field and drift while being bounced off the cathode. In a magnetic field applied in a loop, the third
Since the magnetic field distribution is as shown in the figure, cycloidal motion is dominant on the center line of the Si wafer 11, and helical motion is dominant on the left and right peripheries thereof.

第5図はウェハ中心からの距離対A2膜厚特性図を示す
。同図より明らかな如く、RFパワー密度が低下すると
S1ウ工ハ中心部での堆積速度が低下するが、これは、
RFパワー低下によってサイクロイド運動の半径が大に
なり、磁界の影響がなくなるためである。
FIG. 5 shows a characteristic diagram of A2 film thickness versus distance from the wafer center. As is clear from the figure, as the RF power density decreases, the deposition rate at the center of the S1 wafer decreases;
This is because the radius of the cycloidal motion becomes larger due to the decrease in RF power, and the influence of the magnetic field disappears.

1.0W/α2のRFパワー密度においては、サイクロ
イド運動及びヘリカル運動が堆積反応に与える影響が同
じになり、均一な膜が形成される。
At an RF power density of 1.0 W/α2, the effects of cycloidal motion and helical motion on the deposition reaction are the same, and a uniform film is formed.

更に、RFパワー密度を上げる(例えば1.3W/cm
”)と今度はサイクロイド運動が主体になるので、ウェ
ハ中心部においては反応が促進されてSiウェハ中心部
だけが堆積速度が速くなる。結局、均一な膜を得るには
一定範囲のRFパワー密度にする必要がある。第6図は
RFパワー密度対堆積速度特性図を示す。高RFパワー
密度領域で堆積速度が減衰するのは磁界を印加する本発
明の特徴である。RFパワー密度の有効範囲は0,5W
/era2〜2.0W/cM2にする必要があり、T 
M Aを用いたA2膜の堆積においての最適値は1.O
W/α2〜1.5W/u2である。
Furthermore, increase the RF power density (e.g. 1.3W/cm
”) and this time, the cycloidal motion becomes dominant, so the reaction is promoted in the center of the wafer, and the deposition rate becomes faster only in the center of the Si wafer.In the end, in order to obtain a uniform film, a certain range of RF power density is required. Figure 6 shows a characteristic diagram of RF power density vs. deposition rate.The fact that the deposition rate attenuates in the high RF power density region is a feature of the present invention in which a magnetic field is applied.The effectiveness of RF power density Range is 0.5W
/era2~2.0W/cM2, T
The optimum value for A2 film deposition using MA is 1. O
W/α2 to 1.5 W/u2.

第7図はTMAキャリアガス流吊対堆積速度特性図を示
す。この場合の条件は、ソースガスとしてTMAを用い
、希釈Hzffiは1.52/min 、 RFパワー
密度は1W/12、磁界は780ガウス、圧力は2.3
T orrである。TMAソースガス15m[/sin
以上で堆積速度がSiウェハ中心部で下がるのは、TM
Aの分子が巨大なためにサイクロイド運動の電子の平均
自由行程が減少してソースガスの励起が完全でなくなる
ためと考えられる。
FIG. 7 shows a TMA carrier gas flow versus deposition rate characteristic diagram. The conditions in this case are: TMA is used as the source gas, dilution Hzffi is 1.52/min, RF power density is 1 W/12, magnetic field is 780 Gauss, and pressure is 2.3.
It is Torr. TMA source gas 15m[/sin
The reason why the deposition rate decreases at the center of the Si wafer is because of the TM
This is thought to be because the mean free path of electrons in cycloidal motion decreases because the molecules of A are huge, and the excitation of the source gas becomes incomplete.

つまり、磁界の効果を出すには、ソースガス中の電子の
平均自由行程λeとラーマ半径reを同程度にするため
にRFパワー又は磁界を強くしなければならない。
That is, in order to produce the effect of the magnetic field, the RF power or magnetic field must be strengthened in order to make the mean free path λe of electrons in the source gas and the Rahma radius re comparable.

第8図はウェハに加える磁界による磁束を示す図で、ル
ープ磁界を印加するいわゆるプレーナマグネトロンを用
いる。同図に示すように、ループ状磁束30に垂直方向
からソースガス31を導入し、磁束がウェハ11を責か
ないでウェハ11表面にループ状に分布し、更に、ガス
が導入されるシャワー状ノズル(図示せず)に近付くに
従って磁界が弱まるように設定することが重要である。
FIG. 8 is a diagram showing the magnetic flux due to the magnetic field applied to the wafer, using a so-called planar magnetron that applies a loop magnetic field. As shown in the figure, a source gas 31 is introduced from a direction perpendicular to the loop-shaped magnetic flux 30, and the magnetic flux is distributed in a loop shape on the surface of the wafer 11 without affecting the wafer 11. Furthermore, a shower-shaped nozzle is used to introduce the gas. It is important to set the magnetic field so that it weakens as it approaches (not shown).

