JP2732294B2 - Thin film formation method - Google Patents

Thin film formation method

Info

Publication number
JP2732294B2
JP2732294B2 JP10253189A JP10253189A JP2732294B2 JP 2732294 B2 JP2732294 B2 JP 2732294B2 JP 10253189 A JP10253189 A JP 10253189A JP 10253189 A JP10253189 A JP 10253189A JP 2732294 B2 JP2732294 B2 JP 2732294B2
Authority
JP
Japan
Prior art keywords
thin film
current
plasma
film
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10253189A
Other languages
Japanese (ja)
Other versions
JPH02280318A (en
Inventor
国基 二宮
昌人 西国
信哉 津田
昭一 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Denki Co Ltd
Original Assignee
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Denki Co Ltd filed Critical Sanyo Denki Co Ltd
Priority to JP10253189A priority Critical patent/JP2732294B2/en
Publication of JPH02280318A publication Critical patent/JPH02280318A/en
Application granted granted Critical
Publication of JP2732294B2 publication Critical patent/JP2732294B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Description

【発明の詳細な説明】 本発明は、半導体薄膜,絶縁体薄膜等の薄膜を形成す
る薄膜形成方法に関する。
The present invention relates to a method for forming a thin film such as a semiconductor thin film and an insulator thin film.

〔従来の技術〕[Conventional technology]

一般は、a−Siなどの非晶質半導体薄膜やSiN,SiO2
どの絶縁体薄膜を形成する手法として、平行平板型RFグ
ロー放電によるプラズマCVD法がよく知られているが、
成膜速度の点において問題があるため、RFグロー放電法
に磁界を併用したいわゆるマグネトロン放電法により
成膜速度の向上を図ることが考えられている。
Generally, as a method of forming an amorphous semiconductor thin film such as a-Si or an insulating thin film such as SiN or SiO 2 , a plasma CVD method using a parallel plate RF glow discharge is well known.
Since there is a problem with the film formation rate, the so-called magnetron discharge method that uses a magnetic field in combination with the RF glow discharge method
It has been considered to improve the film forming speed.

ところで、このマグネトロン放電法による薄膜の形成
方法について簡単に説明すると、反応室にカソード電極
及びアノード電極を平行に配設し、アノード電極に薄膜
形成用基板を取り付け、両電極間にRFパワーを印加し、
RFグロー放電により反応室に導入した反応ガスのプラズ
マを生成し、カソード電極の外側に設けた磁石の形成磁
界により、プラズマを両電極間に閉じ込め、プラズマを
高密度化するものであり、これによつて基板への成膜速
度の向上を図ることが可能となる。
By the way, the method of forming a thin film by the magnetron discharge method will be briefly described. A cathode electrode and an anode electrode are disposed in parallel in a reaction chamber, a thin film forming substrate is attached to the anode electrode, and RF power is applied between the two electrodes. And
The plasma of the reaction gas introduced into the reaction chamber is generated by RF glow discharge, and the plasma is confined between the two electrodes by the magnetic field formed by the magnet provided outside the cathode electrode, thereby increasing the density of the plasma. This makes it possible to improve the film formation speed on the substrate.

一方、このようなマグネトロン放電法において、膜質
の向上を図るために種々の方法が考えられており、その
ひとつに、反応室に成膜性ガスと水素〔H〕,ヘリウム
〔He〕,ネオン〔Ne〕などの非成膜性の希ガスからなる
高品質化処理のためのガスを交互に導入し、膜形成と高
品質化処理とを所定の膜厚まで交互に繰り返す方法があ
る。
On the other hand, in such a magnetron discharge method, various methods have been considered in order to improve the film quality. One of them is to form a film forming gas and hydrogen [H], helium [He], neon [ There is a method of alternately introducing a gas for high quality treatment comprising a non-film-forming rare gas such as Ne] to alternately repeat film formation and high quality treatment up to a predetermined film thickness.

このとき、膜形成から高品質化処理に移行する場合、
或いはその逆の場合に、前の工程の残留ガスの影響をな
くすために、一旦放電を停止し、ガスの入れ換えを行つ
ている。
At this time, when shifting from film formation to high quality processing,
Alternatively, in the opposite case, in order to eliminate the influence of the residual gas in the previous step, the discharge is temporarily stopped and the gas is replaced.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

従来の場合、放電の停止,再開を繰り返さなければな
らず、所定の膜厚に達するのに長時間を要し、しかも放
電再開直後の放電状態の不安定さが原因で、前の膜形成
工程で形成された膜と次の膜形成工程で形成された膜と
の間に、欠陥の多い界面が生じ、高品質化処理を行わな
い場合に比べて膜質は向上するものの、膜質の大幅な向
上を図ることができないという問題点がある。
In the conventional case, the discharge must be stopped and restarted repeatedly, and it takes a long time to reach a predetermined film thickness. In addition, due to the instability of the discharge state immediately after the discharge is restarted, the previous film forming process is performed. Between the film formed in step 1 and the film formed in the next film forming step, an interface with many defects is generated, and the film quality is improved compared to the case where high quality processing is not performed, but the film quality is significantly improved There is a problem that it cannot be aimed at.

本発明は、前記の点に留意してなされ、欠陥を大幅に
低減し、膜質の向上を図れるようにすることを目的とす
る。
The present invention has been made in consideration of the above points, and has as its object to significantly reduce defects and improve the film quality.

〔課題を解決するための手段〕[Means for solving the problem]

前記目的を達成するために、反応室に平板状のカソー
ド電極及びアノード電極を平行に配設し、前記アノード
電極に薄膜形成用基板を取り付け、前記両電極間に高周
波電界を形成して該高周波電界により前記反応室に導入
した反応ガスのプラズマを生成し、前記カソード電極の
外側に設けた磁石の形成磁界により前記プラズマを前記
両電極間に閉じ込め、前記基板上に薄膜を形成する薄膜
形成方法において、 前記磁石を電磁石により構成し、前記電磁石への電流
を周期的に大,小に変化させ、大電流時と小電流時とで
前記反応室に導入する前記反応ガスの種類を切り換える
ことを特徴としている。
In order to achieve the above object, a flat cathode electrode and an anode electrode are disposed in parallel in a reaction chamber, a thin film forming substrate is attached to the anode electrode, and a high-frequency electric field is formed between the two electrodes to form the high-frequency electric field. A method for forming a thin film on the substrate by generating a plasma of a reaction gas introduced into the reaction chamber by an electric field, confining the plasma between the two electrodes by a magnetic field formed by a magnet provided outside the cathode electrode, and forming a thin film on the substrate In the above, the magnet is constituted by an electromagnet, and the current to the electromagnet is periodically changed to be large or small, and the type of the reaction gas introduced into the reaction chamber is switched between a large current and a small current. Features.

〔作用〕[Action]

以上のような構成において、電磁石への電流を周期的
に大,小に変化させることにより、大電流時には磁界強
度が強くなつてプラズマがカソード電極側へ引き寄せら
れ、プラズマがアノード電極に取り付けられた基板から
遠ざかり、小電流時には磁界強度が弱くなつてプラズマ
がアノオード電極側にふくらみ、プラズマが基板に近づ
く。
In the above-described configuration, the current to the electromagnet is periodically changed to be large or small, so that when the current is large, the magnetic field strength is increased and the plasma is drawn to the cathode electrode side, and the plasma is attached to the anode electrode. At a small current, the strength of the magnetic field is weakened, the plasma bulges toward the anode electrode side, and the plasma approaches the substrate.

このとき、プラズマと基板との距離が異なる大電流時
と小電流時とで反応ガスの種類を変えることによつて生
成されるラジカルの種類が変わり、例えば大電流時に成
膜性ガスを導入すると、反応性ラジカルが生成されて効
率よく膜形成が行われ、小電流時に高品質化処理ガスを
導入すると、高品質化処理ラジカルが生成されて膜の高
品質化処理,即ち表面処理が行われ、この間両電極間の
放電を停止させることなく膜形成と高品質化処理とを繰
り返すことができるため、従来のような放電の不安定に
起因する欠陥の発生が大幅に低減される。
At this time, the type of radical generated by changing the type of reactive gas at the time of a large current and at the time of a small current where the distance between the plasma and the substrate is different changes. Reactive radicals are generated to efficiently form a film, and when a high-quality processing gas is introduced at a small current, high-quality processing radicals are generated to perform a high-quality film processing, that is, a surface treatment. During this time, the film formation and the quality improvement process can be repeated without stopping the discharge between the two electrodes, so that the occurrence of defects due to the unstable discharge as in the conventional case is greatly reduced.

〔実施例〕〔Example〕

実施例について第1図ないし第3図を参照して説明す
る。
An embodiment will be described with reference to FIG. 1 to FIG.

形成装置の概略を示す第1図において、(1),
(2)は反応ガスが導入された反応室に平行に配設され
た平板状のカソード電極及びアノード電極(以下単にカ
ソード(1),アノード(2)という)、(3)はアノ
ード(2)に取り付けられた薄膜形成用基板、(4)は
RF電源であり、一方の出力端子がアノード(2)ととも
にアースされ、他方の出力端子がカソード(1)に接続
されている。
In FIG. 1 schematically showing a forming apparatus, (1),
(2) is a flat cathode electrode and an anode electrode (hereinafter simply referred to as a cathode (1) and an anode (2)) disposed in parallel with the reaction chamber into which the reaction gas has been introduced, and (3) is an anode (2) The substrate for thin film formation attached to (4)
An RF power source, one output terminal of which is grounded together with the anode (2), and the other output terminal of which is connected to the cathode (1).

(5)は電磁石であり、カソード(1)の下側に設け
られ、図外の出力電流可変の電源により周期的に大電
流,小電流が交互に繰り返し通流され、電磁石(5)に
よる第1図中の1点鎖線のような形成磁界によつて、反
応ガスのプラズマがカソード(1),アノード(2)間
に閉じ込められる。なお、排気装置により反応室内の排
気が行われるようになつている。
Reference numeral (5) denotes an electromagnet, which is provided below the cathode (1), and a large current and a small current are alternately and repeatedly passed periodically by a power source having an output current variable (not shown). The plasma of the reaction gas is confined between the cathode (1) and the anode (2) by the magnetic field formed as shown by the one-dot chain line in FIG. Note that the reaction chamber is evacuated by the exhaust device.

このとき、電磁石(5)への電流の通流方向は一定
で,電流値が大,小に変化するため、大電流時には磁界
強度が強くなり、プラズマが第1図中の破線のようにカ
ソード(1)側に強く引き寄せられ、プラズマがアノー
ド(2)から遠ざかり、小電流時には磁界強度が弱くな
つてプラズマの閉じ込め力が小さくなり、プラズマが第
1図中の実線のようにアノード(2)側にふくらみ、プ
ラズマが基板(3)に近づく。
At this time, the flowing direction of the current to the electromagnet (5) is constant, and the current value changes between large and small, so that the magnetic field intensity becomes strong at the time of a large current, and the plasma is reduced as indicated by the broken line in FIG. The plasma is strongly attracted to the (1) side, and the plasma moves away from the anode (2). At a small current, the magnetic field strength is weakened and the confinement force of the plasma is reduced. To the side, the plasma approaches the substrate (3).

そして、2個の反応ガス導入系を設け、電磁バルブ等
からなる制御装置の制御により、電磁石(5)への電流
の大電流時と小電流時とで両導入系から交互に反応ガス
を反応室に導入するようにし、大電流時と小電流時の反
応ガスの種類を変える。
Then, two reaction gas introduction systems are provided, and the reaction gas is alternately reacted from the two introduction systems when the current to the electromagnet (5) is large or small under the control of a control device including an electromagnetic valve and the like. Change the type of reaction gas at high current and low current.

例えば、大電流時には成膜性ガスを導入し、小電流時
にはH,He,Neなどの高品質化処理ガスを導入すると、そ
れぞれ効率よく反応性ラジカル及び高品質化処理ラジカ
ルが生成される。
For example, when a film forming gas is introduced at the time of a large current, and a high-quality processing gas such as H, He, and Ne is introduced at a low current, a reactive radical and a quality-enhancing radical are efficiently generated, respectively.

いま、a−Si薄膜を形成する場合、成膜性ガスとして
モノシランガス〔SiH4〕を用い、高品質化処理ガスとし
て水素ガス〔H2〕を用い、第2図(c)に示すように電
磁石(5)への電流を最大値I(A),最小値0として
正弦波形状に周期的に通流し、このときの周期をλとし
て、同図(a)に示すように、小電流時にλ/4の期間H2
を導入し、同図(b)に示すように、大電流時にλ/4の
期間SiH4を導入し、H2とSiH4の導入の切り換えの際、反
応室の残留ガスを排気するためのλ/4のガス導入休止期
間を設ける。
Now, when an a-Si thin film is formed, a monosilane gas [SiH 4 ] is used as a film-forming gas, a hydrogen gas [H 2 ] is used as a high-quality processing gas, and an electromagnet is formed as shown in FIG. The current to (5) flows periodically in a sinusoidal shape with the maximum value I (A) and the minimum value 0, and the period at this time is λ, and as shown in FIG. / 4 period H 2
To introduce SiH 4 for a period of λ / 4 at a large current, and to exhaust residual gas in the reaction chamber when switching between introduction of H 2 and SiH 4 , as shown in FIG. A gas introduction suspension period of λ / 4 is provided.

このように、大電流時にSiH4を導入すると、SiH3ラジ
カル等の長寿命反応性ラジカルが効率よく生成され、こ
の反応性ラジカルと基板(3)との反応によつて膜形成
が行われ、小電流時にH2を導入すると、高品質化処理ラ
ジカルであるHラジカルが効率よく生成され、このHラ
ジカルによつて薄膜の高品質化処理が行われ、この間放
電を止めることなく膜形成と高品質化処理を繰り返すこ
とが可能になり、膜質の良好なa−Si薄膜が得られる。
Thus, when SiH 4 is introduced at the time of a large current, a long-lived reactive radical such as a SiH 3 radical is efficiently generated, and a film is formed by a reaction between the reactive radical and the substrate (3), When H 2 is introduced at a small current, H radicals, which are high quality treatment radicals, are efficiently generated, and the H radicals are used to perform high quality treatment of the thin film. The quality treatment can be repeated, and an a-Si thin film having good film quality can be obtained.

ところで、電磁石(5)への電流の周波数の最適範囲
を求めるために、周波数とa−Si薄膜の光導電率との関
係を調べたところ第3図に示すようになり、周波数が10
-1Hzより高くなると、反応室内の導入ガスの切り換えが
完全に行われず、反応ガスが混合した状態となり、その
結果形成されるa−Si薄膜の光導電率が急激に低下する
ことから、電磁石(5)への電流の周波数を10-1Hz以下
とすればよいことがわかる。
By the way, the relationship between the frequency and the photoconductivity of the a-Si thin film was examined to find the optimum range of the frequency of the current to the electromagnet (5).
When the frequency is higher than -1 Hz, the switching of the introduced gas in the reaction chamber is not completely performed, and the reaction gas is in a mixed state. As a result, the photoconductivity of the formed a-Si thin film rapidly decreases. It can be seen that the frequency of the current to (5) should be 10 -1 Hz or less.

そして、このような電流条件及び導入するガスの切換
条件下で、表1に示すような形成条件によりa−Si薄膜
(I)を形成し、その諸特性を調べた結果、表2に示す
ようになつた。
An a-Si thin film (I) was formed under the conditions shown in Table 1 under the current conditions and the switching conditions of the gas to be introduced, and the characteristics were examined. It has become.

なお、比較のために、電磁石(5)への電流を10
(A)に固定し、かつH2を導入せずに形成したa−Si薄
膜(II)と、電流を流さず、かつH2を導入せずに形成し
たa−Si薄膜(III)と、電磁石(5)への電流を10
(A)に固定し,かつH2を導入して形成したa−Si薄膜
(IV)についても、同様の特性を調べ、それぞれの形成
条件を表1に、特性を表2に併せて示す。
For comparison, the current to the electromagnet (5) was 10
Fixed (A), the and the a-Si thin film formed without introducing H 2 (II), without flowing current, and the a-Si thin film formed without introducing H 2 (III), Apply 10 current to the electromagnet (5).
Similar characteristics were examined for the a-Si thin film (IV) fixed to (A) and formed by introducing H 2 , and the respective forming conditions are shown in Table 1 and the characteristics are also shown in Table 2.

このように、表2から明らかなように、電磁石(5)
への電流の大電流時と小電流時とで、反応室にSiH4とH2
とを交互に導入して形成したa−Si薄膜(I)は、他に
比べて光導電率が1桁向上し、暗導電率が低下し、膜中
の欠陥の目安となるスピン密度及び空間電荷密度が大幅
に小さくなり、欠陥が大幅に低減されていることを示し
ており、従来に比べて膜質が向上していることがわか
る。
Thus, as is clear from Table 2, the electromagnet (5)
The SiH 4 and H 2 flow into the reaction chamber at high current and low current.
The a-Si thin film (I) formed by alternately introducing and improving the photoconductivity by one digit, the dark conductivity is reduced, and the spin density and space, which are indicators of defects in the film. This indicates that the charge density is significantly reduced and the defects are significantly reduced, indicating that the film quality is improved as compared with the conventional case.

〔発明の効果〕〔The invention's effect〕

本発明は、以上説明したように構成されているので、
以下に記載する効果を奏する。
Since the present invention is configured as described above,
The following effects are obtained.

電磁石への電流の大電流時と小電流時とで反応ガスの
種類を変えることにより、プラズマと基板との距離に応
じ生成するラジカルの種類が変わるため、例えば大電流
時に成膜性ガスを導入することにより、反応性ラジカル
が生成され、膜形成を行うことができ、小電流時に高品
質化処理ガスを導入することにより、高品質化処理ラジ
カルが生成され、膜の高品質化処理,即ち表面処理を行
うことができ、この間従来のように両電極間の放電を停
止させることなく膜形成と高品質化処理とを繰り返すこ
とができ、従来のような放電の不安定に起因する欠陥の
発生を大幅に低減することができ、形成される薄膜の膜
質の向上を図ることができる。
By changing the type of reactant gas between when the current to the electromagnet is large and when the current is small, the type of radicals generated according to the distance between the plasma and the substrate changes. By doing so, reactive radicals are generated and a film can be formed, and by introducing a high quality processing gas at a small current, a high quality processing radical is generated, and the film is subjected to a high quality processing, that is, Surface treatment can be performed, and during this time, film formation and quality improvement processing can be repeated without stopping discharge between both electrodes as in the conventional case, and defects such as those caused by unstable discharge as in the conventional case can be eliminated. Generation can be significantly reduced, and the quality of the formed thin film can be improved.

【図面の簡単な説明】[Brief description of the drawings]

図面は、本発明の薄膜形成方法の1実施例を示し、第1
図は形成装置の概略図、第2図(a)〜(c)は動作説
明用のタイミングチヤート、第3図は周波数と光導電率
との関係図である。 (1)…カソード、(2)…アノード、(3)…薄膜形
成用基板、(4)…RF電源、(5)電磁石。
The drawing shows one embodiment of the thin film forming method of the present invention,
2A to 2C are timing charts for explaining the operation, and FIG. 3 is a diagram showing the relationship between frequency and photoconductivity. (1) Cathode, (2) Anode, (3) Thin film forming substrate, (4) RF power supply, (5) Electromagnet.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中野 昭一 大阪府守口市京阪本通2丁目18番地 三 洋電機株式会社内 (56)参考文献 特開 昭58−132920(JP,A) 特開 平1−130533(JP,A) 特開 平1−130531(JP,A) ──────────────────────────────────────────────────続 き Continuation of the front page (72) Shoichi Nakano 2-18-18 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (56) References JP-A-58-132920 (JP, A) JP-A-Hei 1-130533 (JP, A) JP-A-1-130531 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】反応室に平板状のカソード電極及びアノー
ド電極を平行に配設し、前記アノード電極に薄膜形成用
基板を取り付け、前記両電極間に高周波電界を形成して
該高周波電界により前記反応室に導入した反応ガスのプ
ラズマを生成し、前記カソード電極の外側に設けた磁石
の形成磁界により前記プラズマを前記両電極間に閉じ込
め、前記基板上に薄膜を形成する薄膜形成方法におい
て、 前記磁石を電磁石により構成し、前記電磁石への電流を
周期的に大,小に変化させ、大電流時と小電流時とで前
記反応室に導入する前記反応ガスの種類を切り換えるこ
とを特徴とする薄膜形成方法。
1. A flat plate-like cathode electrode and an anode electrode are disposed in parallel in a reaction chamber, a thin film forming substrate is attached to the anode electrode, and a high-frequency electric field is formed between the two electrodes. A thin film forming method for generating a plasma of a reaction gas introduced into a reaction chamber, confining the plasma between the two electrodes by a forming magnetic field of a magnet provided outside the cathode electrode, and forming a thin film on the substrate, The magnet is constituted by an electromagnet, and the current to the electromagnet is periodically changed to be large or small, and the type of the reaction gas introduced into the reaction chamber is switched between a large current and a small current. Thin film formation method.
JP10253189A 1989-04-20 1989-04-20 Thin film formation method Expired - Fee Related JP2732294B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10253189A JP2732294B2 (en) 1989-04-20 1989-04-20 Thin film formation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10253189A JP2732294B2 (en) 1989-04-20 1989-04-20 Thin film formation method

Publications (2)

Publication Number Publication Date
JPH02280318A JPH02280318A (en) 1990-11-16
JP2732294B2 true JP2732294B2 (en) 1998-03-25

Family

ID=14329885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10253189A Expired - Fee Related JP2732294B2 (en) 1989-04-20 1989-04-20 Thin film formation method

Country Status (1)

Country Link
JP (1) JP2732294B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4896861B2 (en) * 2007-12-10 2012-03-14 株式会社東芝 Semiconductor manufacturing method and semiconductor manufacturing apparatus

Also Published As

Publication number Publication date
JPH02280318A (en) 1990-11-16

Similar Documents

Publication Publication Date Title
US20080317965A1 (en) Plasma processing apparatus and method
JPH01149965A (en) Plasma reactor
JPH10261498A (en) Plasma treatment apparatus and plasma treatment method
JPS58125820A (en) Electronic cyclotron resonance type discharger
JP2732294B2 (en) Thin film formation method
JPH0521986B2 (en)
JPH09217171A (en) Manufacture of ito transparent conductive film
JP2003077904A (en) Apparatus and method for plasma processing
JPH03162583A (en) Vacuum process device
JPH0521983B2 (en)
JP2732281B2 (en) Thin film formation method
JP2661906B2 (en) Plasma processing equipment
JPH02312231A (en) Dryetching device
JPS62254419A (en) Plasma deposition device
WO2023149322A1 (en) Plasma treatment device
JPS611024A (en) Manufacturing apparatus of semiconductor circuit
JPH09283449A (en) Plasma chemical vapor deposition system
JPH01191779A (en) Method and apparatus for thin film synthesis by hybrid plasma
Kawasaki et al. Two-dimensional profile of emissive species in a magnetized SiH/sub 4//Ar glow discharge for the scanning-plasma CVD method
JPH0614478Y2 (en) Thin film forming equipment
JPS62177180A (en) Surface treatment
JP2678277B2 (en) Thin film formation method
Fujiyama et al. TRIAL PRODUCTION OF LARGE—AREA UNIFORM a—Si: H FILMS BY SCANNING PLASMA METHOD USING A MODULATED MAGNETIC FIELD
JPS619577A (en) Plasma chemical vapor phase growing method
JPH06177051A (en) Cvd device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees