WO2023149322A1 - Plasma treatment device - Google Patents

Plasma treatment device Download PDF

Info

Publication number
WO2023149322A1
WO2023149322A1 PCT/JP2023/002362 JP2023002362W WO2023149322A1 WO 2023149322 A1 WO2023149322 A1 WO 2023149322A1 JP 2023002362 W JP2023002362 W JP 2023002362W WO 2023149322 A1 WO2023149322 A1 WO 2023149322A1
Authority
WO
WIPO (PCT)
Prior art keywords
plasma processing
processing apparatus
stage
plasma
antenna
Prior art date
Application number
PCT/JP2023/002362
Other languages
French (fr)
Japanese (ja)
Inventor
敏彦 酒井
大介 東
Original Assignee
日新電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日新電機株式会社 filed Critical 日新電機株式会社
Publication of WO2023149322A1 publication Critical patent/WO2023149322A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • C23C16/509Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using internal electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy

Definitions

  • the present disclosure relates to a plasma processing apparatus.
  • a plasma processing apparatus that generates inductively coupled plasma in a vacuum vessel using an antenna placed inside the vacuum vessel.
  • the plasma processing apparatus performs a predetermined plasma process using generated plasma, such as film formation by chemical vapor deposition or sputtering, or etching, etc., on a substrate to be processed.
  • Japanese Unexamined Patent Publication Japanese Unexamined Patent Publication No. 8-8232
  • a plasma processing apparatus it is important to appropriately control the movement of charged particles contained in the plasma generated during plasma processing in a vacuum vessel (processing chamber). This is because, in a plasma processing apparatus, the quality of plasma processing is affected according to the behavior of the charged particles with respect to the object to be processed.
  • the present disclosure has been made in view of the above problems, and aims to provide a plasma processing apparatus capable of appropriately controlling the motion of charged particles.
  • a plasma processing apparatus including a processing chamber, a stage on which an object to be processed is installed inside the processing chamber; An antenna for generating an inductively coupled plasma inside the processing chamber and an internal electrode to which a predetermined potential is applied are provided.
  • FIG. 1 is a diagram illustrating a specific configuration example of an internal electrode shown in FIG. 1;
  • FIG. It is a figure explaining the function of the said internal electrode.
  • FIG. 2 is a diagram illustrating the structure of the plasma processing apparatus which concerns on Embodiment 2 of this indication.
  • FIG. 1 is a diagram illustrating the configuration of a plasma processing apparatus 1 according to Embodiment 1 of the present disclosure.
  • FIG. 2 is a diagram for explaining a specific configuration example of the internal electrode 8 shown in FIG.
  • the plasma processing a plasma apparatus for forming a film on the substrate H1 to be processed by a plasma CVD (Chemical Vapor Deposition) method using inductively coupled plasma will be exemplified. do.
  • the plasma processing apparatus 1 of the present disclosure can also be applied to a plasma processing apparatus that performs a sputtering process for forming a predetermined object on a substrate H1 to be processed as a plasma process, for example.
  • the plasma processing apparatus 1 of the present disclosure can also be applied to a plasma processing apparatus that performs an etching process or an ashing process for removing a predetermined substance from the substrate H1 to be processed.
  • the plasma processing apparatus 1 of Embodiment 1 includes a stage 3 as a stage on which a substrate to be processed H1 as an object to be processed is installed.
  • a plasma processing apparatus 1 includes a processing chamber 2 , and in the processing chamber 2 , predetermined plasma processing is performed on a substrate to be processed H ⁇ b>1 placed on a stage 3 .
  • the plasma processing apparatus 1 includes a load lock chamber (not shown) for loading/unloading the substrate H1 to/from the outside of the plasma processing apparatus 1 .
  • the plasma processing apparatus 1 also includes a control section (not shown) that controls each section of the plasma processing apparatus 1 .
  • the control unit includes, for example, a CPU (Central Processing Unit), RAM (Random Access Memory), ROM (Read Only Memory), etc., and is a functional block that controls each component according to information processing.
  • the substrate H1 to be processed is placed on the stage 3 of the processing chamber 2 from the load lock chamber by a transport mechanism (not shown). Further, the substrate to be processed H1 is transported from the stage 3 of the processing chamber 2 to the inside of the load lock chamber by the transport mechanism.
  • the substrate H1 to be processed can be, for example, a glass substrate or a synthetic resin substrate used for a liquid crystal panel display, an organic EL (Electro Luminescence) panel display, or the like. Also, the substrate to be processed H1 may be a semiconductor substrate used for various purposes.
  • the plasma processing apparatus 1 forms a predetermined film such as a barrier (moisture-proof) film on the substrate H1 to be processed by the predetermined plasma processing.
  • the processing chamber 2 is configured using a grounded vacuum vessel, and in a state in which the inside of the vacuum vessel is maintained at a predetermined degree of vacuum, the substrate to be processed is subjected to a predetermined plasma processing under the control of the control unit. It is designed to be applied to H1.
  • the stage 3 is also grounded. In addition to this explanation, it is preferable to control the potential of the stage 3 as shown in Embodiment 2, which will be described later, in that the plasma processing can be performed more appropriately.
  • the processing chamber 2 also includes a temperature sensor (not shown) that detects the temperature of the stage 3, and the detection result of the temperature sensor is output to the control unit. Then, the control unit performs feedback control on the temperature of the stage 3 using the input detection result of the temperature sensor, thereby controlling the stage 3 to a predetermined set temperature during the plasma processing. do.
  • a temperature sensor not shown
  • the processing chamber 2 is provided with a processing gas supply unit (not shown) for introducing into the processing chamber 2 a processing gas corresponding to the predetermined plasma processing and containing the gas for film formation of the film. ), the plasma processing is performed in the atmosphere of the processing gas.
  • Process gases are, for example, argon, hydrogen, nitrogen, silane, or oxygen.
  • An antenna 4 for generating an inductively coupled plasma inside the processing chamber 2 is provided above the stage 3 inside the processing chamber 2 . That is, the plasma processing apparatus 1 of the present disclosure causes a high-frequency induction electric field to be generated in the vicinity of the antenna 4 by causing a high-frequency current to flow through the antenna 4, thereby generating inductively coupled plasma.
  • the antenna 4 is, for example, arranged linearly on the substrate to be processed H1. Both ends of the antenna 4 are airtightly drawn out of the processing chamber 2 .
  • An impedance adjuster 5 and an impedance adjuster 7 are connected to one end and the other end of the antenna 4, respectively.
  • the impedance adjuster 5 has a matching circuit, and one end of the antenna 4 is connected to the power supply 6 via the impedance adjuster 5 . Also, the impedance adjustment unit 7 includes a variable capacitor. The other end of the antenna 4 is grounded via the impedance adjuster 7 .
  • the power supply 6 supplies high-frequency power of, for example, 13.56 MHz to one end of the antenna 4 via the impedance adjustment section 5 .
  • the controller changes the capacity of the variable capacitor of the impedance adjuster 7 so that high-frequency power is efficiently supplied to the antenna 4 inside the processing chamber 2 .
  • an internal electrode 8 is provided on the opposite side of the substrate H1 (stage 3) to be processed with respect to the antenna 4. As shown in FIG. The internal electrode 8 is attached inside the processing chamber 2 via an insulating spacer 9 on the back side of the antenna 4 . That is, the antenna 4 is arranged between the internal electrode 8 and the stage 3 inside the processing chamber 2 .
  • the internal electrode 8 is configured using, for example, a carbon plate or a metal plate.
  • the internal electrode 8 is a control electrode that controls the charged particles contained in the plasma inside the processing chamber 2 . That is, the internal electrode 8 includes a power source (not shown) connected to the internal electrode 8, and by controlling the power source, the electrode potential control is performed so that a predetermined potential is applied to the internal electrode 8. section 10 is connected.
  • the electrode potential control section 10 controls the potential of the internal electrode 8 to a predetermined potential by variably adjusting the voltage applied from the electrode power source to the internal electrode 8 according to the instruction from the control section.
  • the carbon plates have a high strength and are less likely to bend or the like in spite of their lower density than metal plates. Therefore, even when the size of the internal electrode 8 is increased, in-plane non-uniformity of plasma due to deflection or the like can be prevented from occurring.
  • the metal plate it is preferable to use a metal material with low density and high electrical conductivity. Specifically, it is preferable to use aluminum or an aluminum alloy.
  • the internal electrodes 8 when the internal electrodes 8 are configured using metal plates of such a metal material, the internal electrodes 8 can be configured to be more excellent in mechanical impact than the internal electrodes 8 using carbon plates. The impact resistance of the plasma processing apparatus 1 can be enhanced. As a result, for example, when vibrations due to opening and closing of valves (not shown) are transmitted to the plasma processing apparatus 1, it is preferable to configure the internal electrodes 8 using the metal plates described above.
  • the internal electrode 8 is composed of, for example, a punching metal-shaped grid electrode having a plurality of circular openings 8a.
  • the internal electrode 8 selectively imparts kinetic energy to the charged particles according to the polarity of the charged particles and reduces the amount of charged particles reaching the substrate H1 to be processed (details will be described later).
  • a mesh-like grid electrode may be used as the internal electrode 8 .
  • FIG. 3 is a diagram for explaining the function of the internal electrodes 8. As shown in FIG. In addition, in the following description, the operation of the internal electrodes 8 will be mainly described. Also, in FIG. 3, illustration of the substrate to be processed H1, the antenna 4, and the power source 6 connected thereto is omitted.
  • the antenna 4 (FIG. 1) operates and plasma is generated inside the processing chamber 2
  • the charged particles k contained in the plasma reach the internal electrode 8 unlike the neutral particles n. moves according to the applied voltage. That is, inside the processing chamber 2, the stage 3 is grounded as shown in FIG. Exercise accordingly. That is, the charged particles k are selectively given kinetic energy from the internal electrode 8 or reduced in the amount reaching the substrate H1 to be processed, depending on the polarity of the charged particles k.
  • the positive ions p have increased kinetic energy in the direction toward the substrate to be processed H1.
  • the reaction of the positive ions p on the surface of the substrate H1 to be processed can be promoted, and a high-quality film can be formed on the surface.
  • electrons or negative ions e have increased kinetic energy in the direction toward the internal electrode 8, as shown in FIG. As a result, the amount of electrons or negative ions e reaching the substrate to be processed H1 can be reduced. As a result, when the electrons or negative ions e degrade the film quality of the film formed on the surface of the substrate H1 to be processed by the plasma processing, the deterioration of the film quality can be suppressed.
  • the plasma processing apparatus 1 of Embodiment 1 configured as described above includes a processing chamber 2 .
