JPS63301517A - Dry type thin film processor - Google Patents

Dry type thin film processor

Info

Publication number
JPS63301517A
JPS63301517A JP12345487A JP12345487A JPS63301517A JP S63301517 A JPS63301517 A JP S63301517A JP 12345487 A JP12345487 A JP 12345487A JP 12345487 A JP12345487 A JP 12345487A JP S63301517 A JPS63301517 A JP S63301517A
Authority
JP
Japan
Prior art keywords
inner diameter
thin film
microwaves
mode
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12345487A
Other languages
Japanese (ja)
Other versions
JPH0620048B2 (en
Inventor
Yasuaki Nagao
長尾 泰明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP12345487A priority Critical patent/JPH0620048B2/en
Priority to GB8801392A priority patent/GB2203888B/en
Publication of JPS63301517A publication Critical patent/JPS63301517A/en
Publication of JPH0620048B2 publication Critical patent/JPH0620048B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32357Generation remote from the workpiece, e.g. down-stream

Abstract

PURPOSE:To accelerate the filming speed also accelerating the growing speed of thin film in proportion to the increase in the supplied microwave power by a method wherein the inner diameter of a cylindrical metallic vessel of a microwave resonator forming a plasma producing chamber is specified. CONSTITUTION:Within the title processor, a plasma producing chamber is formed into cylindrical shape with the central axis and the axial line of the flux of magnetic force coincided with each other while the inner diameter and the height of the cylinder are related so that the frequency may be set up to cause the resonance of TE113 made with the microwave of 2.45GHz also setting up the inner diameter of the cylinder within the range of 15.5-19.5cm or 21.5-25.5cm. Through these procedures, the speed of film formation can be increased, and the film formation speed is increased in proportion to the increase in the supplied microwave power.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明はマイクロ波と磁場との相互作用によってEc
R(を子サイクロトロン共鳴)プラズマを生成し、この
プラズマを拡散磁場効果によってプラズマ生成室から反
応室へ輸送し、このプラズマと反応室内へ直接送り込ま
れたモノシランなどの成膜原料ガスとの相互作用によっ
て生じた活性なイオンまたは活性種を用いて、半導体、
  IC(S積回路)、LSI  (大規模集積回路)
、感光体などの基板上に窒化シリコン、酸化シリコン。
[Detailed Description of the Invention] [Industrial Application Field] This invention provides Ec by the interaction between microwaves and a magnetic field.
R (resonant cyclotron resonance) plasma is generated, this plasma is transported from the plasma generation chamber to the reaction chamber by the diffusion magnetic field effect, and this plasma interacts with the film forming material gas such as monosilane that is directly sent into the reaction chamber. Using active ions or species generated by semiconductors,
IC (S product circuit), LSI (Large scale integrated circuit)
, silicon nitride, silicon oxide on substrates such as photoreceptors.

アモルファスシリコンなどの膜を形成するための乾式′
gt膜加工装置に関するものである。
Dry method for forming films such as amorphous silicon
This relates to gt film processing equipment.

〔従来の技術〕[Conventional technology]

ECRプラズマを用いたシリコン系膜は膜質が緻密であ
る。低ストレス膜が得られる。低温ブロセスが可能であ
る等の特長を有するため、これからの成膜技術として有
望視され、わが国においてさかんに成膜プロセスの研究
が行なわれるようになってきた。ECRとはE lec
、tron  CyclotronResonance
 (Tel子サイクロトロン共鳴)の略号であり、磁場
とマイクロ波との共鳴効果を用いて電子を加速し、この
電子の運動エネルギを用いてガスを電離せしめプラズマ
を得るものである。マイクロ波に励振された電子は磁力
線のまわりを円運動し、そのさい遠心力とローレンツ力
とがバランスする条件がECR条件と呼ばれる。遠心力
をmrω2.ローレンツ力を−q「ωBで表わすと、こ
れらがバランスする条件はω/B=q/mである。ここ
で、ωはマイクロ波の角速度、Bは磁束密度、q/mは
電子の比電荷である。マイクロ波周波数は工業用に認め
られている2、45G H、が一般に用いられ、その場
合、0.0875Tが共鳴磁束密度である。
A silicon-based film using ECR plasma has a dense film quality. A low stress film can be obtained. Because it has features such as the possibility of low-temperature processing, it is seen as a promising film-forming technology in the future, and research into the film-forming process has been actively conducted in Japan. What is ECR?
, tron Cyclotron Resonance
(Tel Cyclotron Resonance), which accelerates electrons using the resonance effect of a magnetic field and microwaves, and uses the kinetic energy of these electrons to ionize gas to obtain plasma. Electrons excited by microwaves move circularly around magnetic lines of force, and the condition in which centrifugal force and Lorentz force are balanced is called the ECR condition. The centrifugal force is mrω2. When the Lorentz force is expressed as -q "ωB, the condition for their balance is ω/B = q/m. Here, ω is the angular velocity of the microwave, B is the magnetic flux density, and q/m is the specific charge of the electron. The microwave frequency generally used is 2.45 GH, which is accepted for industrial use, and in that case, the resonant magnetic flux density is 0.0875 T.