このようにすれば、ウェハ11表面でサイクロイド運動
だけによって励起されたガスがウェハ11表面近傍で最
終的な堆積反応を生じることになる(表面反応による堆
積を主体とすれば段差部でのカバレージが良い)。又、
ループ状磁界がノズルに近付くに従って弱くなれば、電
子のサイクロイド運動によってソースガスを弱く励起す
ることが可能となり、反応の前段厖を形成して最終反応
を促進する。
In this way, the gas excited only by the cycloid motion on the surface of the wafer 11 will cause a final deposition reaction near the surface of the wafer 11 (if the deposition is mainly due to the surface reaction, the coverage at the stepped portion will be reduced). good). or,
If the loop magnetic field becomes weaker as it approaches the nozzle, it becomes possible to weakly excite the source gas due to the cycloidal movement of electrons, forming a pre-reaction chamber and promoting the final reaction.

第9図はRFパワー密度対堆積速度特性図を示す。圧力
を上げるとガス中の電子平均自由行程が減少するので、
磁界強度及びRFパワーを高くしないとガスの解離反応
を促進し得ない。同図より明らかな如く、磁界を一定に
した場合、圧力を増加させた分だけRFパワーを増加さ
せなければならないことがわかる。
FIG. 9 shows an RF power density versus deposition rate characteristic diagram. As the pressure increases, the electron mean free path in the gas decreases, so
The gas dissociation reaction cannot be promoted unless the magnetic field strength and RF power are increased. As is clear from the figure, when the magnetic field is kept constant, the RF power must be increased by the amount that the pressure is increased.

結論として、膜厚堆積反応が起る活性化エネルギ以上に
ガス分子を励起してやらなければならないので、ガス圧
力に応じて磁界又はRFパワー密度を一定値以上にして
やらなければならないことがわかる。つまり、(In磁
界強度X(RFパワー密度)/(ガス圧力)の値が堆積
反応の活性化エネルギに比例した一定範囲になるように
設定することが必要である。具体的には、RFパワー密
度が0.5W/cj12〜2.OW/cM2、ガス圧力
が1TOrr〜5TOr「、磁界強度が200G〜15
00Gであり、上記式の値が20〜3000G−W/c
m2・Torrになる。特に、第10図に示す如く、磁
界強度を200G以上にすると比抵抗が20(μΩ−c
m )と低くなる。
In conclusion, it is understood that the gas molecules must be excited to a level higher than the activation energy that causes the film thickness deposition reaction, and therefore the magnetic field or RF power density must be set above a certain value in accordance with the gas pressure. In other words, it is necessary to set the value of (In magnetic field strength Density is 0.5W/cj12~2.OW/cM2, gas pressure is 1TOrr~5TORr, magnetic field strength is 200G~15
00G, and the value of the above formula is 20 to 3000G-W/c
It becomes m2・Torr. In particular, as shown in Figure 10, when the magnetic field strength is increased to 200G or more, the specific resistance decreases to 20 (μΩ-c
m).

このような条件を以てプラズマCVD法を施すと、薄膜
の膜厚を安定に制御し得、高品質の薄膜装置を形成し得
る。
When the plasma CVD method is performed under such conditions, the thickness of the thin film can be stably controlled and a high quality thin film device can be formed.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、(磁界強度)X(RFパワー密度)/
(ガス圧力)の値を一定値以上に設定してプラズマCV
D法を行なっているので、これら磁界強度、RFパワー
密度、ガス圧力等の諸条件の間の関係を無視していた従
来の方法に比して薄膜の膜厚を安定に制御し得、これに
より高品質の薄膜装置を得ることができる等の特長を有
する。
According to the present invention, (magnetic field strength) x (RF power density)/
Plasma CV by setting the value of (gas pressure) above a certain value
Since the D method is used, the thickness of the thin film can be controlled stably compared to conventional methods that ignore the relationships among various conditions such as magnetic field strength, RF power density, and gas pressure. This method has the advantage that a high quality thin film device can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はMP−CVD法による膜形成を説明する図、 第2図はプラズマ中の電子の運動を説明する図、第3図
は3iウエハ上での磁界強度分布図、第4図は電子の運
動の種類を示す図、 第5図はウェハ中心からの距離対A之膜厚特性図、 第6図はRFパワ一方度対堆積速度特性図、第7図はT
 M Aキャリアガス流量対j「積速度特性図、 第8図はウェハに加える磁界による磁束を示す図、 第9図はRFパワー密度対堆積速度特性図、第10図は
磁界強度と比抵抗特性図である。 図中において、 10はチャンバ、 11はSiウェハ、 12はRF発振電源、 13はヒータ、 14はシャワー状ノズル、 15はマグネット、 30はループ状磁束、 31はソースガス、 eは電子、 Aは粒子、 λBは電子の平均自由行程、 reはラーマ半径である。 MP−CVD喰+:kslll[lcE談洲すル園mt
図 (A)                (B)T5ス
゛71りの電子めjヒ1テ、1青rす巧コ第2図 第3図 第4図 ←賀γ七捉 i C
Figure 1 is a diagram explaining film formation by MP-CVD method, Figure 2 is a diagram explaining the movement of electrons in plasma, Figure 3 is a magnetic field strength distribution diagram on a 3i wafer, and Figure 4 is a diagram of electron Figure 5 is a characteristic diagram of film thickness of A versus distance from the wafer center; Figure 6 is a characteristic diagram of RF power degree versus deposition rate; Figure 7 is a characteristic diagram of film thickness of A versus distance from the wafer center;
M A carrier gas flow rate vs. stacking velocity characteristic diagram, Figure 8 is a diagram showing the magnetic flux due to the magnetic field applied to the wafer, Figure 9 is an RF power density vs. deposition rate characteristic diagram, and Figure 10 is magnetic field strength and resistivity characteristics. In the figure, 10 is a chamber, 11 is a Si wafer, 12 is an RF oscillation power supply, 13 is a heater, 14 is a shower nozzle, 15 is a magnet, 30 is a loop-shaped magnetic flux, 31 is a source gas, and e is electron, A is the particle, λB is the mean free path of the electron, and re is the Rama radius.
Figures (A) (B) T5 71 electronic target, 1 blue r, 2 Figure 3 Figure 4 ← Gamma 7 capture i C

Claims (5)

【特許請求の範囲】[Claims] (1)磁界を印加されたプラズマを用いたプラズマCV
D法によって薄膜を形成する薄膜装置の形成方法におい
て、 (磁界強度)×(RFパワー密度)/(ガス圧力)の値
を堆積反応の活性化エネルギに比例した一定範囲に設定
したことを特徴とする薄膜装置の形成方法。
(1) Plasma CV using plasma to which a magnetic field is applied
A method for forming a thin film device in which a thin film is formed by method D is characterized in that the value of (magnetic field strength) x (RF power density)/(gas pressure) is set within a certain range proportional to the activation energy of the deposition reaction. A method for forming a thin film device.
(2)磁界なしの場合のプラズマ中の電子(e)の平均
自由行程(λe)が磁界印加による電子(e)のラーマ
半径(re)と同程度になるように、該RFパワー密度
、ガス圧力、磁界強度を一定範囲に設定したことを特徴
とする特許請求の範囲第1項記載の薄膜装置の形成方法
(2) The RF power density, gas 2. The method of forming a thin film device according to claim 1, wherein the pressure and magnetic field strength are set within a certain range.
(3)該RFパワー密度が0.5W/cm^2〜2.0
W/cm^2、ガス圧力が1Torr〜5Torr、磁
界強度が200G〜1500Gであることを特徴とする
特許請求の範囲第2項記載の薄膜装置の形成方法。
(3) The RF power density is 0.5W/cm^2~2.0
3. The method of forming a thin film device according to claim 2, wherein the gas pressure is 1 Torr to 5 Torr, and the magnetic field strength is 200 G to 1500 G.
(4)該(磁界強度)×(RFパワー密度)/(ガス圧
力)の値が20〜3000G・W/cm^2・Torr
の範囲にあることを特徴とする特許請求の範囲第1項記
載の薄膜装置の形成方法。
(4) The value of (magnetic field strength) x (RF power density) / (gas pressure) is 20 to 3000 G・W/cm^2・Torr
A method for forming a thin film device according to claim 1, characterized in that the method falls within the range of:
(5)磁界を印加する方法としてループ磁界をウェハに
印加するプレーナマグネトロンを用い、ループ磁束が該
ウェハを貫かずに該ウェハ表面にループ状に分布するよ
うに磁界を印加することを特徴とする特許請求の範囲第
1項乃至第4項のうちいずれか一項記載の薄膜装置の形
成方法。
(5) As a method of applying a magnetic field, a planar magnetron that applies a loop magnetic field to the wafer is used, and the magnetic field is applied so that the loop magnetic flux does not penetrate the wafer but is distributed in a loop shape on the wafer surface. A method for forming a thin film device according to any one of claims 1 to 4.
JP19344786A 1986-08-19 1986-08-19 Formation of thin film device Pending JPS6350477A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP19344786A JPS6350477A (en) 1986-08-19 1986-08-19 Formation of thin film device
DE8787111993T DE3783405T2 (en) 1986-08-19 1987-08-18 SEMICONDUCTOR ARRANGEMENT WITH A THICK LAYER WIRING AND METHOD FOR PRODUCING THE SAME.
EP87111993A EP0256557B1 (en) 1986-08-19 1987-08-18 Semiconductor device having thin film wiring layer and method of forming thin wiring layer
KR1019870009034A KR900006486B1 (en) 1986-08-19 1987-08-19 Semiconductor device having thin film layer and method of forming thin wiring layer
US07/740,872 US5148259A (en) 1986-08-19 1991-07-31 Semiconductor device having thin film wiring layer of aluminum containing carbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19344786A JPS6350477A (en) 1986-08-19 1986-08-19 Formation of thin film device

Publications (1)

Publication Number Publication Date
JPS6350477A true JPS6350477A (en) 1988-03-03

Family

ID=16308144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19344786A Pending JPS6350477A (en) 1986-08-19 1986-08-19 Formation of thin film device

Country Status (1)

Country Link
JP (1) JPS6350477A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH046834A (en) * 1990-04-25 1992-01-10 Casio Comput Co Ltd Manufacture of silicon nitride film
WO1998033362A1 (en) * 1997-01-29 1998-07-30 Tadahiro Ohmi Plasma device
KR20030069704A (en) * 2002-02-22 2003-08-27 주식회사 아토 Process chamber for semiconductor chip

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5778941A (en) * 1980-11-04 1982-05-17 Matsushita Electric Ind Co Ltd Method and apparatus for plasma deposition

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5778941A (en) * 1980-11-04 1982-05-17 Matsushita Electric Ind Co Ltd Method and apparatus for plasma deposition

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH046834A (en) * 1990-04-25 1992-01-10 Casio Comput Co Ltd Manufacture of silicon nitride film
WO1998033362A1 (en) * 1997-01-29 1998-07-30 Tadahiro Ohmi Plasma device
US6357385B1 (en) 1997-01-29 2002-03-19 Tadahiro Ohmi Plasma device
JP2008277306A (en) * 1997-01-29 2008-11-13 Foundation For Advancement Of International Science Plasma device
JP2009117373A (en) * 1997-01-29 2009-05-28 Foundation For Advancement Of International Science Plasma device
JP4356117B2 (en) * 1997-01-29 2009-11-04 財団法人国際科学振興財団 Plasma device
KR20030069704A (en) * 2002-02-22 2003-08-27 주식회사 아토 Process chamber for semiconductor chip

Similar Documents

Publication Publication Date Title
US11476109B2 (en) Method of forming an electronic structure using reforming gas, system for performing the method, and structure formed using the method
US4599135A (en) Thin film deposition
KR100228259B1 (en) Method for forming a thin film and semiconductor devices
US20060260750A1 (en) Plasma processing apparatuses and methods
JPH0672306B2 (en) Plasma processing apparatus and plasma processing method
JPH0668152B2 (en) Thin film forming equipment
JPH06506084A (en) High-density plasma deposition and etching equipment
JPH03287774A (en) Plasma treating device
JPH09312297A (en) Plasma annealing of thin film
EP1055249A1 (en) Plasma assisted processing chamber with separate control of species density
JPS6350477A (en) Formation of thin film device
JPH10134995A (en) Plasma processing device and processing method for plasma
JP2626339B2 (en) Thin film forming equipment
JP3093718B2 (en) Microwave introduction device and surface treatment method
JP3160194B2 (en) Plasma processing method and plasma processing apparatus
JP2000306894A (en) Method of plasma treatment of wafer
JPH0521983B2 (en)
JP3246780B2 (en) Method and apparatus for forming hard carbon film
JPS63301517A (en) Dry type thin film processor
JP2895981B2 (en) Silicon oxide film forming method
JPH03253574A (en) Formation of thin film and thin film forming device
JP2892347B2 (en) Thin film formation method
JPH01246367A (en) Formation of film and device therefor
JP2715277B2 (en) Thin film forming equipment
JP3362372B2 (en) Dry etching method