  • the plasma processing apparatus 1 of Embodiment 1 includes a stage 3 in which a substrate to be processed H1 (object to be processed) is placed inside a processing chamber 2, and a stage 3 for generating inductively coupled plasma inside the processing chamber 2. and an antenna 4 of Further, the plasma processing apparatus 1 of Embodiment 1 includes an internal electrode 8 inside the processing chamber 2 to which a predetermined potential is applied.
  • the internal electrode 8 can detect the charged particles contained in the plasma inside the processing chamber 2, unlike the conventional example.
  • the behavior of k can be appropriately controlled.
  • the antenna 4 is provided inside the processing chamber 2, plasma can be efficiently generated.
  • the internal electrode 8 is provided inside the processing chamber 2, it is possible to directly control the movement and arrival amount of the charged particles of the plasma with respect to the stage 3. .
  • a large potential gradient can be formed between the internal electrode 8 and the substrate H1 to be processed.
  • kinetic energy can be selectively applied to the charged particles k contained in the plasma according to the polarity of the charged particles k. . Therefore, in the plasma processing apparatus 1 of Embodiment 1, it is possible to increase or decrease the amount of charged particles k reaching the substrate H1 to be processed. Therefore, in the first embodiment, unlike the conventional example, the operation of the charged particles k can be appropriately controlled, and the plasma processing apparatus 1 capable of performing high-quality plasma processing can be configured.
  • the antenna 4 is a linear antenna and can be arranged between the internal electrode 8 and the stage 3 .
  • the positive ions p and electrons or negative ions e of the charged particles k of the plasma generated by the antenna 4 are transferred to the substrate H1 to be processed or It can be appropriately moved to the internal electrode 8 side.
  • the internal electrode 8 that serves as a shield is not installed between the antenna 4 and the substrate H1 to be processed on the stage 3 . Therefore, in the plasma processing apparatus 1 of Embodiment 1, it is possible to increase the amount of ions, radicals, etc. used for plasma processing reaching the substrate H1 to be processed. Therefore, in the plasma processing apparatus 1 of Embodiment 1, the film formation rate or the etching rate can be increased, and the cost can be easily reduced while shortening the tact time.
  • the internal electrode 8 is arranged on the back side of the antenna 4 when viewed from the stage 3 .
  • the internal electrode 8 is exposed to a wide range of plasma including not only the plasma generated between the antenna 4 and the stage 3 but also the plasma generated on the internal electrode 8 side of the antenna 4. 8 enables the electric field applied between the stage 3 and the stage 3 to act. Therefore, in the plasma processing apparatus 1 of Embodiment 1, it is possible to efficiently control the motion of the charged particles of plasma with respect to the stage 3 . As a result, in the plasma processing apparatus 1 of Embodiment 1, highly accurate plasma processing can be easily performed on the substrate H1 to be processed.
  • a linear antenna 4 is used as the antenna 4 .
  • the plurality of antennas 4 are arranged inside the processing chamber 2 so as to correspond to the large-sized substrate H1 to be processed. be able to
  • a chemical vapor deposition method using plasma is performed on the substrate H1 to be processed as plasma processing. Accordingly, in the plasma processing apparatus 1 of the first embodiment, high-quality film formation can be performed on the substrate H1 to be processed.
  • FIG. 4 is a diagram illustrating the configuration of a plasma processing apparatus according to Embodiment 2 of the present disclosure.
  • members having the same functions as the members explained in the first embodiment are denoted by the same reference numerals, and the explanation thereof will not be repeated.
  • the main difference between the second embodiment and the first embodiment is that a plurality of internal electrodes 8 whose potentials can be independently controlled are provided inside the processing chamber 2 . Another point is that the potential of the stage 3 is variably controlled.
  • a plurality, for example, two internal electrodes 8 and 18 are provided inside the processing chamber 2 as shown in FIG.
  • the internal electrode 18 is provided on the substrate to be processed H ⁇ b>1 (stage 3 ) side with respect to the antenna 4 so that the antenna 4 is arranged between the internal electrodes 8 and 18 .
  • the internal electrode 18 is attached inside the processing chamber 2 via an insulating spacer 19 .
  • the internal electrode 18 is configured in, for example, a punching metal shape, and as shown in FIG. 2, is made of a carbon plate or metal plate having a plurality of openings (not shown).
  • the internal electrode 18 is connected to an electrode potential control section 20 that includes an electrode power supply (not shown) connected to the internal electrode 18 and controls the potential of the internal electrode 18 by controlling the electrode power supply. .
  • the electrode potential control section 20 controls the potential of the internal electrode 18 to a predetermined potential by variably adjusting the applied voltage applied from the electrode power source to the internal electrode 18 according to the instruction from the control section. Further, the electrode potential control section 20 performs control independently of the electrode potential control section 10, and the internal electrodes 8 and 18 can be controlled to have different potentials. .
  • the plasma processing apparatus 1 of Embodiment 2 can variably control the potential of the stage 3 .
  • the stage 3 is provided with a stage potential control section 30 that includes a power supply (not shown) connected to the stage 3 and controls the potential of the stage 3 by controlling the power supply. .
  • the stage potential control section 30 performs control independently of the electrode potential control sections 10 and 20 .
  • the stage potential control unit 30 and the electrode potential control units 10 and 20 control the potentials of the stage 3, the internal electrode 8, and the internal electrode 18 to predetermined potentials, respectively, so that the charged particles can operate more appropriately. It is configured so that it can be controlled to
  • the plasma processing apparatus 1 of the second embodiment when the potentials of the internal electrode 8, the internal electrode 18, and the stage 3 are set to a first potential, a second potential, and a third potential, respectively, the plasma processing apparatus 1 of the second embodiment , for example, first potential>second potential>third potential. As a result, the plasma processing apparatus 1 of the second embodiment can more effectively control the positive ions p and electrons or negative ions e shown in FIG.
  • the potential of the stage 3 (third potential) is the lowest, the positive ions p are attracted by the potential of the stage 3, and the kinetic energy in the direction toward the substrate H1 to be processed is increased. . As a result, the reaction of the positive ions p on the surface of the substrate H1 to be processed can be further promoted, and a higher quality film can be formed on the surface.
  • the potential (first potential) of the internal electrode 8 is the highest, the electrons or negative ions e are attracted by the potential of the internal electrode 8 and have more kinetic energy in the direction toward the internal electrode 8. be enlarged. As a result, the amount of electrons or negative ions e reaching the substrate H1 to be processed can be further reduced. As a result, when the electrons or negative ions e degrade the film quality of the coating formed on the surface of the substrate H1 to be processed by plasma processing, the deterioration of the film quality can be further suppressed.
  • the plasma processing apparatus 1 of the second embodiment has the same effects as those of the first embodiment.
  • the plasma processing apparatus 1 of Embodiment 2 further includes a stage potential control section 30 that controls the potential of the stage 3 .
  • the stage potential control section 30 controls the potential of the stage 3, so that the motion of the charged particles k can be controlled more appropriately.
  • the internal electrode 18 has the opening 18a. Gases and film-forming precursors can pass through smoothly. As a result, in the plasma processing apparatus 1 of Embodiment 1, even when the internal electrode 18 is provided between the antenna 4 and the stage 3, it is possible to suppress a decrease in processing efficiency in plasma processing.
  • the film formation precursor refers to ions after the molecules and/or atoms generated by the decomposition of the processing gas introduced into the processing chamber 2 are ionized and/or excited. or radical.
  • Electrode potential controllers 10 and 20 are connected to the plurality of internal electrodes 8 and 18, respectively, and the electrode potential controllers 10 and 20 independently control the potentials of the internal electrodes 8 and 18, respectively. It is possible.
  • the electrode potential controllers 10 and 20 control the potentials of the internal electrodes 8 and 18, respectively, so that the proper operation of the charged particles k can be reliably controlled. can. That is, in the plasma processing apparatus 1 of Embodiment 2, the potential gradient inside the processing chamber 2 can be set more appropriately than in Embodiment 1, and the movement of the charged particles k can be more highly controlled. be able to
  • a configuration in which the internal electrodes 8 are omitted may be used.
  • a plurality of internal electrodes whose potentials can be controlled independently of each other may be provided between the antenna 4 and the stage 3 .
  • a plasma processing apparatus including a processing chamber, a stage on which an object to be processed is installed inside the processing chamber; An antenna for generating an inductively coupled plasma inside the processing chamber and an internal electrode to which a predetermined potential is applied are provided.
  • the plasma processing apparatus since the plasma processing apparatus includes an antenna for generating inductively coupled plasma inside the processing chamber, plasma can be efficiently generated. Furthermore, since the plasma processing apparatus is equipped with an internal electrode to which a predetermined potential is applied inside the processing chamber, it is possible to directly control the movement and amount of arrival of the charged particles of the plasma to the stage, resulting in high quality processing. It is possible to provide a plasma processing apparatus capable of performing plasma processing of
  • the antenna may be arranged between the internal electrode and the stage.
  • the internal electrodes are arranged on the back side of the antenna when viewed from the stage.
  • the internal electrode prevents the plasma around the antenna, that is, not only between the antenna and the stage, but also plasma generated on the other side of the antenna when viewed from the stage. It becomes possible to apply an electric field applied between them. Therefore, it is possible to efficiently control the movement of the charged particles of the plasma with respect to the stage and the amount of arrival. As a result, highly accurate plasma processing can be easily performed on the object to be processed.
  • the antenna may be a linear antenna.
  • the antenna can be arranged inside the processing chamber so as to correspond to a large object to be processed.
  • the plasma processing apparatus may further include a stage potential control section that controls the potential of the stage.
  • the charged particles can be controlled more appropriately.
  • a plurality of the internal electrodes are provided, and further comprising a plurality of electrode potential control units respectively connected to the plurality of internal electrodes, wherein the plurality of electrode potential control units include the The potentials of the plurality of internal electrodes may be controllable independently of each other.
  • the internal electrode may be made of a carbon plate or a metal plate having a plurality of openings.
  • charged particles generated inside the processing chamber and processing gas introduced into the processing chamber can smoothly pass through the opening, and the internal electrode is provided between the antenna and the stage. Even in such a case, it is possible to suppress a decrease in processing efficiency in plasma processing.
  • film formation may be performed on the object to be processed placed on the stage by a chemical vapor deposition method using the plasma.
  • a high-quality film can be formed on the object to be processed.

Abstract

Provided is a plasma treatment device capable of appropriately controlling the movements of charged particles. A plasma treatment device (1) is provided with a treatment chamber (2). The plasma treatment device is provided with, within the treatment chamber (2), a stage (3) on which a substrate to be treated (H1) as an object to be treated is installed, an antenna (4) for generating inductively coupled plasma within the treatment chamber (2), and an internal electrode (8) to which a predetermined potential is applied.

Description

プラズマ処理装置Plasma processing equipment
 本開示は、プラズマ処理装置に関する。 The present disclosure relates to a plasma processing apparatus.
 真空容器内に配置したアンテナを用いて当該真空容器内に誘導結合性のプラズマを発生させるプラズマ処理装置が知られている。プラズマ処理装置は、その種別に応じて、発生させたプラズマを用いた所定のプラズマ処理、例えば、化学気相堆積法あるいはスパッタ法による成膜、またはエッチング等の処理を被処理基板などの被処理物に施す。 A plasma processing apparatus is known that generates inductively coupled plasma in a vacuum vessel using an antenna placed inside the vacuum vessel. Depending on the type, the plasma processing apparatus performs a predetermined plasma process using generated plasma, such as film formation by chemical vapor deposition or sputtering, or etching, etc., on a substrate to be processed. apply to things
日本国公開特許公報「特開平8-8232号公報」Japanese Unexamined Patent Publication "Japanese Unexamined Patent Publication No. 8-8232"
 プラズマ処理装置では、真空容器(処理室)内において、プラズマ処理の際に発生させるプラズマに含まれた荷電粒子の動作を適切に制御することが重要である。プラズマ処理装置では、被処理物に対する上記荷電粒子の動作に応じて、プラズマ処理の品質に影響を与えるからである。  In a plasma processing apparatus, it is important to appropriately control the movement of charged particles contained in the plasma generated during plasma processing in a vacuum vessel (processing chamber). This is because, in a plasma processing apparatus, the quality of plasma processing is affected according to the behavior of the charged particles with respect to the object to be processed.
 しかしながら、上記従来のプラズマ処理装置では、荷電粒子の動作を適切に制御することについては開示されていなかった。 However, in the above-described conventional plasma processing apparatus, proper control of the motion of charged particles has not been disclosed.
 本開示は上記の問題点を鑑みてなされたものであり、荷電粒子の動作を適切に制御することができるプラズマ処理装置を提供することを目的とする。 The present disclosure has been made in view of the above problems, and aims to provide a plasma processing apparatus capable of appropriately controlling the motion of charged particles.
 上記の課題を解決するために、本開示の一側面に係るプラズマ処理装置は、処理室を備えたプラズマ処理装置であって、前記処理室の内部に、被処理物が設置されるステージと、前記処理室の内部に誘導結合性のプラズマを発生させるためのアンテナと、所定の電位が印加される内部電極と、を備えている。 In order to solve the above problems, a plasma processing apparatus according to one aspect of the present disclosure is a plasma processing apparatus including a processing chamber, a stage on which an object to be processed is installed inside the processing chamber; An antenna for generating an inductively coupled plasma inside the processing chamber and an internal electrode to which a predetermined potential is applied are provided.
 本開示の一態様によれば、荷電粒子の動作を適切に制御することができるプラズマ処理装置を提供することができる。 According to one aspect of the present disclosure, it is possible to provide a plasma processing apparatus capable of appropriately controlling the motion of charged particles.
本開示の実施形態1に係るプラズマ処理装置の構成を説明する図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure explaining the structure of the plasma processing apparatus which concerns on Embodiment 1 of this indication. 図1に示した内部電極の具体的な構成例を説明する図である。2 is a diagram illustrating a specific configuration example of an internal electrode shown in FIG. 1; FIG. 上記内部電極の機能を説明する図である。It is a figure explaining the function of the said internal electrode. 本開示の実施形態2に係るプラズマ処理装置の構成を説明する図である。It is a figure explaining the structure of the plasma processing apparatus which concerns on Embodiment 2 of this indication.
 〔実施形態1〕
 以下、本開示の実施形態1について、図1から図2を用いて詳細に説明する。図1は、本開示の実施形態1に係るプラズマ処理装置1の構成を説明する図である。図2は、図1に示した内部電極8の具体的な構成例を説明する図である。
[Embodiment 1]
Embodiment 1 of the present disclosure will be described in detail below with reference to FIGS. 1 and 2. FIG. FIG. 1 is a diagram illustrating the configuration of a plasma processing apparatus 1 according to Embodiment 1 of the present disclosure. FIG. 2 is a diagram for explaining a specific configuration example of the internal electrode 8 shown in FIG.
 なお、以下の説明では、プラズマ処理として、誘導結合性のプラズマを使用したプラズマCVD(Chemical Vapor Deposition;化学気相堆積)法によって被処理基板H1上に成膜を行うプラズマ装置を例示して説明する。しかしながら、本開示のプラズマ処理装置1は、プラズマ処理として、例えば、被処理物としての被処理基板H1に所定物を形成するスパッタリング処理を実施するプラズマ処理装置にも適用することができる。また、本開示のプラズマ処理装置1は、被処理基板H1から所定物を除去するエッチング処理あるいはアッシング処理を実施するプラズマ処理装置にも適用することができる。 In the following description, as the plasma processing, a plasma apparatus for forming a film on the substrate H1 to be processed by a plasma CVD (Chemical Vapor Deposition) method using inductively coupled plasma will be exemplified. do. However, the plasma processing apparatus 1 of the present disclosure can also be applied to a plasma processing apparatus that performs a sputtering process for forming a predetermined object on a substrate H1 to be processed as a plasma process, for example. Further, the plasma processing apparatus 1 of the present disclosure can also be applied to a plasma processing apparatus that performs an etching process or an ashing process for removing a predetermined substance from the substrate H1 to be processed.
 <プラズマ処理装置1>
 図1に示すように、本実施形態1のプラズマ処理装置1は、被処理物としての被処理基板H1が設置されるステージとしてのステージ3を備えている。プラズマ処理装置1は処理室2を備え、処理室2の内部において、ステージ3上に載置された被処理基板H1に対して所定のプラズマ処理を行う。プラズマ処理装置1は、プラズマ処理装置1の外部との間で被処理基板H1を搬入出するためのロードロック室(図示せず)を備えている。
<Plasma processing apparatus 1>
As shown in FIG. 1, the plasma processing apparatus 1 of Embodiment 1 includes a stage 3 as a stage on which a substrate to be processed H1 as an object to be processed is installed. A plasma processing apparatus 1 includes a processing chamber 2 , and in the processing chamber 2 , predetermined plasma processing is performed on a substrate to be processed H<b>1 placed on a stage 3 . The plasma processing apparatus 1 includes a load lock chamber (not shown) for loading/unloading the substrate H1 to/from the outside of the plasma processing apparatus 1 .
 また、プラズマ処理装置1は、プラズマ処理装置1の各部を制御する制御部(図示せず)を備えている。この制御部は、例えば、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)等を含み、情報処理に応じて各構成要素の制御を行う機能ブロックである。 The plasma processing apparatus 1 also includes a control section (not shown) that controls each section of the plasma processing apparatus 1 . The control unit includes, for example, a CPU (Central Processing Unit), RAM (Random Access Memory), ROM (Read Only Memory), etc., and is a functional block that controls each component according to information processing.
 被処理基板H1は、不図示の搬送機構によってロードロック室から処理室2のステージ3上に載置される。また、被処理基板H1は、上記搬送機構によって処理室2のステージ3からロードロック室の内部に搬送される。被処理基板H1は、例えば、液晶パネルディスプレイ、有機EL(Electro Luminescence)パネルディスプレイなどに用いられるガラス基板、合成樹脂基板であり得る。また、被処理基板H1は、各種用途に用いられる半導体基板であり得る。プラズマ処理装置1は、上記所定のプラズマ処理によってバリア(防湿)膜などの所定の被膜を被処理基板H1上に成膜する。 The substrate H1 to be processed is placed on the stage 3 of the processing chamber 2 from the load lock chamber by a transport mechanism (not shown). Further, the substrate to be processed H1 is transported from the stage 3 of the processing chamber 2 to the inside of the load lock chamber by the transport mechanism. The substrate H1 to be processed can be, for example, a glass substrate or a synthetic resin substrate used for a liquid crystal panel display, an organic EL (Electro Luminescence) panel display, or the like. Also, the substrate to be processed H1 may be a semiconductor substrate used for various purposes. The plasma processing apparatus 1 forms a predetermined film such as a barrier (moisture-proof) film on the substrate H1 to be processed by the predetermined plasma processing.
 <処理室2>
 処理室2は、接地された真空容器を用いて構成されており、当該真空容器の内部が所定の真空度に保たれた状態で、上記制御部の制御によって、所定のプラズマ処理が被処理基板H1に施されるようになっている。尚、本実施形態1のプラズマ処理装置1では、ステージ3も接地されている。尚、この説明以外に、後述の実施形態2に示すように、ステージ3の電位も制御することがプラズマ処理をより適切に実施できる点で好ましい。
<Processing chamber 2>
The processing chamber 2 is configured using a grounded vacuum vessel, and in a state in which the inside of the vacuum vessel is maintained at a predetermined degree of vacuum, the substrate to be processed is subjected to a predetermined plasma processing under the control of the control unit. It is designed to be applied to H1. Incidentally, in the plasma processing apparatus 1 of Embodiment 1, the stage 3 is also grounded. In addition to this explanation, it is preferable to control the potential of the stage 3 as shown in Embodiment 2, which will be described later, in that the plasma processing can be performed more appropriately.
 また、処理室2は、ステージ3の温度を検出する温度センサを備えており(図示せず)、当該温度センサの検出結果は、上記制御部に出力される。そして、制御部は、入力した温度センサの検出結果を用いた、ステージ3の温度についてのフィードバック制御を行うことにより、上記プラズマ処理中に、ステージ3を予め定められた設定温度となるように制御する。 The processing chamber 2 also includes a temperature sensor (not shown) that detects the temperature of the stage 3, and the detection result of the temperature sensor is output to the control unit. Then, the control unit performs feedback control on the temperature of the stage 3 using the input detection result of the temperature sensor, thereby controlling the stage 3 to a predetermined set temperature during the plasma processing. do.
 また、処理室2には、上記所定のプラズマ処理に対応した、上記被膜の成膜用ガスを含んだ処理ガスを処理室2の内部に導入する処理ガス供給部が設けられており(図示せず)、処理ガスの雰囲気化で当該プラズマ処理が行われるようになっている。処理ガスは、例えば、アルゴン、水素、窒素、シラン、または酸素である。 Further, the processing chamber 2 is provided with a processing gas supply unit (not shown) for introducing into the processing chamber 2 a processing gas corresponding to the predetermined plasma processing and containing the gas for film formation of the film. ), the plasma processing is performed in the atmosphere of the processing gas. Process gases are, for example, argon, hydrogen, nitrogen, silane, or oxygen.
 <アンテナ4>
 処理室2の内部には、誘導結合性のプラズマを処理室2の内部に発生させるためのアンテナ4がステージ3の上方に設けられている。つまり、本開示のプラズマ処理装置1は、アンテナ4に高周波電流を流してアンテナ4の近傍に高周波誘導電界を発生させ、誘導結合性のプラズマを生成させる。アンテナ4は、例えば、被処理基板H1上で直線状に設けられている。アンテナ4の両端部は、処理室2の外部に気密に引き出されている。また、アンテナ4の一方の端部及び他方の端部には、インピーダンス調整部5及びインピーダンス調整部7がそれぞれ接続されている。
<Antenna 4>
An antenna 4 for generating an inductively coupled plasma inside the processing chamber 2 is provided above the stage 3 inside the processing chamber 2 . That is, the plasma processing apparatus 1 of the present disclosure causes a high-frequency induction electric field to be generated in the vicinity of the antenna 4 by causing a high-frequency current to flow through the antenna 4, thereby generating inductively coupled plasma. The antenna 4 is, for example, arranged linearly on the substrate to be processed H1. Both ends of the antenna 4 are airtightly drawn out of the processing chamber 2 . An impedance adjuster 5 and an impedance adjuster 7 are connected to one end and the other end of the antenna 4, respectively.
 インピーダンス調整部5は、整合回路を備えており、当該インピーダンス調整部5を介してアンテナ4の一方の端部が電源6に接続されている。また、インピーダンス調整部7は、可変コンデンサを備えている。アンテナ4の他方の端部は、インピーダンス調整部7を介して接地されている。 The impedance adjuster 5 has a matching circuit, and one end of the antenna 4 is connected to the power supply 6 via the impedance adjuster 5 . Also, the impedance adjustment unit 7 includes a variable capacitor. The other end of the antenna 4 is grounded via the impedance adjuster 7 .
 電源6は、例えば、13.56MHzの高周波電力を、インピーダンス調整部5を介してアンテナ4の一方の端部に供給する。上記制御部がインピーダンス調整部7の上記可変コンデンサの容量を変更することにより、処理室2の内部のアンテナ4に高周波電力が効率的に供給されるように制御する。 The power supply 6 supplies high-frequency power of, for example, 13.56 MHz to one end of the antenna 4 via the impedance adjustment section 5 . The controller changes the capacity of the variable capacitor of the impedance adjuster 7 so that high-frequency power is efficiently supplied to the antenna 4 inside the processing chamber 2 .
 <内部電極8>
 処理室2の内部には、内部電極8がアンテナ4に対して被処理基板H1(ステージ3)の反対側に設けられている。内部電極8は、アンテナ4の背面側で、絶縁スペーサー9を介して処理室2の内部に取り付けられている。つまり、処理室2の内部で、アンテナ4は内部電極8とステージ3との間に配置されている。
<Internal electrode 8>
Inside the processing chamber 2, an internal electrode 8 is provided on the opposite side of the substrate H1 (stage 3) to be processed with respect to the antenna 4. As shown in FIG. The internal electrode 8 is attached inside the processing chamber 2 via an insulating spacer 9 on the back side of the antenna 4 . That is, the antenna 4 is arranged between the internal electrode 8 and the stage 3 inside the processing chamber 2 .
 内部電極8は、例えば、カーボン板または金属板を用いて構成されている。内部電極8は、処理室2の内部において、上記プラズマに含まれた荷電粒子を制御する制御電極である。すなわち、内部電極8には、内部電極8に接続された電源(図示せず)を含み、当該電源を制御することにより、所定の電位が内部電極8に印加されるように制御する電極電位制御部10が接続されている。電極電位制御部10は、上記制御部からの指示に従って、電極電源から内部電極8に印加する印加電圧を可変に調整することにより、内部電極8の電位を所定の電位に制御する。 The internal electrode 8 is configured using, for example, a carbon plate or a metal plate. The internal electrode 8 is a control electrode that controls the charged particles contained in the plasma inside the processing chamber 2 . That is, the internal electrode 8 includes a power source (not shown) connected to the internal electrode 8, and by controlling the power source, the electrode potential control is performed so that a predetermined potential is applied to the internal electrode 8. section 10 is connected. The electrode potential control section 10 controls the potential of the internal electrode 8 to a predetermined potential by variably adjusting the voltage applied from the electrode power source to the internal electrode 8 according to the instruction from the control section.
 尚、カーボン板を用いて内部電極8を構成した場合には、カーボン板は、金属板に比べて密度が小さいにもかかわらず、強度が強く、たわみ等が内部電極8に発生しにくい。このため、内部電極8を大型化したときでも、たわみ等に起因した、プラズマの面内不均一性を生じ難くすることができる。 When the internal electrodes 8 are formed using carbon plates, the carbon plates have a high strength and are less likely to bend or the like in spite of their lower density than metal plates. Therefore, even when the size of the internal electrode 8 is increased, in-plane non-uniformity of plasma due to deflection or the like can be prevented from occurring.
 また、金属板には、密度が低く、電気伝導度が高い金属材料を用いることが好ましく、具体的には、アルミニウムまたはアルミニウム合金を用いることが好ましい。また、このような金属材料の金属板を用いて内部電極8を構成した場合には、カーボン板を用いた内部電極8よりも、機械的衝撃に優れた内部電極8を構成することができ、プラズマ処理装置1の耐衝撃性を高めることができる。この結果、例えば、プラズマ処理装置1に対し、不図示のバルブの開閉等に起因する振動等が伝わる場合には、上述の金属板を用いて内部電極8を構成する場合の方が好ましい。 For the metal plate, it is preferable to use a metal material with low density and high electrical conductivity. Specifically, it is preferable to use aluminum or an aluminum alloy. In addition, when the internal electrodes 8 are configured using metal plates of such a metal material, the internal electrodes 8 can be configured to be more excellent in mechanical impact than the internal electrodes 8 using carbon plates. The impact resistance of the plasma processing apparatus 1 can be enhanced. As a result, for example, when vibrations due to opening and closing of valves (not shown) are transmitted to the plasma processing apparatus 1, it is preferable to configure the internal electrodes 8 using the metal plates described above.
 内部電極8は、図2に示すように、例えば、各々円形状に形成された、複数の開口8aを有するパンチングメタル形状のグリッド電極によって構成されている。内部電極8では、上記荷電粒子の極性に応じて、選択的に運動エネルギーを荷電粒子に与えたり、被処理基板H1への荷電粒子の到達量を低減させたりする(詳細は後述。)。 As shown in FIG. 2, the internal electrode 8 is composed of, for example, a punching metal-shaped grid electrode having a plurality of circular openings 8a. The internal electrode 8 selectively imparts kinetic energy to the charged particles according to the polarity of the charged particles and reduces the amount of charged particles reaching the substrate H1 to be processed (details will be described later).
 なお、上記の説明以外に、例えば、メッシュ状のグリッド電極を内部電極8に用いる構成でもよい。 In addition to the above description, for example, a mesh-like grid electrode may be used as the internal electrode 8 .
 また、上記の説明以外に、開口8aを設けていない、平板状の内部電極8を用いることもできる。 In addition to the above description, it is also possible to use flat internal electrodes 8 without openings 8a.
 <動作例>
 図3も用いて、本実施形態1のプラズマ処理装置1の動作について具体的に説明する。図3は、上記内部電極8の機能を説明する図である。なお、以下の説明では、内部電極8の動作について主に説明する。また、図3では、被処理基板H1、アンテナ4及びこれに接続された電源6などの図示は省略する。
<Operation example>
The operation of the plasma processing apparatus 1 of Embodiment 1 will be specifically described with reference to FIG. 3 as well. FIG. 3 is a diagram for explaining the function of the internal electrodes 8. As shown in FIG. In addition, in the following description, the operation of the internal electrodes 8 will be mainly described. Also, in FIG. 3, illustration of the substrate to be processed H1, the antenna 4, and the power source 6 connected thereto is omitted.
 図3に示すように、アンテナ4(図1)が動作して処理室2の内部にプラズマが発生すると、当該プラズマに含まれた荷電粒子kは、中性粒子nと異なり、内部電極8への印加電圧に応じて、移動する。つまり、処理室2の内部では、図3に示すように、ステージ3は、接地されているので、プラスイオンp及び電子あるいはマイナスイオンeからなる荷電粒子kは、内部電極8への印加電圧に対応して運動する。つまり、荷電粒子kは、その極性に応じて、内部電極8から選択的に運動エネルギーを与えられたり、被処理基板H1への到達量を低減させられたりする。 As shown in FIG. 3, when the antenna 4 (FIG. 1) operates and plasma is generated inside the processing chamber 2, the charged particles k contained in the plasma reach the internal electrode 8 unlike the neutral particles n. moves according to the applied voltage. That is, inside the processing chamber 2, the stage 3 is grounded as shown in FIG. Exercise accordingly. That is, the charged particles k are selectively given kinetic energy from the internal electrode 8 or reduced in the amount reaching the substrate H1 to be processed, depending on the polarity of the charged particles k.
 具体的にいえば、図3の矢印Eにて示すように、電極電位制御部10が、例えば、内部電極8の電位がプラズマ電位よりも高電位となるように、内部電極8に対して正の電圧を印加する。この場合、プラスイオンpは、図3に示すように、被処理基板H1へ向かう方向での運動エネルギーが大きくされる。この結果、被処理基板H1の表面でのプラスイオンpの反応を促進することができ、高品質な膜を当該表面上に成膜することができる。 Specifically, as indicated by arrow E in FIG. voltage is applied. In this case, as shown in FIG. 3, the positive ions p have increased kinetic energy in the direction toward the substrate to be processed H1. As a result, the reaction of the positive ions p on the surface of the substrate H1 to be processed can be promoted, and a high-quality film can be formed on the surface.
 一方、電子あるいはマイナスイオンeは、図3に示すように、内部電極8へ向かう方向での運動エネルギーが大きくされる。これにより、電子あるいはマイナスイオンeの被処理基板H1への到達量を低減することができる。この結果、電子あるいはマイナスイオンeがプラズマ処理による被処理基板H1の表面に形成される被膜の膜質を低下させる場合などにおいて、膜質の低下を抑えることができる。 On the other hand, electrons or negative ions e have increased kinetic energy in the direction toward the internal electrode 8, as shown in FIG. As a result, the amount of electrons or negative ions e reaching the substrate to be processed H1 can be reduced. As a result, when the electrons or negative ions e degrade the film quality of the film formed on the surface of the substrate H1 to be processed by the plasma processing, the deterioration of the film quality can be suppressed.
 以上のように構成された本実施形態1のプラズマ処理装置1は、処理室2を備えている。本実施形態1のプラズマ処理装置1は、処理室2の内部に、被処理基板H1(被処理物)が設置されるステージ3と、処理室2の内部に誘導結合性のプラズマを発生させるためのアンテナ4とを備えている。また、本実施形態1のプラズマ処理装置1は、処理室2の内部に、所定の電位が印加される内部電極8を備えている。これにより、本実施形態1のプラズマ処理装置1では、上記従来例と異なり、内部電極8に所定の電位を印加することにより、内部電極8は処理室2の内部のプラズマに含まれた荷電粒子kの動作を適切に制御することができる。 The plasma processing apparatus 1 of Embodiment 1 configured as described above includes a processing chamber 2 . The plasma processing apparatus 1 of Embodiment 1 includes a stage 3 in which a substrate to be processed H1 (object to be processed) is placed inside a processing chamber 2, and a stage 3 for generating inductively coupled plasma inside the processing chamber 2. and an antenna 4 of Further, the plasma processing apparatus 1 of Embodiment 1 includes an internal electrode 8 inside the processing chamber 2 to which a predetermined potential is applied. As a result, in the plasma processing apparatus 1 of Embodiment 1, by applying a predetermined potential to the internal electrode 8, the internal electrode 8 can detect the charged particles contained in the plasma inside the processing chamber 2, unlike the conventional example. The behavior of k can be appropriately controlled.
 すなわち、本実施形態1のプラズマ処理装置1では、アンテナ4を処理室2の内部に備えているため、プラズマを効率よく生成できる。また、本実施形態1のプラズマ処理装置1では、内部電極8を処理室2の内部に備えているため、上記プラズマの荷電粒子のステージ3に対する運動や到達量を直接的に制御することができる。さらに、本実施形態1のプラズマ処理装置1では、内部電極8に所定の電位を印加することにより、内部電極8と被処理基板H1との間での電位勾配を大きく形成することができる。 That is, in the plasma processing apparatus 1 of Embodiment 1, since the antenna 4 is provided inside the processing chamber 2, plasma can be efficiently generated. Further, in the plasma processing apparatus 1 of Embodiment 1, since the internal electrode 8 is provided inside the processing chamber 2, it is possible to directly control the movement and arrival amount of the charged particles of the plasma with respect to the stage 3. . Furthermore, in the plasma processing apparatus 1 of Embodiment 1, by applying a predetermined potential to the internal electrode 8, a large potential gradient can be formed between the internal electrode 8 and the substrate H1 to be processed.
 この結果、本実施形態1のプラズマ処理装置1では、図3に例示したように、プラズマに含まれた荷電粒子kの極性に応じて、選択的に運動エネルギーを荷電粒子kに与えることができる。このため、本実施形態1のプラズマ処理装置1では、被処理基板H1への荷電粒子kの到達量を増減することができる。従って、本実施形態1では、上記従来例と異なり、荷電粒子kの動作を適切に制御することができ、高品質のプラズマ処理を行えるプラズマ処理装置1を構成することができる。 As a result, in the plasma processing apparatus 1 of the first embodiment, as illustrated in FIG. 3, kinetic energy can be selectively applied to the charged particles k contained in the plasma according to the polarity of the charged particles k. . Therefore, in the plasma processing apparatus 1 of Embodiment 1, it is possible to increase or decrease the amount of charged particles k reaching the substrate H1 to be processed. Therefore, in the first embodiment, unlike the conventional example, the operation of the charged particles k can be appropriately controlled, and the plasma processing apparatus 1 capable of performing high-quality plasma processing can be configured.
 また、本実施形態1のプラズマ処理装置1では、アンテナ4は線状のアンテナであって、内部電極8とステージ3との間に配置することができる。これにより、本実施形態1のプラズマ処理装置1では、アンテナ4によって発生させたプラズマの荷電粒子kのプラスイオンp及び電子あるいはマイナスイオンeを、処理内容に応じて、各々被処理基板H1側または内部電極8側に適切に移動させることができる。この結果、本実施形態1のプラズマ処理装置1では、被処理基板H1への荷電粒子kのプラスイオンpまたは電子あるいはマイナスイオンeの到達量を容易に増減することができる。従って、本実施形態1のプラズマ処理装置1では、被処理基板H1に対する高精度なプラズマ処理を容易に行うことができる。 Further, in the plasma processing apparatus 1 of Embodiment 1, the antenna 4 is a linear antenna and can be arranged between the internal electrode 8 and the stage 3 . As a result, in the plasma processing apparatus 1 of the first embodiment, the positive ions p and electrons or negative ions e of the charged particles k of the plasma generated by the antenna 4 are transferred to the substrate H1 to be processed or It can be appropriately moved to the internal electrode 8 side. As a result, in the plasma processing apparatus 1 of Embodiment 1, it is possible to easily increase or decrease the amount of positive ions p or electrons or negative ions e of the charged particles k reaching the substrate H1 to be processed. Therefore, in the plasma processing apparatus 1 of Embodiment 1, highly accurate plasma processing can be easily performed on the substrate H1 to be processed.
 さらに、本実施形態1のプラズマ処理装置1では、アンテナ4とステージ3上の被処理基板H1との間には、遮蔽物となる、内部電極8を設置していない。それ故、本実施形態1のプラズマ処理装置1では、プラズマ処理に用いられる、イオンやラジカル等の被処理基板H1への到達量が多くすることができる。このため、本実施形態1のプラズマ処理装置1では、成膜レートもしくはエッチングレートを大きくすることができ、タクトタイムを短くしつつ、低コスト化を容易に図ることができる。 Furthermore, in the plasma processing apparatus 1 of Embodiment 1, the internal electrode 8 that serves as a shield is not installed between the antenna 4 and the substrate H1 to be processed on the stage 3 . Therefore, in the plasma processing apparatus 1 of Embodiment 1, it is possible to increase the amount of ions, radicals, etc. used for plasma processing reaching the substrate H1 to be processed. Therefore, in the plasma processing apparatus 1 of Embodiment 1, the film formation rate or the etching rate can be increased, and the cost can be easily reduced while shortening the tact time.
 また、本実施形態1のプラズマ処理装置1では、ステージ3から見て、アンテナ4の背面側に内部電極8が配置されている。これにより、本実施形態1のプラズマ処理装置1では、アンテナ4とステージ3との間のみならず、アンテナ4の内部電極8側に生成されたプラズマをも含む広範囲のプラズマに対して、内部電極8によりステージ3との間に付与される電界を作用させることができるようになる。よって、本実施形態1のプラズマ処理装置1では、プラズマの荷電粒子のステージ3に対する運動の制御を効率的に行うことができる。この結果、本実施形態1のプラズマ処理装置1では、被処理基板H1に対する高精度なプラズマ処理を容易に行うことができる。 Further, in the plasma processing apparatus 1 of Embodiment 1, the internal electrode 8 is arranged on the back side of the antenna 4 when viewed from the stage 3 . As a result, in the plasma processing apparatus 1 of Embodiment 1, the internal electrode 8 is exposed to a wide range of plasma including not only the plasma generated between the antenna 4 and the stage 3 but also the plasma generated on the internal electrode 8 side of the antenna 4. 8 enables the electric field applied between the stage 3 and the stage 3 to act. Therefore, in the plasma processing apparatus 1 of Embodiment 1, it is possible to efficiently control the motion of the charged particles of plasma with respect to the stage 3 . As a result, in the plasma processing apparatus 1 of Embodiment 1, highly accurate plasma processing can be easily performed on the substrate H1 to be processed.
 また、本実施形態1のプラズマ処理装置1では、アンテナ4には、線状のアンテナ4が用いられている。線状のアンテナ4が複数並べて配置されることにより、本実施形態1のプラズマ処理装置1では、大型の被処理基板H1に対応するように、複数のアンテナ4を処理室2の内部に配置することができるようになる。 Further, in the plasma processing apparatus 1 of Embodiment 1, a linear antenna 4 is used as the antenna 4 . By arranging a plurality of linear antennas 4 side by side, in the plasma processing apparatus 1 of Embodiment 1, the plurality of antennas 4 are arranged inside the processing chamber 2 so as to correspond to the large-sized substrate H1 to be processed. be able to
 また、本実施形態1のプラズマ処理装置1では、プラズマ処理として、被処理基板H1に対してプラズマを使用した化学気相堆積法を行っている。これにより、本実施形態1のプラズマ処理装置1では、被処理基板H1に対し、高品質な成膜を施すことができる。 Further, in the plasma processing apparatus 1 of Embodiment 1, a chemical vapor deposition method using plasma is performed on the substrate H1 to be processed as plasma processing. Accordingly, in the plasma processing apparatus 1 of the first embodiment, high-quality film formation can be performed on the substrate H1 to be processed.
 〔実施形態2〕
 本開示の実施形態2について、図4を用いて具体的に説明する。図4は、本開示の実施形態2に係るプラズマ処理装置の構成を説明する図である。なお、説明の便宜上、上記実施形態1にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を繰り返さない。
[Embodiment 2]
Embodiment 2 of the present disclosure will be specifically described with reference to FIG. FIG. 4 is a diagram illustrating the configuration of a plasma processing apparatus according to Embodiment 2 of the present disclosure. For convenience of explanation, members having the same functions as the members explained in the first embodiment are denoted by the same reference numerals, and the explanation thereof will not be repeated.
 本実施形態2と上記実施形態1との主な相違点は、処理室2の内部に電位を互いに独立して制御可能な複数の内部電極8を設けた点である。また、ステージ3の電位を可変に制御する点である。 The main difference between the second embodiment and the first embodiment is that a plurality of internal electrodes 8 whose potentials can be independently controlled are provided inside the processing chamber 2 . Another point is that the potential of the stage 3 is variably controlled.
 本実施形態2のプラズマ処理装置1では、図4に示すように、複数、例えば、2つの内部電極8及び18が処理室2の内部に設けられている。内部電極18は、アンテナ4が内部電極8と内部電極18との間に配置されるように、アンテナ4に対して、被処理基板H1(ステージ3)側に設けられている。また、内部電極18は、絶縁スペーサー19を介して処理室2の内部に取り付けられている。内部電極18は、内部電極8と同様に、例えば、パンチングメタル形状に構成されており、図2に示したように、複数の開口を有するカーボン板または金属板からなる(図示せず)。 In the plasma processing apparatus 1 of Embodiment 2, a plurality, for example, two internal electrodes 8 and 18 are provided inside the processing chamber 2 as shown in FIG. The internal electrode 18 is provided on the substrate to be processed H<b>1 (stage 3 ) side with respect to the antenna 4 so that the antenna 4 is arranged between the internal electrodes 8 and 18 . Also, the internal electrode 18 is attached inside the processing chamber 2 via an insulating spacer 19 . Like the internal electrode 8, the internal electrode 18 is configured in, for example, a punching metal shape, and as shown in FIG. 2, is made of a carbon plate or metal plate having a plurality of openings (not shown).
 内部電極18には、内部電極18に接続された電極電源(図示せず)を含み、当該電極電源を制御することにより、内部電極18の電位を制御する電極電位制御部20が接続されている。電極電位制御部20は、上記制御部からの指示に従って、電極電源から内部電極18に印加する印加電圧を可変に調整することにより、内部電極18の電位を所定の電位に制御する。また、この電極電位制御部20は、電極電位制御部10とは互いに独立して制御を行うようになっており、内部電極8及び18では、各々異なる電位となるように制御可能となっている。 The internal electrode 18 is connected to an electrode potential control section 20 that includes an electrode power supply (not shown) connected to the internal electrode 18 and controls the potential of the internal electrode 18 by controlling the electrode power supply. . The electrode potential control section 20 controls the potential of the internal electrode 18 to a predetermined potential by variably adjusting the applied voltage applied from the electrode power source to the internal electrode 18 according to the instruction from the control section. Further, the electrode potential control section 20 performs control independently of the electrode potential control section 10, and the internal electrodes 8 and 18 can be controlled to have different potentials. .
 また、本実施形態2のプラズマ処理装置1は、ステージ3の電位を可変に制御可能になっている。具体的には、ステージ3には、ステージ3に接続された電源(図示せず)を含み、当該電源を制御することにより、ステージ3の電位を制御するステージ電位制御部30が設けられている。 Also, the plasma processing apparatus 1 of Embodiment 2 can variably control the potential of the stage 3 . Specifically, the stage 3 is provided with a stage potential control section 30 that includes a power supply (not shown) connected to the stage 3 and controls the potential of the stage 3 by controlling the power supply. .
 ステージ電位制御部30は、電極電位制御部10及び20と互いに独立して制御を行うようになっている。そして、ステージ電位制御部30と電極電位制御部10及び20とは、ステージ3、内部電極8、及び内部電極18の電位を各々所定の電位に制御することにより、上記荷電粒子の動作をより適切に制御することができるように構成されている。 The stage potential control section 30 performs control independently of the electrode potential control sections 10 and 20 . The stage potential control unit 30 and the electrode potential control units 10 and 20 control the potentials of the stage 3, the internal electrode 8, and the internal electrode 18 to predetermined potentials, respectively, so that the charged particles can operate more appropriately. It is configured so that it can be controlled to
 具体的にいえば、内部電極8、内部電極18、及びステージ3の電位をそれぞれ第1の電位、第2の電位、及び第3の電位とした場合、本実施形態2のプラズマ処理装置1では、例えば、第1の電位>第2の電位>第3の電位とする。これにより、本実施形態2のプラズマ処理装置1では、図3に示したプラスイオンp及び電子あるいはマイナスイオンeに対する制御をより効果的に行うことができる。 Specifically, when the potentials of the internal electrode 8, the internal electrode 18, and the stage 3 are set to a first potential, a second potential, and a third potential, respectively, the plasma processing apparatus 1 of the second embodiment , for example, first potential>second potential>third potential. As a result, the plasma processing apparatus 1 of the second embodiment can more effectively control the positive ions p and electrons or negative ions e shown in FIG.
 すなわち、ステージ3の電位(第3の電位)が最も低くされているため、プラスイオンpは、ステージ3の電位に誘引されて、被処理基板H1へ向かう方向での運動エネルギーがより大きくされる。この結果、被処理基板H1の表面でのプラスイオンpの反応をより促進することができ、より高品質な膜を当該表面上に成膜することができる。 That is, since the potential of the stage 3 (third potential) is the lowest, the positive ions p are attracted by the potential of the stage 3, and the kinetic energy in the direction toward the substrate H1 to be processed is increased. . As a result, the reaction of the positive ions p on the surface of the substrate H1 to be processed can be further promoted, and a higher quality film can be formed on the surface.
 一方、内部電極8の電位(第1の電位)が最も高くされているため、電子あるいはマイナスイオンeは、内部電極8の電位に誘引されて、内部電極8へ向かう方向での運動エネルギーがより大きくされる。これにより、電子あるいはマイナスイオンeの被処理基板H1への到達量をより低減することができる。この結果、電子あるいはマイナスイオンeがプラズマ処理による被処理基板H1の表面に形成される被膜の膜質を低下させる場合などにおいて、膜質の低下をより抑えることができる。 On the other hand, since the potential (first potential) of the internal electrode 8 is the highest, the electrons or negative ions e are attracted by the potential of the internal electrode 8 and have more kinetic energy in the direction toward the internal electrode 8. be enlarged. As a result, the amount of electrons or negative ions e reaching the substrate H1 to be processed can be further reduced. As a result, when the electrons or negative ions e degrade the film quality of the coating formed on the surface of the substrate H1 to be processed by plasma processing, the deterioration of the film quality can be further suppressed.
 以上の構成により、本実施形態2のプラズマ処理装置1は、第1の実施形態のものと同様な効果を奏する。 With the above configuration, the plasma processing apparatus 1 of the second embodiment has the same effects as those of the first embodiment.
 また、本実施形態2のプラズマ処理装置1では、ステージ3の電位を制御するステージ電位制御部30をさらに備えている。これにより、本実施形態2のプラズマ処理装置1では、ステージ電位制御部30がステージ3の電位を制御することにより、荷電粒子kの動作をより適切に制御することができるようになる。 Further, the plasma processing apparatus 1 of Embodiment 2 further includes a stage potential control section 30 that controls the potential of the stage 3 . Thus, in the plasma processing apparatus 1 of Embodiment 2, the stage potential control section 30 controls the potential of the stage 3, so that the motion of the charged particles k can be controlled more appropriately.
 また、本実施形態2のプラズマ処理装置1では、内部電極18は開口18aを備えているので、開口18aによって処理室2の内部に生じた荷電粒子kや処理室2の内部に導入された処理ガスや成膜前駆体を円滑に通過させることができる。この結果、本実施形態1のプラズマ処理装置1では、内部電極18をアンテナ4とステージ3との間に設けた場合でも、プラズマ処理での処理効率の低下を抑えることができる。尚、上記成膜前駆体とは、処理室2の内部に導入される、上記処理ガスや上記処理ガスが分解されて生成した分子および/または原子が、イオン化および/または励起された後のイオンやラジカルである。 In the plasma processing apparatus 1 of Embodiment 2, the internal electrode 18 has the opening 18a. Gases and film-forming precursors can pass through smoothly. As a result, in the plasma processing apparatus 1 of Embodiment 1, even when the internal electrode 18 is provided between the antenna 4 and the stage 3, it is possible to suppress a decrease in processing efficiency in plasma processing. Note that the film formation precursor refers to ions after the molecules and/or atoms generated by the decomposition of the processing gas introduced into the processing chamber 2 are ionized and/or excited. or radical.
 また、本実施形態2のプラズマ処理装置1では、複数の内部電極8及び18が処理室2の内部に設けられている。また、複数の各内部電極8及び18には、それぞれ電極電位制御部10及び20が接続されており、電極電位制御部10及び20は、それぞれ内部電極8及び18の電位を互いに独立して制御可能である。これにより、本実施形態2のプラズマ処理装置1では、電極電位制御部10及び20がそれぞれ内部電極8及び18の電位を制御することにより、適切な荷電粒子kの動作を確実に制御することができる。すなわち、本実施形態2のプラズマ処理装置1では、実施形態1のものに比べて、処理室2の内部の電位勾配をより適切に設定することができ、荷電粒子kの動作をより高度に制御することができるようになる。 Also, in the plasma processing apparatus 1 of Embodiment 2, a plurality of internal electrodes 8 and 18 are provided inside the processing chamber 2 . Electrode potential controllers 10 and 20 are connected to the plurality of internal electrodes 8 and 18, respectively, and the electrode potential controllers 10 and 20 independently control the potentials of the internal electrodes 8 and 18, respectively. It is possible. Thus, in the plasma processing apparatus 1 of Embodiment 2, the electrode potential controllers 10 and 20 control the potentials of the internal electrodes 8 and 18, respectively, so that the proper operation of the charged particles k can be reliably controlled. can. That is, in the plasma processing apparatus 1 of Embodiment 2, the potential gradient inside the processing chamber 2 can be set more appropriately than in Embodiment 1, and the movement of the charged particles k can be more highly controlled. be able to
 尚、上記の説明以外に、例えば、内部電極8の設置を省略する構成でもよい。また、アンテナ4とステージ3との間に、電位を互いに独立して制御可能な複数の内部電極を設ける構成でもよい。 In addition to the above description, for example, a configuration in which the internal electrodes 8 are omitted may be used. Alternatively, a plurality of internal electrodes whose potentials can be controlled independently of each other may be provided between the antenna 4 and the stage 3 .
 〔まとめ〕
 上記の課題を解決するために、本開示の一側面に係るプラズマ処理装置は、処理室を備えたプラズマ処理装置であって、前記処理室の内部に、被処理物が設置されるステージと、前記処理室の内部に誘導結合性のプラズマを発生させるためのアンテナと、所定の電位が印加される内部電極と、を備えている。
〔summary〕
In order to solve the above problems, a plasma processing apparatus according to one aspect of the present disclosure is a plasma processing apparatus including a processing chamber, a stage on which an object to be processed is installed inside the processing chamber; An antenna for generating an inductively coupled plasma inside the processing chamber and an internal electrode to which a predetermined potential is applied are provided.
 上記構成によれば、プラズマ処理装置が、誘導結合性のプラズマを発生させるためのアンテナを処理室の内部に備えているため、プラズマを効率よく生成できる。更にプラズマ処理装置が、所定の電位が印加される内部電極を処理室の内部に備えているため、上記プラズマの荷電粒子のステージに対する運動や到達量を直接的に制御することができ、高品質のプラズマ処理を行えるプラズマ処理装置を提供することができる。 According to the above configuration, since the plasma processing apparatus includes an antenna for generating inductively coupled plasma inside the processing chamber, plasma can be efficiently generated. Furthermore, since the plasma processing apparatus is equipped with an internal electrode to which a predetermined potential is applied inside the processing chamber, it is possible to directly control the movement and amount of arrival of the charged particles of the plasma to the stage, resulting in high quality processing. It is possible to provide a plasma processing apparatus capable of performing plasma processing of
 上記一側面に係るプラズマ処理装置において、前記アンテナは、前記内部電極と前記ステージとの間に配置されてもよい。 In the plasma processing apparatus according to one aspect, the antenna may be arranged between the internal electrode and the stage.
 上記構成によれば、ステージから見て、アンテナの背面側に内部電極が配置される。そのため、アンテナの周囲のプラズマ、すなわち、アンテナとステージとの間のみならず、ステージから見て、アンテナの向こう側に生成されたプラズマをも含む広範囲のプラズマに対して、内部電極によりステージとの間に付与される電界を作用させることができるようになる。よって、プラズマの荷電粒子のステージに対する運動や到達量の制御を効率的に行うことができる。この結果、被処理物に対する高精度なプラズマ処理を容易に行うことができる。 According to the above configuration, the internal electrodes are arranged on the back side of the antenna when viewed from the stage. As a result, the internal electrode prevents the plasma around the antenna, that is, not only between the antenna and the stage, but also plasma generated on the other side of the antenna when viewed from the stage. It becomes possible to apply an electric field applied between them. Therefore, it is possible to efficiently control the movement of the charged particles of the plasma with respect to the stage and the amount of arrival. As a result, highly accurate plasma processing can be easily performed on the object to be processed.
 上記一側面に係るプラズマ処理装置において、前記アンテナは、線状のアンテナであってもよい。 In the plasma processing apparatus according to one aspect, the antenna may be a linear antenna.
 上記構成によれば、大型の被処理物に対応するように、アンテナを処理室の内部に配置することができるようになる。 According to the above configuration, the antenna can be arranged inside the processing chamber so as to correspond to a large object to be processed.
 上記一側面に係るプラズマ処理装置において、前記ステージの電位を制御するステージ電位制御部をさらに備えてもよい。 The plasma processing apparatus according to the one aspect described above may further include a stage potential control section that controls the potential of the stage.
 上記構成によれば、上記荷電粒子の制御をより適切にすることができるようになる。 According to the above configuration, the charged particles can be controlled more appropriately.
 上記一側面に係るプラズマ処理装置において、前記内部電極は複数設けられており、前記複数の内部電極にそれぞれ接続された複数の電極電位制御部をさらに備え、前記複数の電極電位制御部は、前記複数の内部電極の電位を互いに独立して制御可能であってもよい。 In the plasma processing apparatus according to the aspect described above, a plurality of the internal electrodes are provided, and further comprising a plurality of electrode potential control units respectively connected to the plurality of internal electrodes, wherein the plurality of electrode potential control units include the The potentials of the plurality of internal electrodes may be controllable independently of each other.
 上記構成によれば、適切な荷電粒子の制御をより高度に行うことができるようになる。 According to the above configuration, appropriate charged particles can be more highly controlled.
 上記一側面に係るプラズマ処理装置において、前記内部電極は、複数の開口を有するカーボン板または金属板からなってもよい。 In the plasma processing apparatus according to one aspect described above, the internal electrode may be made of a carbon plate or a metal plate having a plurality of openings.
 上記構成によれば、開口によって処理室の内部に生じた荷電粒子や処理室の内部に導入された処理ガスなどを円滑に通過させることができ、当該内部電極をアンテナとステージとの間に設けた場合でも、プラズマ処理での処理効率の低下を抑えることができる。 According to the above configuration, charged particles generated inside the processing chamber and processing gas introduced into the processing chamber can smoothly pass through the opening, and the internal electrode is provided between the antenna and the stage. Even in such a case, it is possible to suppress a decrease in processing efficiency in plasma processing.
 上記一側面に係るプラズマ処理装置において、前記ステージに設置された前記被処理物への、前記プラズマを用いた化学気相堆積法による成膜を行ってもよい。 In the plasma processing apparatus according to one aspect described above, film formation may be performed on the object to be processed placed on the stage by a chemical vapor deposition method using the plasma.
 上記構成によれば、被処理物に対し、高品質な成膜を施すことができる。 According to the above configuration, a high-quality film can be formed on the object to be processed.
 本開示は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態に開示された技術的手段を適宜組み合わせて得られる実施形態についても本開示の技術的範囲に含まれる。 The present disclosure is not limited to each embodiment described above, various modifications are possible within the scope shown in the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments are also included in the technical scope of the present disclosure.
 1 プラズマ処理装置
 2 処理室
 3 ステージ
 4 アンテナ
 8 内部電極
 8a 開口
 10、20 電極電位制御部
 30 ステージ電位制御部
 H1 被処理基板(被処理物)
 k 荷電粒子
 p プラスイオン
 e 電子あるいはマイナスイオン
REFERENCE SIGNS LIST 1 plasma processing apparatus 2 processing chamber 3 stage 4 antenna 8 internal electrode 8a opening 10, 20 electrode potential control section 30 stage potential control section H1 substrate to be processed (object to be processed)
k charged particle p positive ion e electron or negative ion

Claims (7)

  1.  処理室を備えたプラズマ処理装置であって、
     前記処理室の内部に、
      被処理物が設置されるステージと、
      前記処理室の内部に誘導結合性のプラズマを発生させるためのアンテナと、
      所定の電位が印加される内部電極と、を備えている、プラズマ処理装置。
    A plasma processing apparatus comprising a processing chamber,
    Inside the processing chamber,
    a stage on which an object to be processed is installed;
    an antenna for generating an inductively coupled plasma inside the processing chamber;
    and an internal electrode to which a predetermined potential is applied.
  2.  前記アンテナは、前記内部電極と前記ステージとの間に配置されている、請求項1に記載のプラズマ処理装置。 The plasma processing apparatus according to claim 1, wherein said antenna is arranged between said internal electrode and said stage.
  3.  前記アンテナは、線状のアンテナである、請求項1または2に記載のプラズマ処理装置。 The plasma processing apparatus according to claim 1 or 2, wherein the antenna is a linear antenna.
  4.  前記ステージの電位を制御するステージ電位制御部をさらに備えている、請求項1から3のいずれか1項に記載のプラズマ処理装置。 The plasma processing apparatus according to any one of claims 1 to 3, further comprising a stage potential control section for controlling the potential of said stage.
  5.  前記内部電極は複数設けられており、
     前記複数の内部電極にそれぞれ接続された複数の電極電位制御部をさらに備え、
     前記複数の電極電位制御部は、前記複数の内部電極の電位を互いに独立して制御可能である、請求項1から4のいずれか1項に記載のプラズマ処理装置。
    A plurality of the internal electrodes are provided,
    further comprising a plurality of electrode potential control units respectively connected to the plurality of internal electrodes;
    5. The plasma processing apparatus according to claim 1, wherein said plurality of electrode potential controllers are capable of controlling the potentials of said plurality of internal electrodes independently of each other.
  6.  前記内部電極は、複数の開口を有するカーボン板または金属板からなる、請求項1から5のいずれか1項に記載のプラズマ処理装置。 The plasma processing apparatus according to any one of claims 1 to 5, wherein the internal electrode is made of a carbon plate or a metal plate having a plurality of openings.
  7.  前記ステージに設置された前記被処理物への、前記プラズマを用いた化学気相堆積法による成膜を行う、請求項1から6のいずれか1項に記載のプラズマ処理装置。 The plasma processing apparatus according to any one of claims 1 to 6, wherein a film is formed on the object to be processed placed on the stage by a chemical vapor deposition method using the plasma.
PCT/JP2023/002362 2022-02-07 2023-01-26 Plasma treatment device WO2023149322A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022017342A JP2023114814A (en) 2022-02-07 2022-02-07 Plasma processing apparatus
JP2022-017342 2022-02-07

Publications (1)

Publication Number Publication Date
WO2023149322A1 true WO2023149322A1 (en) 2023-08-10

Family

ID=87552302

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/002362 WO2023149322A1 (en) 2022-02-07 2023-01-26 Plasma treatment device

Country Status (3)

Country Link
JP (1) JP2023114814A (en)
TW (1) TW202333195A (en)
WO (1) WO2023149322A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05217907A (en) * 1992-02-04 1993-08-27 Nissin Electric Co Ltd Triple-electrode plasma cvd apparatus
JP2012038682A (en) * 2010-08-11 2012-02-23 Tokyo Electron Ltd Plasma processing apparatus and plasma control method
JP2021098876A (en) * 2019-12-23 2021-07-01 日新電機株式会社 Plasma treatment apparatus
JP2021150568A (en) * 2020-03-23 2021-09-27 株式会社Screenホールディングス Substrate-processing apparatus and substrate-processing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05217907A (en) * 1992-02-04 1993-08-27 Nissin Electric Co Ltd Triple-electrode plasma cvd apparatus
JP2012038682A (en) * 2010-08-11 2012-02-23 Tokyo Electron Ltd Plasma processing apparatus and plasma control method
JP2021098876A (en) * 2019-12-23 2021-07-01 日新電機株式会社 Plasma treatment apparatus
JP2021150568A (en) * 2020-03-23 2021-09-27 株式会社Screenホールディングス Substrate-processing apparatus and substrate-processing method

Also Published As

Publication number Publication date
JP2023114814A (en) 2023-08-18
TW202333195A (en) 2023-08-16

Similar Documents

Publication Publication Date Title
EP3711078B1 (en) Linearized energetic radio-frequency plasma ion source
CN105379428B (en) Plasma processing apparatus and method of plasma processing
US20080317965A1 (en) Plasma processing apparatus and method
TW201402851A (en) Method for sputtering for processes with a pre-stabilized plasma
KR100754370B1 (en) Neutral particle beam generating apparatus with increased neutral particle flux
WO2008026738A1 (en) Apparatus and method for manufacturing carbon structure
US20080119049A1 (en) Plasma etching method and apparatus
JP2008069402A (en) Sputtering apparatus and sputtering method
JP2004104095A (en) Magnetron plasma etching apparatus
KR20070053213A (en) Thin-film forming apparatus
WO2012090484A1 (en) Cvd device and cvd method
JP2014037555A (en) Sputtering apparatus
US6238512B1 (en) Plasma generation apparatus
WO2023149322A1 (en) Plasma treatment device
KR100196038B1 (en) Helison wave plasma processing method and device therefor
JP2018154875A (en) Sputtering apparatus
JP2011138712A (en) Plasma generation source, plasma generator, film deposition device, etching device, ashing device, and surface treatment device
US20180066353A1 (en) Vacuum arc deposition apparatus and deposition method
JP2016015436A (en) Etching device and etching method
WO2023149323A1 (en) Plasma treatment device
KR20220067267A (en) Grid apparatus having a beam control function in semiconductor processing system
JP2007277638A (en) Apparatus and method for treating surface of base material
JP2009140932A (en) Plasma generating device
JP3160194B2 (en) Plasma processing method and plasma processing apparatus
JP2015185664A (en) Method for determining processing gas flow rate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23749638

Country of ref document: EP

Kind code of ref document: A1