ECRプラズマを応用した薄膜加工装置としてたとえば
第3図に示すものが知られている。この装置ではプラズ
マ生成室を形成するマイクロ波共振器の円筒状金属容器
3と反応室9とを真空排気しておき、ガス供給手段4か
ら目的とする成膜の種類に応じてN2.0□、H,、A
、等のキャリヤガス(プラズマ発生用ガス)を金属容器
3へ流したところへマイクロ波を導波管1.真空窓2を
介して金属容器3へ送り込む、金属容器3の下部には中
心に大口径の開口13を持った金属板7が取り付けられ
ており、この金属板と金属容器3とでマイクロ波共振器
を構成している。この共振器の外部にはソレノイド6が
配置され、共振器内にECR条件を満たす磁場が発生し
ているため、共振器内にECRプラズマが発生する。こ
のプラズマが反応室9に押し出され、試料台10へ向か
う空間内にガス人口12から原料ガス、例えばシランガ
ス5IHaを送りこんでこのガスを上記プラズマにより
活性化すると、発生した活性種が基板11と反応して基
板11の表面に、用いたキャリヤガスのft1gによっ
て異なるシリコン系の各種薄膜が形成される。
For example, the one shown in FIG. 3 is known as a thin film processing apparatus using ECR plasma. In this apparatus, the cylindrical metal container 3 of the microwave resonator forming the plasma generation chamber and the reaction chamber 9 are evacuated, and the gas supply means 4 is supplied with N2.0□ depending on the type of film formation intended. ,H,,A
A carrier gas (plasma generating gas) such as , etc. is flowed into the metal container 3 and the microwave is transmitted through the waveguide 1 . A metal plate 7 with a large-diameter opening 13 in the center is attached to the lower part of the metal container 3, which is fed into the metal container 3 through the vacuum window 2, and this metal plate and the metal container 3 generate microwave resonance. It makes up the vessel. A solenoid 6 is disposed outside the resonator, and a magnetic field that satisfies the ECR conditions is generated within the resonator, so that ECR plasma is generated within the resonator. This plasma is pushed out to the reaction chamber 9, and when a raw material gas, for example, silane gas 5IHa, is sent from the gas population 12 into the space facing the sample stage 10 and this gas is activated by the plasma, the generated active species react with the substrate 11. Various silicon-based thin films are then formed on the surface of the substrate 11, depending on the carrier gas ft1g used.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

このようなECR成膜装置において、反応速度すなわち
成膜速度をはじめ緒特性をきめるプラズマパラメタに決
定的影響を与えるのが、マイクロ波共振器を構成する金
属容器3およびソレノイド6の設計諸元である。
In such an ECR film forming apparatus, the design specifications of the metal container 3 and solenoid 6 that constitute the microwave resonator have a decisive influence on the plasma parameters that determine the initial characteristics, including the reaction rate, that is, the film forming rate. be.

本発明はこのうちマイクロ波共振器の設計に関するもの
であり、以下、この点にしぼって従来技術の問題点を説
明する。
The present invention relates to the design of a microwave resonator, and hereinafter, problems with the prior art will be explained focusing on this point.

プラズマ生成室内における電界強度を充分高めるため、
プラズマ生成室の金属容器は共振器となるように構成さ
れ、かつ種々の条件からこの容器を円筒状に形成すると
ともにこの容器内におけるマイクロ波の共振モードをT
E++iモードとすることが多く、この場合、円筒の内
径は、従来、20】が例外なく採用されてきたく昭和5
9年電気四学会連合大会;9−3ECRプラズマの薄膜
形成への応用;松属、木内参照)。
In order to sufficiently increase the electric field strength in the plasma generation chamber,
The metal container of the plasma generation chamber is configured to function as a resonator, and due to various conditions, the container is formed into a cylindrical shape and the resonant mode of microwaves within the container is set to T.
The E++i mode is often used, and in this case, the inner diameter of the cylinder has traditionally been 20] without exception.
9th Annual Conference of the Four Electrical Engineers of Japan; 9-3 Application of ECR plasma to thin film formation; see Gen Matsu and Kiuchi).

のちに詳しく述べるように、この設計寸法は、ECRプ
ラズマ生成用共振器としては問題があり、そのため、注
入したマイクロ波パワがプラズマ生成にフルに利用され
ず、従って成膜速度が低くかつマイクロ波パワを増して
も成膜速度があまり上がらない欠点を有していた。また
、この欠点自体一般には問題にされていなかった。
As will be discussed in more detail later, this design dimension is problematic for an ECR plasma generation resonator, as the injected microwave power is not fully utilized for plasma generation, resulting in low deposition rates and It had the disadvantage that even if the power was increased, the film formation rate did not increase much. Moreover, this shortcoming itself was not generally considered a problem.

この発明の目的は、前記従来の問題点に鑑み、共振器を
構成する円筒状金属容器の設計寸法を適切に設定して成
膜速度を大ならしめ、かつマイクロ波注入パワの増大に
つれて薄膜の成長速度を増大させうるECRプラズマ成
膜装置を提供することである。
In view of the above-mentioned conventional problems, an object of the present invention is to appropriately set the design dimensions of a cylindrical metal container constituting a resonator to increase the film formation rate, and to increase the film formation rate as the microwave injection power increases. An object of the present invention is to provide an ECR plasma film forming apparatus that can increase the growth rate.

〔問題点を解決するための手段〕[Means for solving problems]

マ・Cクロ波共振器理論によると次式が成立する。 According to the macrowave resonator theory, the following equation holds true.

マイクロ波の共振モードがTM、、1.モードの場合マ
イクロ波の共振モードがTE、、1.モードの場合ここ
でX。、、’l l  X (s n)はそれぞれヘノ
セル関数J、(X)=O5J、’(X)=Oのn番目の
根であり、fはマイクロ波の周波数、Dは円筒形空胴共
振器の内径、Cは光速、Lは円筒形空洞共振器の長さで
ある。またSは円筒形空胴共振器の両端面位置をノード
とする定在波の前記両端面間半波数である。そこで、マ
イクロ波の共振モードがTEII、モードの場合には、
(2)式から、となる。すなわち、TE113モードの
共振を発生させるためには、空胴共振器の内径と長さと
の間には(3)式に示す関係が満足されなければならな
い。
The microwave resonance mode is TM, 1. In the case of mode, the resonance mode of the microwave is TE, 1. For mode, press X here. , ,'l l The inner diameter of the vessel, C is the speed of light, and L is the length of the cylindrical cavity. Further, S is the half-wave number between the two end faces of a standing wave whose nodes are the positions of both end faces of the cylindrical cavity resonator. Therefore, if the resonance mode of the microwave is TEII mode,
From equation (2), it becomes. That is, in order to generate TE113 mode resonance, the relationship shown in equation (3) must be satisfied between the inner diameter and length of the cavity resonator.

この式からもわかるように、共振を発生させるための共
振器の内径りは、共振器の形状を与えるD/Lにより異
なり、D/Lの小さい、細長い共振器では内径が小さく
なり、D/Lの大きい共振器では内径が大きくなる。そ
こで、従来の共振器と同様に、D/L −1、f−2,
45X10qH,として内径りを求めると、 D−19,71 が得られる。従来はこの端数を切り上げてD−L−20
cmに設定していた。
As can be seen from this equation, the inner diameter of the resonator for generating resonance varies depending on the D/L that gives the shape of the resonator, and an elongated resonator with a small D/L has a small inner diameter, and the D/L is small. A resonator with a large L has a large inner diameter. Therefore, like the conventional resonator, D/L -1, f-2,
If the inner diameter is determined as 45×10qH, D-19,71 is obtained. Conventionally, this fraction was rounded up to D-L-20.
It was set to cm.

ところが、この寸法(D=20ci)には競合モードが
存在する。すなわち共振モードとしてT M z l。
However, a competition mode exists for this dimension (D=20ci). That is, T M z l as a resonance mode.

モードを考えると、(1)式の右辺は、2.672 X
 c2=2.4 XIO”一方、D=20cmの場合に
は、(1)式の左辺は、2.4 XIO” となり、T E + 13モードと同時にTM21゜モ
ードが励振されることになる。しかもTM□。モードの
場合には、T E + + sモードの場合のように、
共振器の内径として前述の19.7(Jが切り上げられ
た近似内径によって生じているものではなく、D=20
alにおいて(1)式を厳密に満足させているから、共
振の鋭さすなわちQ値が高く、入力されたマイクロ波パ
ワがこのモードの共振に影響され、しかも7Mモードは
ECRプラズマの生成には寄与しないことから、TEモ
ードによるプラズマ生成へのパワの配分が小さくなる。
Considering the mode, the right side of equation (1) is 2.672
c2 = 2.4 XIO'' On the other hand, when D = 20 cm, the left side of equation (1) becomes 2.4 XIO'', and the TM21° mode is excited simultaneously with the T E + 13 mode. Moreover, TM□. mode, as in the case of T E + + s mode,
The inner diameter of the resonator is 19.7 (not caused by the approximate inner diameter where J is rounded up, but D = 20
Since formula (1) is strictly satisfied in al, the sharpness of the resonance, that is, the Q value is high, and the input microwave power is affected by the resonance of this mode, and the 7M mode does not contribute to the generation of ECR plasma. Therefore, the distribution of power to plasma generation in the TE mode becomes smaller.

さらに、TE++*モードは、 D=15cnではT M + +。モードと、D=21
cmではT M t x I モードと、D=26cm
ではT M t + tモードと競合する。なお、前記
T M t +。、TM+Ioにおいては、s=Qであ
るが、これは共振器内の電磁界分布が長さ方向に均一で
あることを意味する。
Furthermore, the TE++* mode is T M + + at D=15cn. mode and D=21
In cm, T M t x I mode and D = 26 cm
This conflicts with the T M t + t mode. Note that the above T M t +. , TM+Io, s=Q, which means that the electromagnetic field distribution within the resonator is uniform in the length direction.

経験によると、端面に開口を有する円筒共振器では、±
0.5cmの範囲でDを調整しないと前記競合はさけら
れない。また競合を避けるため、Dをさらに小さくする
と、こんどは薄膜が形成される基板の直径も小さくせざ
るを得なくなり、実用上はD=15cmが下限である。
Experience has shown that for cylindrical resonators with openings at the end faces, ±
The above conflict cannot be avoided unless D is adjusted within a range of 0.5 cm. Furthermore, in order to avoid competition, if D is made smaller, the diameter of the substrate on which the thin film is formed must also be made smaller, and in practical terms, D=15 cm is the lower limit.

またソレノイドの現実的な大きさを考慮すると、磁場分
布の観点から実用上D=26ca+が上限である。従っ
て7Mモードの励振を避けなからTE++xモードの共
振を生じさせる円筒共振器の内径は、 D = 15.5〜19.5cinおよびD =21.
5cm〜25.5cmが望ましい仕上がり寸法となる。
Furthermore, considering the practical size of the solenoid, the practical upper limit is D=26ca+ from the viewpoint of magnetic field distribution. Therefore, the inner diameter of the cylindrical resonator that produces resonance in the TE++x mode while avoiding excitation in the 7M mode is D = 15.5 to 19.5 cin and D = 21.
Desirable finished dimensions are 5 cm to 25.5 cm.

〔作用〕[Effect]

以上のように、円筒共振器の内径を前述の範囲で設定す
るとともに、(2)式に従って円筒の長さを設定すれば
、7Mモードの励振をさけることができるから、共振器
内へ注入されたマイクロ波パワが有効にTE++ffモ
ードの形成に消費され、この結果、成膜速度が大きくな
るとともに、注入されるマイクロ波パワの増大につれて
薄膜の成長速度も比例的に増大する。
As described above, if the inner diameter of the cylindrical resonator is set within the above-mentioned range and the length of the cylinder is set according to equation (2), the excitation of the 7M mode can be avoided, so that the 7M mode cannot be injected into the resonator. The injected microwave power is effectively consumed in forming the TE++ff mode, which results in an increase in the deposition rate, and as the injected microwave power increases, the growth rate of the thin film also increases proportionally.

〔実施例〕〔Example〕

第1図に本発明に基づいて構成される乾式薄膜加工装置
の円筒共振器を構成する金属容器設計の一実施例を示す
。この実施例では円筒内径りの一方の範囲内で191に
設定され、この円筒部の長さヲ(31式に基づいて19
.8C1mに設定している。
FIG. 1 shows an embodiment of the design of a metal container constituting a cylindrical resonator of a dry thin film processing apparatus constructed based on the present invention. In this embodiment, the inner diameter of the cylinder is set to 191 within one range, and the length of this cylindrical portion is set to 191 (based on formula 31).
.. It is set to 8C1m.

このように設計された装置を用いて成膜を行なったとき
の成膜速度と注入さたマイクロ波パワとの関係を従来と
比較して第2図に示す1図は原料ガスとしてシランガス
(Sin、)を用い、キャリヤガスとしてN、を用いた
場合を示し、曲線(イ)が本実施例の装置によるもの、
曲線(ロ)が従来の装置によるものである。いずれの装
置においてもシランガスとN2の供給割合は同一とし、
それぞれ20” /−r、、、 30” / −t 、
、としている。
Figure 2 shows a comparison of the relationship between the deposition rate and the injected microwave power when depositing a film using an apparatus designed in this way with the conventional method. ), and N is used as the carrier gas, and curve (a) is the one obtained by the apparatus of this example
Curve (b) is the result of the conventional device. In both devices, the supply ratio of silane gas and N2 is the same,
20"/-r,, 30"/-t, respectively.
.

図にみられるように、従来の装置ではマイクロ波パワを
増大させても成膜速度は比例的に上昇せず、飽和傾向を
示すのに対し、本実施例の装置においては、金属容器の
設計寸法が厳密にTEI11モードの共振条件を満足し
ているため、成膜速度曲線の立上りも早く、かつ金属容
器の内径がTMモードの励振を許さない範囲内に設定さ
れているから、注入されたマイクロ波パワは有効にT 
E + + sモードの形成に消費され、注入パワの増
大とともに比例的に成膜速度が増大する。
As seen in the figure, in the conventional apparatus, even if the microwave power is increased, the film formation rate does not increase proportionally and tends to saturate, whereas in the apparatus of this example, the metal container design Since the dimensions strictly satisfy the resonance conditions of the TEI11 mode, the rise of the deposition rate curve is fast, and the inner diameter of the metal container is set within a range that does not allow excitation of the TM mode, so it is possible to inject. Microwave power is effective
It is consumed to form the E + + s mode, and the deposition rate increases proportionally as the injection power increases.

〔発明の効果〕〔Effect of the invention〕

以上に述べたように、本発明によれば、プラズマ生成室
を形成するマイクロ波共振器の円筒状金属容器の内径を
、プラズマ生成に寄与せずかつ注入されるマイクロ波パ
ワが増大してもこれに比例した成膜速度の上昇を妨げる
TMモードの共振が生じない範囲内に設定したので、注
入されたマイクロ波パワが、励磁ソレノイド6が生ずる
磁力線と直交する電界を有し、これによりプラズマ生成
に寄与するTEモードの形成に有効に消費され、成膜速
度が従来の装置に比して大きくなるとともに、注入され
るマイクロ波パワの増大とともに成膜速度が比例的に増
大するという大きな効果がある。
As described above, according to the present invention, the inner diameter of the cylindrical metal container of the microwave resonator forming the plasma generation chamber can be adjusted even if the injected microwave power increases without contributing to plasma generation. Since the setting is made within a range in which TM mode resonance that prevents a proportional increase in the film formation rate does not occur, the injected microwave power has an electric field orthogonal to the magnetic field lines generated by the excitation solenoid 6, and this causes the plasma It is effectively consumed in the formation of the TE mode that contributes to generation, and the film formation rate is higher than that of conventional equipment, and the film formation rate increases proportionally as the injected microwave power increases. There is.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はプラズマ生成室を構成する円筒状金属容器の寸
法設定に対する本発明の一実施例を示す乾式薄膜加工装
置の断面説明図、第2図は第1図の装置による成膜速度
と注入されたマイクロ波パワとの関係を従来装置の場合
と比較して示す線図、第3図は従来の装置における円筒
状金属容器の寸法を示す装置の断面説明図である。 1:導波管(マイクロ波伝達手段)、3:金属容器、4
:ガス供給手段、6:ソレノイド、9:反応室、11:
基板、13:開口。 真空基 第1図 第2図
Fig. 1 is a cross-sectional explanatory diagram of a dry thin film processing apparatus showing an embodiment of the present invention for setting dimensions of a cylindrical metal container constituting a plasma generation chamber, and Fig. 2 shows the film formation rate and injection by the apparatus shown in Fig. 1. FIG. 3 is a diagram illustrating the relationship between the microwave power and the microwave power obtained in comparison with that of a conventional device. FIG. 1: Waveguide (microwave transmission means), 3: Metal container, 4
: Gas supply means, 6: Solenoid, 9: Reaction chamber, 11:
Substrate, 13: opening. Vacuum base Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 1)マイクロ波を発生する手段と、このマイクロ波を伝
達する手段と、このマイクロ波伝達手段と結合されて前
記マイクロ波が導入されるとともにガス供給手段を介し
て送入されたガスをこのマイクロ波との共鳴効果により
プラズマ化して活性な原子、分子またはイオンを生ずる
磁力線を発生する励磁用ソレノイドを備え軸線が該ソレ
ノイドが生ずる磁力線束の中心軸とほぼ一致する開口を
前記マイクロ波伝達手段と対向する側に有するプラズマ
生成室と、このプラズマ生成室と前記開口を介して結合
され該開口から前記磁力線束に沿って流出する前記活性
な原子、分子またはイオンを用いて表面に薄膜が形成さ
れる基板が配される反応室とを備えた乾式薄膜加工装置
であって、前記プラズマ生成室が前記磁力線束の中心軸
と軸線が一致する円筒状に形成されかつ該円筒の内径と
高さの関係が周波数が2.45GHzのマイクロ波に対
しTE_1_1_3モードの共振を生ずるように設定さ
れるものにおいて、前記円筒の内径を15.5ないし1
9.5cmあるいは21.5ないし25.5cmの範囲
内に設定することを特徴とする乾式薄膜加工装置。
1) A means for generating microwaves, a means for transmitting the microwaves, and a means coupled to the microwave transmitting means to introduce the microwaves and to supply the gas supplied via the gas supply means to the microwaves. The microwave transmitting means includes an excitation solenoid that generates magnetic lines of force that turn into plasma and generate active atoms, molecules, or ions by a resonance effect with the waves, and an opening whose axis substantially coincides with the central axis of the flux of magnetic lines of force generated by the solenoid. A thin film is formed on the surface using a plasma generation chamber having opposite sides and the active atoms, molecules or ions coupled to the plasma generation chamber through the opening and flowing out from the opening along the magnetic flux. A dry thin film processing apparatus is provided with a reaction chamber in which a substrate is disposed, the plasma generation chamber being formed in a cylindrical shape whose axis coincides with the central axis of the magnetic flux, and having an inner diameter and a height of the cylinder. In the case where the relationship is set to produce TE_1_1_3 mode resonance for microwaves with a frequency of 2.45 GHz, the inner diameter of the cylinder is set to 15.5 to 1.
A dry thin film processing device characterized in that the thickness is set within a range of 9.5 cm or 21.5 to 25.5 cm.
JP12345487A 1987-01-30 1987-05-20 Dry thin film processing equipment Expired - Fee Related JPH0620048B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP12345487A JPH0620048B2 (en) 1987-01-30 1987-05-20 Dry thin film processing equipment
GB8801392A GB2203888B (en) 1987-01-30 1988-01-22 Unit for dry-processing thin film

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP62-20069 1987-01-30
JP2006987 1987-01-30
JP12345487A JPH0620048B2 (en) 1987-01-30 1987-05-20 Dry thin film processing equipment

Publications (2)

Publication Number Publication Date
JPS63301517A true JPS63301517A (en) 1988-12-08
JPH0620048B2 JPH0620048B2 (en) 1994-03-16

Family

ID=26356957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12345487A Expired - Fee Related JPH0620048B2 (en) 1987-01-30 1987-05-20 Dry thin film processing equipment

Country Status (2)

Country Link
JP (1) JPH0620048B2 (en)
GB (1) GB2203888B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02207529A (en) * 1989-02-07 1990-08-17 Fuji Electric Co Ltd Dry thin film processing equipment
CN104942487A (en) * 2015-07-02 2015-09-30 哈尔滨工业大学(威海) Underwater local dry-method welding device and method of titanium alloy and other materials

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2546405B2 (en) * 1990-03-12 1996-10-23 富士電機株式会社 Plasma processing apparatus and operating method thereof
KR930004713B1 (en) * 1990-06-18 1993-06-03 삼성전자 주식회사 Plasma exciting apparatus using modulation step and its method
FR2664294B1 (en) * 1990-07-06 1992-10-23 Plasmametal METHOD FOR METALLIZING A SURFACE.

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1159012A (en) * 1980-05-02 1983-12-20 Seitaro Matsuo Plasma deposition apparatus
JPS6130036A (en) * 1984-07-23 1986-02-12 Fujitsu Ltd Microwave plasma processing apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02207529A (en) * 1989-02-07 1990-08-17 Fuji Electric Co Ltd Dry thin film processing equipment
CN104942487A (en) * 2015-07-02 2015-09-30 哈尔滨工业大学(威海) Underwater local dry-method welding device and method of titanium alloy and other materials

Also Published As

Publication number Publication date
GB2203888A (en) 1988-10-26
GB2203888B (en) 1990-10-24
GB8801392D0 (en) 1988-02-24
JPH0620048B2 (en) 1994-03-16

Similar Documents

Publication Publication Date Title
US4877509A (en) Semiconductor wafer treating apparatus utilizing a plasma
US4915979A (en) Semiconductor wafer treating device utilizing ECR plasma
JPH03287774A (en) Plasma treating device
JPH0499876A (en) Control method for plasma, plasma treatment and device therefor
JP2546405B2 (en) Plasma processing apparatus and operating method thereof
US5366586A (en) Plasma formation using electron cyclotron resonance and method for processing substrate by using the same
JPS63301517A (en) Dry type thin film processor
JPS61213377A (en) Method and apparatus for plasma deposition
JP3089116B2 (en) Electron cyclotron resonance plasma CVD equipment
JP3021117B2 (en) Electron cyclotron resonance plasma CDV system
EP0290036B1 (en) Plasma treatment apparatus
JP4204799B2 (en) Plasma processing equipment
JPS62254419A (en) Plasma deposition device
JPH06101442B2 (en) ECR plasma reactor
JPH0317254A (en) Method and device for producing oxide thin film
JPH0390577A (en) Microwave plasma treating device
JP2548785B2 (en) Electron cyclotron resonance plasma chemical vapor deposition equipment
JPH04141594A (en) Method and device for plasma treatment
JPS63240013A (en) Reaction device
JP3193178B2 (en) Thin film formation method
JPH04263078A (en) Ecr plasma cvd device
JPH03267375A (en) Plasma treating device
JPH0459974A (en) Magneto-microwave plasma cvd method and device
JPS63177525A (en) Plasma treatment and device therefor
JPH0434826A (en) Semiconductor manufacturing device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees