WO2023149323A1 - Plasma treatment device - Google Patents

Plasma treatment device Download PDF

Info

Publication number
WO2023149323A1
WO2023149323A1 PCT/JP2023/002364 JP2023002364W WO2023149323A1 WO 2023149323 A1 WO2023149323 A1 WO 2023149323A1 JP 2023002364 W JP2023002364 W JP 2023002364W WO 2023149323 A1 WO2023149323 A1 WO 2023149323A1
Authority
WO
WIPO (PCT)
Prior art keywords
drum
plasma processing
plasma
processing apparatus
antenna
Prior art date
Application number
PCT/JP2023/002364
Other languages
French (fr)
Japanese (ja)
Inventor
敏彦 酒井
大介 東
Original Assignee
日新電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日新電機株式会社 filed Critical 日新電機株式会社
Publication of WO2023149323A1 publication Critical patent/WO2023149323A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • C23C16/509Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using internal electrodes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy

Definitions

  • the present disclosure relates to a plasma processing apparatus.
  • a plasma processing apparatus that performs plasma processing on a film inside.
  • the antenna was provided so as to face the peripheral surface of the drum. For this reason, it has been difficult to configure the conventional plasma processing apparatus to be compact.
  • the present disclosure has been made in view of the above problems, and an object thereof is to provide a compact plasma processing apparatus capable of performing plasma processing on continuously supplied films.
  • a plasma processing apparatus includes a processing chamber, and plasma processing that performs processing using plasma on films continuously supplied to the processing chamber.
  • An apparatus comprising: a drum for guiding the film continuously supplied to the processing chamber; and an antenna for generating an inductively coupled plasma inside the processing chamber. The antenna is positioned inside the drum, and the plasma treatment is performed on the film on the drum.
  • FIG. 2 is a diagram for explaining the relationship between the drum and the antenna shown in FIG. 1; FIG. It is a figure explaining the concrete example of composition of the above-mentioned antenna.
  • 2 is a diagram illustrating a specific configuration example of an internal electrode shown in FIG. 1; FIG. It is a figure explaining the function of the said internal electrode. It is a figure explaining the principal part structure of the modification of the said plasma processing apparatus. It is a figure explaining the structure of the plasma processing apparatus which concerns on Embodiment 2 of this indication.
  • 8 is a diagram illustrating a specific configuration example of the antenna shown in FIG. 7; FIG.
  • FIG. 1 is a diagram illustrating the configuration of a plasma processing apparatus 1 according to Embodiment 1 of the present disclosure.
  • FIG. 2 is a diagram for explaining the relationship between the drum 6 and the antenna 8 shown in FIG.
  • FIG. 3 is a diagram for explaining a specific configuration example of the antenna 8.
  • FIG. 4 is a diagram for explaining a specific configuration example of the internal electrode 10 shown in FIG.
  • the predetermined plasma processing a plasma apparatus for performing film formation processing on the substrate to be processed H1 by a plasma CVD (Chemical Vapor Deposition) method using inductively coupled plasma is exemplified. and explain.
  • the predetermined plasma processing for example, sputtering processing for forming a predetermined object on the substrate H1 to be processed using a target, etching processing for removing a predetermined object from the substrate H1 to be processed, or It can also be applied to a plasma processing apparatus that performs an ashing process.
  • the target is placed, for example, in a plasma generation region, which will be described later.
  • the plasma processing apparatus 1 of Embodiment 1 includes a processing chamber 2 for performing predetermined plasma processing on a substrate H1 to be processed.
  • plasma processing is continuously performed on a long substrate H1 to be processed, and the substrate H1 to be processed is sequentially transported to a plasma generation area PA formed inside the processing chamber 2. be done.
  • the plasma processing apparatus 1 is configured such that the plasma processing of the substrate H1 to be processed is performed in the plasma generation area PA.
  • the long substrate to be processed H ⁇ b>1 here is an example of a flexible film that is continuously supplied to the processing chamber 2 .
  • the plasma processing apparatus 1 includes a first load-lock chamber 3 for carrying in from the outside a substrate H1 to be processed, which is wound around a support 3A and has not yet undergone plasma processing.
  • the plasma processing apparatus 1 also includes a second load-lock chamber 4 for unloading the plasma-processed substrate H1 wound around the support 4A to the outside.
  • the first load-lock chamber 3 and the second load-lock chamber 4 are airtightly connected to the processing chamber 2 .
  • a drive mechanism (not shown) is connected to at least one of the support 3A and the support 4A.
  • the drive mechanism rotates the corresponding support 3A or support 4A, so that the substrate to be processed H1 is transferred to the first load lock chamber 3, the processing chamber 2, and the second load lock chamber 3. They are transferred to the lock chamber 4 in order.
  • a first internal roller 5 is provided as a delivery unit for delivering the substrate H1 to be processed from the first load lock chamber 3 to the support.
  • a drum 6 as the support
  • a second internal roller 7 as a carrying-out section for carrying out the substrate H1 to be processed from the drum 6 to the second load-lock chamber 4. is provided.
  • the substrate H1 to be processed is sequentially transported from the support 3A over the outer peripheral surfaces of the first internal roller 5 and the drum 6. As shown in FIG. That is, in the plasma processing apparatus 1, the substrates H1 to be processed are continuously supplied to the processing chamber 2 and plasma processing is performed.
  • a part of the outer peripheral surface of the drum 6 is provided so as to be located in the plasma generation area PA separated by the mask 9 arranged inside the processing chamber 2, as shown in FIG. It is Then, in the plasma processing apparatus 1, the portion of the substrate H1 to be processed on the drum 6 carried to the plasma generation area PA by the drum 6 is subjected to a predetermined plasma processing, and a predetermined object (coating) is formed on the surface of the portion. ) is deposited.
  • the substrate to be processed H1 on which a predetermined coating is formed is conveyed from the drum 6 to the second load lock chamber 4 via the second internal rollers 7. and is wound around the support 4A.
  • the substrate H1 to be processed can be, for example, various films used for liquid crystal panel displays, organic EL (Electro Luminescence) panel displays, or synthetic resin substrates (flexible substrates).
  • the plasma processing apparatus 1 forms a barrier (moisture-proof) film or the like as the predetermined film on the substrate to be processed H1 by the predetermined plasma processing. Further, the substrate to be processed H1 wound around the support 4A is appropriately cut into a desired size and used according to the application.
  • the plasma processing apparatus 1 also includes a control section (not shown) that controls each section of the plasma processing apparatus 1 .
  • the control unit includes, for example, a CPU (Central Processing Unit), RAM (Random Access Memory), ROM (Read Only Memory), etc., and is a functional block that controls each component according to information processing.
  • the processing chamber 2 is configured using a grounded vacuum vessel, and in a state in which the inside of the vacuum vessel is maintained at a predetermined degree of vacuum, the substrate to be processed is subjected to a predetermined plasma processing under the control of the control unit. It is designed to be applied to H1.
  • the processing chamber 2 is provided with a processing gas supply unit (not shown) for introducing into the processing chamber 2 a processing gas corresponding to the predetermined plasma processing and containing the gas for film formation of the film. ), the plasma processing is performed in the atmosphere of the processing gas.
  • Process gases are, for example, argon, hydrogen, nitrogen, silane, or oxygen.
  • a gas supply port of the processing gas supply unit is provided on the wall surface of the processing chamber 2 below the mask 9 in correspondence with the plasma generation area PA (not shown). Further, an exhaust port (not shown) for exhausting the processing gas to the outside is appropriately provided.
  • the plasma processing may be performed in the plasma generation area PA after performing a predetermined preliminary heating process on the substrate H1 to be processed.
  • the first inner roller 5 is provided with a heating unit HA for preheating the substrate H1 to be processed.
  • the heating part HA is controlled by a heating control part HAC provided outside the processing chamber 2, so that the preheating process for the substrate H1 to be processed is appropriately performed.
  • the drum 6 is, for example, a cylindrical body, and is rotatably supported in the processing chamber 2 . As shown in FIG. 2, both ends of the drum 6 are rotatably connected to a mounting structure T via bearings B, respectively.
  • the mounting structure T is airtightly attached to the wall surface of the processing chamber 2 via packing P2.
  • the drum 6 is made of a dielectric such as alumina (aluminum oxide), aluminum oxide, quartz, or silicon nitride.
  • the drum 6 since the drum 6 is rotatably supported in the processing chamber 2, the drum 6 guides the substrate H1 to be processed so that the substrate H1 can be transported smoothly. As a result, the plasma processing apparatus 1 of the first embodiment can more appropriately perform the plasma processing on the substrate H1 to be processed.
  • the drum 6 may be rotated by connecting an operation mechanism such as a motor to the drum 6 to drive the substrate H1 to be processed.
  • the drum 6 may be fixed to the wall surface of the processing chamber 2 so that the substrate H1 to be processed slides on the outer peripheral surface of the drum 6 without the drum 6 rotating.
  • the drum 6 of the present embodiment is a cylinder through which the antenna 8 can be inserted, and guides the substrate H1 to be processed to a plasma generation area (plasma generation area PA) generated inside the processing chamber 2.
  • a plasma generation area PA plasma generation area PA
  • Any cylindrical body may be used as long as it is capable of
  • the drum 6 when the drum 6 is rotatably provided in the processing chamber 2, the substrate H1 to be processed can be smoothly transported, and the plasma processing of the substrate H1 to be processed can be performed more efficiently. It is preferable in that it can be appropriately applied. Further, the rotating portion of the drum 6, particularly the portion near the bearing B, may generate particles due to friction with an adjacent fixed portion such as a flange included in the mounting structure T. Therefore, when the drum 6 is provided rotatably, it is preferable that a cover for covering the end of the drum 6 is provided in the vicinity of the end of the drum 6 . By doing so, the amount of particles adhering to the substrate to be processed H1 can be greatly reduced.
  • an antenna 8 for generating inductively coupled plasma inside the processing chamber 2 is provided inside the drum 6, as shown in FIG. 2, inside the drum 6, as shown in FIG. 2, an antenna 8 for generating inductively coupled plasma inside the processing chamber 2 is provided.
  • the antenna 8 is a linear antenna, is provided so as to be coaxial with the drum 6, and both end portions thereof are airtightly attached to the mounting structure T via packings P1. That is, the plasma processing apparatus 1 of the present disclosure causes a high-frequency induction electric field to be generated in the vicinity of the antenna 8 by passing a high-frequency current through the antenna 8, thereby generating inductively coupled plasma.
  • both ends of the antenna 8 are pulled out to the outside of the processing chamber 2 .
  • impedance adjusters 12 and 14 are provided at one end and the other end of the antenna 8, respectively.
  • the impedance adjuster 12 has a matching circuit, and one end of the antenna 8 is connected to the power supply 13 via the impedance adjuster 12 . Also, the impedance adjustment unit 14 has a variable capacitor. The other end of the antenna 8 is grounded via the impedance adjuster 14 .
  • the power supply 13 supplies high-frequency power of, for example, 13.56 MHz to one end of the antenna 8 via the impedance adjustment section 12 .
  • the controller changes the capacitance of the variable capacitor of the impedance adjuster 14 so that the high-frequency power is efficiently supplied to the antenna 8 inside the processing chamber 2 . Since the antenna 8 is provided so as to be coaxial with the drum 6 , plasma can be generated uniformly in the circumferential direction toward the outer peripheral surface of the drum 6 . As a result, in the plasma processing apparatus 1 of this embodiment, the uniformity of film formation on the substrate H1 to be processed can be improved.
  • the position of the antenna 8 can be adjusted in a direction that compensates for that distribution. For example, in the longitudinal direction of the antenna 8, when the film formation rate near one end of the antenna 8 is low, the end can be adjusted to approach the direction of the plasma generation area PA (lower side of the paper surface of FIG. 1). and the above distribution can be eliminated.
  • the antenna 8 may be configured to be rotatable with respect to the processing chamber 2.
  • the case where the antenna 8 is fixed is preferable in that the configuration of the plasma processing apparatus 1 can be simplified.
  • an internal electrode 10 is provided outside the drum 6 and within the plasma generation area PA.
  • the internal electrode 10 has a substantially arcuate cross-sectional shape along the outer peripheral surface of the drum 6 .
  • the internal electrode 10 is fixed to the mask 9 via the insulating spacer 11, and is arranged in the plasma generation area PA so as to face the outer peripheral surface of the drum 6 and the substrate H1 to be processed on the outer peripheral surface.
  • the internal electrode 10 is configured using, for example, a carbon plate or a metal plate.
  • the internal electrode 10 is a control electrode that controls the charged particles contained in the plasma inside the processing chamber 2 . That is, the internal electrode 10 is connected to an electrode potential control section 10E (FIG. 5) that includes a power supply connected to the internal electrode 10 and controls the potential of the internal electrode 10 by controlling the power supply.
  • the electrode potential controller 10E controls the potential of the internal electrode 10 to a predetermined potential by variably adjusting the applied voltage applied from the electrode power source to the internal electrode 10 according to instructions from the control unit.
  • the carbon plate has a high strength even though the density is lower than that of a metal plate, and the internal electrode 10 is less likely to bend or the like. Therefore, even when the size of the internal electrode 10 is increased, in-plane non-uniformity of plasma due to deflection or the like can be prevented from occurring.
  • the metal plate it is preferable to use a metal material with low density and high electrical conductivity. Specifically, it is preferable to use aluminum or an aluminum alloy.
  • the internal electrode 10 when the internal electrode 10 is configured using a metal plate of such a metal material, the internal electrode 10 can be configured to be more excellent in mechanical impact than the internal electrode 10 using a carbon plate. The impact resistance of the plasma processing apparatus 1 can be enhanced. As a result, for example, when vibration or the like caused by opening and closing a valve (not shown) is transmitted to the plasma processing apparatus 1, it is preferable to form the internal electrode 10 using the metal plate described above.
  • the internal electrode 10 is composed of, for example, a punching metal-shaped grid electrode having a plurality of circular openings 10a.
  • the internal electrode 10 selectively imparts kinetic energy to the charged particles according to the polarity of the charged particles and reduces the amount of charged particles reaching the substrate H1 to be processed (details will be described later).
  • a mesh-like grid electrode may be used as the internal electrode 10 .
  • the plasma generation area PA tends to be limited between the drum 6 and the internal electrode 10 .
  • high-density plasma can be generated, the film formation rate and the etching rate can be improved, and the tact time can be shortened.
  • the processing gas introduced into the processing chamber 2 through the opening 10a can be smoothly supplied to the area above the drum 6 regardless of the ejection position or ejection angle of the processing gas. . Therefore, when the opening 10a is provided, it is possible to suppress the reduction in the processing efficiency of the plasma processing due to the arrangement of the internal electrode 10 inside the processing chamber 2 .
  • FIG. 5 is a diagram for explaining the function of the internal electrode 10. As shown in FIG. In the following description, operations of the internal electrodes 10 are mainly described. Also, in FIG. 5, illustration of the substrate to be processed H1, the drum 6, the antenna 8, and the like is omitted.
  • the antenna 8 (FIG. 1) operates and plasma is generated inside the processing chamber 2
  • the charged particles k contained in the plasma reach the internal electrode 10 unlike the neutral particles n. moves according to the applied voltage. That is, inside the processing chamber 2, as shown in FIG. 5, the processing chamber 2 is grounded. Exercise accordingly. That is, inside the processing chamber 2, the charged particles k are selectively imparted with kinetic energy from the internal electrode 10 according to their polarities, or the amount of the particles reaching the substrate H1 to be processed is reduced.
  • the electrode potential control unit 10E controls the internal electrode 10 so that the potential of the internal electrode 10 is lower than the plasma potential, for example. voltage is applied.
  • the positive ions p have increased kinetic energy in the direction toward the substrate to be processed H1, as indicated by the arrow in FIG.
  • the reaction of the positive ions p on the surface of the substrate H1 to be processed can be promoted, and a high-quality film can be formed on the surface.
  • electrons or negative ions e have increased kinetic energy in the direction opposite to the substrate H1 to be processed, as indicated by the arrow in FIG.
  • the amount of electrons or negative ions e reaching the substrate to be processed H1 can be reduced.
  • the electrons or negative ions e degrade the film quality of the film formed on the surface of the substrate H1 to be processed by the plasma processing, the deterioration of the film quality can be suppressed.
  • the plasma processing apparatus 1 of Embodiment 1 configured as described above includes a processing chamber 2 for performing a predetermined plasma processing on the substrate (film) H1 to be processed.
  • the interior of the processing chamber 2 includes a drum 6 for guiding substrates H1 to be processed which are continuously supplied to the processing chamber 2, and an antenna 8 for generating inductively coupled plasma inside the processing chamber 2. ing.
  • the antenna 8 is arranged inside the drum 6, and the substrate H1 to be processed on the drum 6 is subjected to plasma processing.
  • the plasma processing apparatus 1 of Embodiment 1 uses the cylindrical drum 6 for guiding the elongated substrate H1 to be processed, the elongated substrate H1 to be processed can be plasma-processed. can. Further, in the plasma processing apparatus 1 of Embodiment 1, the antenna 8 is provided inside the drum 6 so as to be coaxial with the drum 6 . As a result, the plasma processing apparatus 1 of Embodiment 1 can efficiently generate plasma in the vicinity of the outer circumference of the drum 6 inside the processing chamber 2 . Furthermore, in the plasma processing apparatus 1 of Embodiment 1, unlike the conventional example, it is not necessary to secure an installation space exclusively for the antenna 8 inside the processing chamber 2 . Therefore, unlike the conventional example, the plasma processing apparatus 1 of Embodiment 1 can prevent the structure from becoming large and complicated, and can constitute a compact plasma processing apparatus 1 .
  • the antenna was provided so as to face the peripheral surface of the drum. For this reason, in the conventional example, it is difficult to achieve a compact configuration that prevents the configuration from becoming large and complicated. Further, in the conventional example, it was necessary to position the antenna with high accuracy with respect to the peripheral surface of the drum. Therefore, in the conventional example, it has been difficult to easily ensure plasma uniformity in the circumferential direction of the drum, and it has been difficult to improve the uniformity of film formation on the film. In particular, in the conventional example, when forming a film over a wide area along the circumferential direction on the outer circumference of the drum, in the conventional example, it was necessary to arrange the antennas in the circumferential direction. For this reason. In the conventional example, the structure is complicated, and it is necessary to provide various antenna mounting structures along the wall of the processing chamber.
  • Embodiment 1 high-quality plasma processing can be performed even on the long substrate H1 to be processed without providing an installation space exclusively for the antenna 8 inside the processing chamber 2. can. Therefore, in Embodiment 1, it is possible to configure a compact plasma processing apparatus 1 capable of forming a film over a wide area along the circumferential direction on the outer circumference of the drum 6 .
  • the plasma processing apparatus 1 of Embodiment 1 by adjusting the position of the antenna 8 inside the drum 6, it is possible to control the plasma generated from the outer peripheral surface of the drum 6 toward the plasma generation area PA. becomes.
  • the plasma from the antenna 8 can be uniformly generated toward the outer peripheral surface of the drum 6 .
  • the uniformity of film formation on the substrate H1 to be processed can be improved. Therefore, in the plasma processing apparatus 1 of Embodiment 1, high-quality plasma processing can be performed even when the long substrate H1 to be processed is continuously subjected to plasma processing.
  • the internal electrode 10 is provided inside the processing chamber 2, the movement and arrival amount of the charged particles of the plasma to the substrate H1 to be processed on the drum 6 can be directly measured. can be controlled to Furthermore, in the plasma processing apparatus 1 of Embodiment 1, a large potential gradient can be formed between the internal electrode 10 and the substrate H1 to be processed during plasma processing.
  • kinetic energy can be selectively applied to the charged particles k contained in the plasma according to the polarity of the charged particles k. . Therefore, in the plasma processing apparatus 1 of Embodiment 1, it is possible to increase or decrease the amount of charged particles k reaching the substrate H1 to be processed. Therefore, in the plasma processing apparatus 1 of Embodiment 1, the movement of the charged particles k can be appropriately controlled, and highly accurate plasma processing can be easily performed on the substrate H1 to be processed.
  • the internal electrode 10 and the antenna 8 are arranged so as to sandwich the substrate H1 to be processed. Therefore, the electric field applied between the internal electrode 10 and the substrate H1 to be processed can act on the plasma for plasma-processing the substrate H1 to be processed on the drum 6 . Therefore, in the plasma processing apparatus 1 of Embodiment 1, it is possible to efficiently control the movement and arrival amount of the plasma charged particles to the substrate H1 to be processed. As a result, in the plasma processing apparatus 1 of Embodiment 1, highly accurate plasma processing can be more easily performed on the substrate H1 to be processed.
  • a chemical vapor deposition method using plasma is performed on the substrate H1 to be processed as plasma processing. Accordingly, in the plasma processing apparatus 1 of the first embodiment, high-quality film formation can be performed on the substrate H1 to be processed.
  • FIG. 6 is a diagram for explaining the main configuration of a modified example of the plasma processing apparatus 1. As shown in FIG.
  • members having the same functions as the members explained in the first embodiment are denoted by the same reference numerals, and the explanation thereof will not be repeated.
  • long holes 2a opening in the radial direction of the drum 6 are formed in the wall surface.
  • the antenna 8 is attached to the wall surface of the processing chamber 2 so that one end 8a and the other end 8b are inserted through the long hole 2a. It is movable in the radial direction. That is, the linear antenna 8 is arranged substantially parallel to the axis of the drum 6 and is supported by the processing chamber 2 so that the angular deviation from the direction parallel to the axis of the drum 6 can be adjusted.
  • the position control section 80 is connected to the one end portion 8a of the antenna 8, for example.
  • the position control unit 80 has a movable mechanism (not shown) such as a motor for moving the one end 8a of the antenna 8 in the radial direction.
  • the position control section 80 controls the positions of the one end portion 8a and the other end portion 8b by operating the movable mechanism according to instructions from the control section. This allows the antenna 8 to be arranged in a longitudinally inclined state with respect to the drum 6 . That is, in this modification, the antenna 8 is arranged coaxially with the drum 6 inside the drum 6, and the central axis of the antenna 8 is inclined with respect to the central axis of the drum 6 in the longitudinal direction. be able to.
  • the position control section 80 can adjust the inclination of the antenna 8 in the longitudinal direction. Therefore, in the plasma processing apparatus 1 of this modified example, the distance between the antenna 8 and the substrate to be processed H1 on the outer peripheral surface of the drum 6 in the longitudinal direction is set to the one end portion 8a side of the antenna 8 and the other end portion 8b. can be set to different values on each side. Therefore, in the plasma processing apparatus 1 of this modified example, when the distribution of film formation on the substrate H1 to be processed is uneven, the adjustment of the mounting of the antenna 8 described above adjusts the unevenness and facilitates uniformity. can be secured to As a result, in the plasma processing apparatus 1 of this modified example, highly accurate plasma processing can be reliably performed on the substrate H1 to be processed.
  • FIG. 7 is a diagram illustrating the configuration of the plasma processing apparatus 1 according to Embodiment 2 of the present disclosure.
  • FIG. 8 is a diagram illustrating a specific configuration example of the antennas 18a, 18b, and 18c shown in FIG.
  • members having the same functions as the members explained in the first embodiment are denoted by the same reference numerals, and the explanation thereof will not be repeated.
  • the main difference between the second embodiment and the first embodiment is that a plurality of antennas 18a, 18b, and 18c are arranged inside the drum 6 along the inner peripheral surface of the drum 6.
  • a plurality of, for example, three antennas 18a, 18b, and 18c are provided inside the drum 6, as shown in FIG. Further, these antennas 18a, 18b, 18c are arranged side by side along the inner peripheral surface of the drum 6. As shown in FIG. Further, these antennas 18a, 18b, and 18c are arranged, for example, so that the separation distance from the inner peripheral surface is the same. Further, the antenna 18b is positioned below the antennas 18a and 18c in the vertical direction of FIG. installed.
  • the impedance adjuster 12 and the power supply 13 are sequentially connected to one end of the antenna 18a.
  • An impedance adjuster 14a is connected to the other end of the antenna 18a and the other end of the antenna 18b.
  • An impedance adjuster 14b is connected to one end of the antenna 18b and one end of the antenna 18c.
  • An impedance adjuster 14c is connected to the other end of the antenna 18c.
  • the impedance adjusters 14a, 14b, and 14c each have a variable capacitor.
  • the antennas 18a, 18b, 18c are connected in series via the impedance adjusters 14a, 14b, and grounded via the impedance adjuster 14c.
  • the controller changes the capacity of each variable capacitor of the impedance adjusters 14a, 14b, and 14c, thereby efficiently supplying high-frequency power to the antennas 18a, 18b, and 18c. control to be supplied.
  • the plasma processing apparatus 1 of the second embodiment has the same effects as those of the first embodiment. Further, in the plasma processing apparatus 1 of Embodiment 2, the antennas 18 a , 18 b , 18 c are arranged uniformly along the inner peripheral surface of the drum 6 inside the drum 6 . Thus, in the plasma processing apparatus 1 of Embodiment 2, the antennas 18a, 18b, and 18c can generate uniform plasma on the outer peripheral surface of the drum 6 in the plasma generation area PA. Therefore, in the plasma processing apparatus 1 of Embodiment 2, plasma can be applied uniformly to the substrate H1 to be processed on the outer peripheral surface of the drum 6 during plasma processing.
  • the uniformity of the plasma to the substrate H1 to be processed can be ensured more reliably, and the plasma processing apparatus 1 to the substrate H1 to be processed can be processed with high accuracy. Plasma processing can be performed more reliably.
  • a plasma processing apparatus includes a processing chamber, and plasma processing that performs processing using plasma on films continuously supplied to the processing chamber.
  • An apparatus comprising: a drum for guiding the film continuously supplied to the processing chamber; and an antenna for generating an inductively coupled plasma inside the processing chamber. The antenna is positioned inside the drum, and the plasma treatment is performed on the film on the drum.
  • the plasma processing apparatus includes a drum inside the processing chamber that guides the film that is continuously supplied to the processing chamber, so that the film can be plasma-processed. Moreover, since the antenna is arranged inside the drum, plasma can be efficiently generated for performing plasma processing on the film on the drum. In addition, it is possible to provide a compact plasma processing apparatus capable of performing high-quality plasma processing without increasing the size and complexity of the processing chamber.
  • an internal electrode to which a predetermined potential is applied may be further provided inside the processing chamber.
  • the plasma processing apparatus since the plasma processing apparatus includes an internal electrode to which a predetermined potential is applied inside the processing chamber, the movement and arrival amount of the charged particles of the plasma with respect to the film on the drum can be directly measured. can be controlled. As a result, highly accurate plasma processing can be easily performed on the film.
  • the internal electrode may be arranged outside the drum.
  • the internal electrodes are arranged so as to sandwich the film between them and the antenna. Therefore, the electric field applied between the internal electrode and the film can act on the plasma for plasma processing the film on the drum. Therefore, it is possible to control the motion of the charged particles of the plasma with respect to the film and the amount of arrival. As a result, highly accurate plasma processing can be easily performed on the film.
  • the internal electrode may be made of a carbon plate or a metal plate having a plurality of openings.
  • the processing gas introduced into the processing chamber through the opening can be smoothly moved to the area above the drum, and the processing efficiency of the plasma processing is lowered by arranging the internal electrode inside the processing chamber. can be suppressed.
  • the antenna is a linear antenna that is arranged substantially parallel to the axis of the drum and whose angular deviation from the direction parallel to the axis of the drum is adjusted. It may be supported in said processing chamber as is possible.
  • the linear antenna can be easily arranged inside the drum. Also, since the antenna can be adjusted in angular deviation from the direction parallel to the axis of the drum, it is possible to more easily ensure the uniformity of the plasma with respect to the film. As a result, highly accurate plasma processing can be reliably performed on the film.
  • the plurality of antennas may be arranged side by side inside the drum along the inner peripheral surface of the drum.
  • each of the plurality of antennas since each of the plurality of antennas generates plasma toward the outer peripheral surface of the drum, the plasma can be applied uniformly to the film being plasma-processed on the outer peripheral surface of the drum. As a result, highly accurate plasma processing of the film can be performed more reliably.
  • a heating unit may be provided for preheating the film, which is continuously supplied to the processing chamber, upstream of the drum.
  • the drum may be rotatably supported in the processing chamber.
  • the drum guides and transports the film, so the film can be transported smoothly.
  • the film can be more appropriately plasma-treated.
  • the plasma processing may be film formation processing by a chemical vapor deposition method using the plasma.
  • a high-quality film can be formed on the object to be processed.

Abstract

The present invention provides a compact plasma treatment device that can apply a plasma treatment to a continuously supplied film. A plasma treatment device (1) comprises a treatment chamber (2) where a prescribed plasma treatment is applied to a substrate (H1) to be treated. The interior of the treatment chamber (2) comprises: a drum (6) that guides the substrate (H1) to be treated supplied continuously to the treatment chamber (2); and an antenna (8) for generating an inductively coupled plasma in the interior of the treatment chamber (2). The antenna (8) is disposed inside the drum (6) and the plasma treatment is applied to the substrate (H1) to be treated on the drum (6).

Description

プラズマ処理装置Plasma processing equipment
 本開示は、プラズマ処理装置に関する。 The present disclosure relates to a plasma processing apparatus.
 処理室に連続して供給されるフィルム(長尺のフレキシブルな被処理基板)に対してプラズマ処理を行うために、ローラを使用してフィルムを搬送しつつ、ドラムの周面で支持された搬送中のフィルムに対してプラズマ処理を実施するプラズマ処理装置が知られている。 In order to perform plasma processing on the film (long flexible substrate to be processed) that is continuously supplied to the processing chamber, the film is transported using rollers and is supported by the peripheral surface of the drum. A plasma processing apparatus is known that performs plasma processing on a film inside.
日本国公開特許公報「特開2008-115412号公報」Japanese patent publication "JP 2008-115412"
 しかしながら、上記の従来のプラズマ処理装置では、アンテナが、ドラムの周面に対向するように設けられていた。このため、従来のプラズマ処理装置は、コンパクトに構成することが困難であった。 However, in the conventional plasma processing apparatus described above, the antenna was provided so as to face the peripheral surface of the drum. For this reason, it has been difficult to configure the conventional plasma processing apparatus to be compact.
 本開示は上記の問題点を鑑みてなされたものであり、連続して供給されるフィルムに対してプラズマ処理を行うことができるコンパクトなプラズマ処理装置を提供することを目的とする。 The present disclosure has been made in view of the above problems, and an object thereof is to provide a compact plasma processing apparatus capable of performing plasma processing on continuously supplied films.
 上記の課題を解決するために、本開示の一側面に係るプラズマ処理装置は、処理室を備え、前記処理室に連続して供給されるフィルムに対して、プラズマを用いた処理を行うプラズマ処理装置であって、前記処理室の内部に、前記処理室に連続して供給される前記フィルムをガイドするドラムと、前記処理室の内部に誘導結合性のプラズマを発生させるためのアンテナと、を備え、前記アンテナは、前記ドラムの内部に配置され、前記プラズマ処理は、前記ドラム上の前記フィルムに対して行われている。 In order to solve the above problems, a plasma processing apparatus according to one aspect of the present disclosure includes a processing chamber, and plasma processing that performs processing using plasma on films continuously supplied to the processing chamber. An apparatus comprising: a drum for guiding the film continuously supplied to the processing chamber; and an antenna for generating an inductively coupled plasma inside the processing chamber. The antenna is positioned inside the drum, and the plasma treatment is performed on the film on the drum.
 本開示の一態様によれば、連続して供給されるフィルムに対してプラズマ処理を行うことができるコンパクトなプラズマ処理装置を提供することができる。 According to one aspect of the present disclosure, it is possible to provide a compact plasma processing apparatus capable of performing plasma processing on continuously supplied films.
本開示の実施形態1に係るプラズマ処理装置の構成を説明する図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure explaining the structure of the plasma processing apparatus which concerns on Embodiment 1 of this indication. 図1に示したドラムとアンテナとの関係を説明する図である。2 is a diagram for explaining the relationship between the drum and the antenna shown in FIG. 1; FIG. 上記アンテナの具体的な構成例を説明する図である。It is a figure explaining the concrete example of composition of the above-mentioned antenna. 図1に示した内部電極の具体的な構成例を説明する図である。2 is a diagram illustrating a specific configuration example of an internal electrode shown in FIG. 1; FIG. 上記内部電極の機能を説明する図である。It is a figure explaining the function of the said internal electrode. 上記プラズマ処理装置の変形例の要部構成を説明する図である。It is a figure explaining the principal part structure of the modification of the said plasma processing apparatus. 本開示の実施形態2に係るプラズマ処理装置の構成を説明する図である。It is a figure explaining the structure of the plasma processing apparatus which concerns on Embodiment 2 of this indication. 図7に示したアンテナの具体的な構成例を説明する図である。8 is a diagram illustrating a specific configuration example of the antenna shown in FIG. 7; FIG.
 〔実施形態1〕
 以下、本開示の実施形態1について、図1から図4を用いて詳細に説明する。図1は、本開示の実施形態1に係るプラズマ処理装置1の構成を説明する図である。図2は、図1に示したドラム6とアンテナ8との関係を説明する図である。図3は、上記アンテナ8の具体的な構成例を説明する図である。図4は、図1に示した内部電極10の具体的な構成例を説明する図である。
[Embodiment 1]
Embodiment 1 of the present disclosure will be described in detail below with reference to FIGS. 1 to 4. FIG. FIG. 1 is a diagram illustrating the configuration of a plasma processing apparatus 1 according to Embodiment 1 of the present disclosure. FIG. 2 is a diagram for explaining the relationship between the drum 6 and the antenna 8 shown in FIG. FIG. 3 is a diagram for explaining a specific configuration example of the antenna 8. As shown in FIG. FIG. 4 is a diagram for explaining a specific configuration example of the internal electrode 10 shown in FIG.
 なお、以下の説明では、所定のプラズマ処理として、誘導結合性のプラズマを使用したプラズマCVD(Chemical Vapor Deposition;化学気相堆積)法によって被処理基板H1上に成膜処理を行うプラズマ装置を例示して説明する。しかしながら、本開示のプラズマ処理装置1は、所定のプラズマ処理として、例えば、ターゲットを用いて被処理基板H1に所定物を形成するスパッタリング処理、または被処理基板H1から所定物を除去するエッチング処理あるいはアッシング処理を実施するプラズマ処理装置にも適用することができる。尚、スパッタリング処理を行うプラズマ処理装置においては、上記ターゲットは、例えば、後述するプラズマ生成領域に設置される。 In the following description, as the predetermined plasma processing, a plasma apparatus for performing film formation processing on the substrate to be processed H1 by a plasma CVD (Chemical Vapor Deposition) method using inductively coupled plasma is exemplified. and explain. However, in the plasma processing apparatus 1 of the present disclosure, as the predetermined plasma processing, for example, sputtering processing for forming a predetermined object on the substrate H1 to be processed using a target, etching processing for removing a predetermined object from the substrate H1 to be processed, or It can also be applied to a plasma processing apparatus that performs an ashing process. In addition, in a plasma processing apparatus that performs a sputtering process, the target is placed, for example, in a plasma generation region, which will be described later.
 <プラズマ処理装置1>
 図1に示すように、本実施形態1のプラズマ処理装置1は、被処理基板H1に対して所定のプラズマ処理を行う処理室2を備えている。プラズマ処理装置1では、長尺の被処理基板H1に対して連続的にプラズマ処理を行うようになっており、被処理基板H1は処理室2の内部に形成されたプラズマ生成領域PAに順次搬送される。そして、プラズマ処理装置1では、被処理基板H1に対するプラズマ処理がプラズマ生成領域PAで行われるように構成されている。なお、ここでいう長尺の被処理基板H1とは、処理室2に連続して供給される、フレキシブルな可撓性を有するフィルムの一例である。
<Plasma processing apparatus 1>
As shown in FIG. 1, the plasma processing apparatus 1 of Embodiment 1 includes a processing chamber 2 for performing predetermined plasma processing on a substrate H1 to be processed. In the plasma processing apparatus 1, plasma processing is continuously performed on a long substrate H1 to be processed, and the substrate H1 to be processed is sequentially transported to a plasma generation area PA formed inside the processing chamber 2. be done. The plasma processing apparatus 1 is configured such that the plasma processing of the substrate H1 to be processed is performed in the plasma generation area PA. The long substrate to be processed H<b>1 here is an example of a flexible film that is continuously supplied to the processing chamber 2 .
 具体的にいえば、プラズマ処理装置1は、支持体3Aに巻回されたプラズマ処理前の被処理基板H1を外部から搬入するための第1のロードロック室3を備えている。また、プラズマ処理装置1は、支持体4Aに巻回されたプラズマ処理後の被処理基板H1を外部に搬出するための第2のロードロック室4を備えている。これら第1のロードロック室3及び第2のロードロック室4は、処理室2に対して気密に接続されている。 Specifically, the plasma processing apparatus 1 includes a first load-lock chamber 3 for carrying in from the outside a substrate H1 to be processed, which is wound around a support 3A and has not yet undergone plasma processing. The plasma processing apparatus 1 also includes a second load-lock chamber 4 for unloading the plasma-processed substrate H1 wound around the support 4A to the outside. The first load-lock chamber 3 and the second load-lock chamber 4 are airtightly connected to the processing chamber 2 .
 尚、支持体3A及び支持体4Aの少なくとも一方には、図示しない駆動機構が接続されている。そして、プラズマ処理装置1では、上記駆動機構が対応する支持体3Aまたは支持体4Aを回転させることにより、被処理基板H1は、第1のロードロック室3、処理室2、及び第2のロードロック室4に順番に移送される。 A drive mechanism (not shown) is connected to at least one of the support 3A and the support 4A. In the plasma processing apparatus 1, the drive mechanism rotates the corresponding support 3A or support 4A, so that the substrate to be processed H1 is transferred to the first load lock chamber 3, the processing chamber 2, and the second load lock chamber 3. They are transferred to the lock chamber 4 in order.
 また、処理室2の内部には、第1のロードロック室3からの被処理基板H1を支持体に送出する送出部としての第1の内部ローラ5が設けられている。また、処理室2の内部には、上記支持体としてのドラム6と、ドラム6から被処理基板H1を第2のロードロック室4に搬出する搬出部としての第2の内部ローラ7と、が設けられている。プラズマ処理装置1では、図1に示すように、被処理基板H1が支持体3Aから、第1の内部ローラ5、及びドラム6の各外周面上を順次搬送される。すなわち、プラズマ処理装置1では、被処理基板H1が処理室2に連続して供給されてプラズマ処理が行われる。 Further, inside the processing chamber 2, a first internal roller 5 is provided as a delivery unit for delivering the substrate H1 to be processed from the first load lock chamber 3 to the support. Further, inside the processing chamber 2, there are a drum 6 as the support and a second internal roller 7 as a carrying-out section for carrying out the substrate H1 to be processed from the drum 6 to the second load-lock chamber 4. is provided. In the plasma processing apparatus 1, as shown in FIG. 1, the substrate H1 to be processed is sequentially transported from the support 3A over the outer peripheral surfaces of the first internal roller 5 and the drum 6. As shown in FIG. That is, in the plasma processing apparatus 1, the substrates H1 to be processed are continuously supplied to the processing chamber 2 and plasma processing is performed.
 また、プラズマ処理装置1では、ドラム6の外周面の一部分は、図1に示すように、処理室2の内部に配置されたマスク9によって区切られた、プラズマ生成領域PAに位置するように設けられている。そして、プラズマ処理装置1では、ドラム6によってプラズマ生成領域PAに運ばれた、ドラム6上の被処理基板H1の部分に所定のプラズマ処理が行われて、当該部分の表面上に所定物(被膜)が成膜される。 Further, in the plasma processing apparatus 1, a part of the outer peripheral surface of the drum 6 is provided so as to be located in the plasma generation area PA separated by the mask 9 arranged inside the processing chamber 2, as shown in FIG. It is Then, in the plasma processing apparatus 1, the portion of the substrate H1 to be processed on the drum 6 carried to the plasma generation area PA by the drum 6 is subjected to a predetermined plasma processing, and a predetermined object (coating) is formed on the surface of the portion. ) is deposited.
 また、プラズマ処理装置1では、図1に示すように、所定の被膜が成膜された被処理基板H1がドラム6から第2の内部ローラ7を介して第2のロードロック室4に搬送されて、支持体4Aに巻回される。 Further, in the plasma processing apparatus 1, as shown in FIG. 1, the substrate to be processed H1 on which a predetermined coating is formed is conveyed from the drum 6 to the second load lock chamber 4 via the second internal rollers 7. and is wound around the support 4A.
 被処理基板H1は、例えば、液晶パネルディスプレイ、有機EL(Electro Luminescence)パネルディスプレイなどに用いられる各種フィルムや、合成樹脂基板(フレキシブル基板)であり得る。プラズマ処理装置1は、上記所定のプラズマ処理によって上記所定の被膜としてバリア(防湿)膜などを被処理基板H1上に成膜する。また、支持体4Aに巻回された被処理基板H1は、用途などに応じて、所望のサイズに適宜カットされて使用される。 The substrate H1 to be processed can be, for example, various films used for liquid crystal panel displays, organic EL (Electro Luminescence) panel displays, or synthetic resin substrates (flexible substrates). The plasma processing apparatus 1 forms a barrier (moisture-proof) film or the like as the predetermined film on the substrate to be processed H1 by the predetermined plasma processing. Further, the substrate to be processed H1 wound around the support 4A is appropriately cut into a desired size and used according to the application.
 また、プラズマ処理装置1は、プラズマ処理装置1の各部を制御する制御部(図示せず)を備えている。この制御部は、例えば、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)等を含み、情報処理に応じて各構成要素の制御を行う機能ブロックである。 The plasma processing apparatus 1 also includes a control section (not shown) that controls each section of the plasma processing apparatus 1 . The control unit includes, for example, a CPU (Central Processing Unit), RAM (Random Access Memory), ROM (Read Only Memory), etc., and is a functional block that controls each component according to information processing.
 <処理室2>
 処理室2は、接地された真空容器を用いて構成されており、当該真空容器の内部が所定の真空度に保たれた状態で、上記制御部の制御によって、所定のプラズマ処理が被処理基板H1に施されるようになっている。
<Processing chamber 2>
The processing chamber 2 is configured using a grounded vacuum vessel, and in a state in which the inside of the vacuum vessel is maintained at a predetermined degree of vacuum, the substrate to be processed is subjected to a predetermined plasma processing under the control of the control unit. It is designed to be applied to H1.
 また、処理室2には、上記所定のプラズマ処理に対応した、上記被膜の成膜用ガスを含んだ処理ガスを処理室2の内部に導入する処理ガス供給部が設けられており(図示せず)、処理ガスの雰囲気化で当該プラズマ処理が行われるようになっている。処理ガスは、例えば、アルゴン、水素、窒素、シラン、または酸素である。また、上記処理ガス供給部のガス供給口は、プラズマ生成領域PAに対応して、マスク9の下方側の処理室2の壁面に設けられている(図示せず)。また、処理ガスを外部に排気する不図示の排気口が適宜設けられている。 Further, the processing chamber 2 is provided with a processing gas supply unit (not shown) for introducing into the processing chamber 2 a processing gas corresponding to the predetermined plasma processing and containing the gas for film formation of the film. ), the plasma processing is performed in the atmosphere of the processing gas. Process gases are, for example, argon, hydrogen, nitrogen, silane, or oxygen. A gas supply port of the processing gas supply unit is provided on the wall surface of the processing chamber 2 below the mask 9 in correspondence with the plasma generation area PA (not shown). Further, an exhaust port (not shown) for exhausting the processing gas to the outside is appropriately provided.
 また、処理室2では、所定の予備加熱処理を被処理基板H1に行った後、プラズマ生成領域PAでのプラズマ処理が行われるようにしてもよい。例えば、第1の内部ローラ5に、被処理基板H1に対して予備加熱する加熱部HAが設けられる。加熱部HAは、処理室2の外部に設けられた加熱制御部HACによって制御されることにより、被処理基板H1に対する予備加熱処理が適切に実施される。このように、予備加熱処理を被処理基板H1に適切に実施することにより、プラズマCVD法により被処理基板H1上に成膜された膜の膜質を高めることができるなど、被処理基板H1に対する高品質のプラズマ処理を施すことができる。 Further, in the processing chamber 2, the plasma processing may be performed in the plasma generation area PA after performing a predetermined preliminary heating process on the substrate H1 to be processed. For example, the first inner roller 5 is provided with a heating unit HA for preheating the substrate H1 to be processed. The heating part HA is controlled by a heating control part HAC provided outside the processing chamber 2, so that the preheating process for the substrate H1 to be processed is appropriately performed. By appropriately performing the preliminary heating process on the substrate H1 to be processed in this way, it is possible to improve the quality of the film formed on the substrate H1 to be processed by the plasma CVD method. A quality plasma treatment can be applied.
 <ドラム6>
 ドラム6は、例えば、円筒状の筒体であり、処理室2に回動可能に支持されている。図2に示すように、ドラム6の両端部は、各々ベアリングBを介して取付構造Tに回動可能に接続されている。取付構造Tは、処理室2の壁面に対して、パッキンP2を介して気密に取り付けられている。また、ドラム6は、例えば、アルミナ(酸化アルミニウム)、化アルミニウム、石英、または窒化ケイ素などの誘電体を用いて構成されている。ドラム6は、上記駆動機構によって、被処理基板H1が搬送されたときに、ドラム6の外周面に接する被処理基板H1からの摩擦力により、図1にRにて示す方向に回動するように構成されている。
<Drum 6>
The drum 6 is, for example, a cylindrical body, and is rotatably supported in the processing chamber 2 . As shown in FIG. 2, both ends of the drum 6 are rotatably connected to a mounting structure T via bearings B, respectively. The mounting structure T is airtightly attached to the wall surface of the processing chamber 2 via packing P2. Also, the drum 6 is made of a dielectric such as alumina (aluminum oxide), aluminum oxide, quartz, or silicon nitride. When the substrate to be processed H1 is transported by the drive mechanism, the drum 6 is rotated in the direction indicated by R in FIG. is configured to
 また、ドラム6は、回動可能に処理室2に支持されているので、ドラム6が被処理基板H1をガイドしつつ、円滑に搬送させることができるようになる。この結果、本実施形態1のプラズマ処理装置1では、被処理基板H1に対するプラズマ処理をより適切に施すことができる。 In addition, since the drum 6 is rotatably supported in the processing chamber 2, the drum 6 guides the substrate H1 to be processed so that the substrate H1 can be transported smoothly. As a result, the plasma processing apparatus 1 of the first embodiment can more appropriately perform the plasma processing on the substrate H1 to be processed.
 なお、上記の説明以外に、ドラム6にモータなどの動作機構を接続することにより、ドラム6を回動させて被処理基板H1を駆動する構成でもよい。また、ドラム6を処理室2の壁面に固定して、ドラム6が回動することなく、ドラム6の外周面上を被処理基板H1が摺動するように構成してもよい。 In addition to the above description, the drum 6 may be rotated by connecting an operation mechanism such as a motor to the drum 6 to drive the substrate H1 to be processed. Alternatively, the drum 6 may be fixed to the wall surface of the processing chamber 2 so that the substrate H1 to be processed slides on the outer peripheral surface of the drum 6 without the drum 6 rotating.
 すなわち、本実施形態のドラム6は、アンテナ8が挿通可能な筒体であって、処理室2の内部に生成される、プラズマの生成領域(プラズマ生成領域PA)に被処理基板H1をガイドすることができる筒体であればよい。 That is, the drum 6 of the present embodiment is a cylinder through which the antenna 8 can be inserted, and guides the substrate H1 to be processed to a plasma generation area (plasma generation area PA) generated inside the processing chamber 2. Any cylindrical body may be used as long as it is capable of
 但し、上記のように、ドラム6が処理室2に回動可能に設けられている場合の方が、被処理基板H1を円滑に搬送させることが可能となり、被処理基板H1に対するプラズマ処理をより適切に施すことができる点で好ましい。また、ドラム6の回動部、特にベアリングBの近傍部は取付構造Tに含まれた隣接するフランジ等の固定部との摩擦によりパーティクル等を発塵する恐れがある。このため、ドラム6を回動可能に設ける場合には、ドラム6の端部を覆うカバーをドラム6の端部近傍に設ける構成であることが好ましい。このようにすることで、被処理基板H1に付着するパーティクル量を大幅に低減することができる。 However, as described above, when the drum 6 is rotatably provided in the processing chamber 2, the substrate H1 to be processed can be smoothly transported, and the plasma processing of the substrate H1 to be processed can be performed more efficiently. It is preferable in that it can be appropriately applied. Further, the rotating portion of the drum 6, particularly the portion near the bearing B, may generate particles due to friction with an adjacent fixed portion such as a flange included in the mounting structure T. Therefore, when the drum 6 is provided rotatably, it is preferable that a cover for covering the end of the drum 6 is provided in the vicinity of the end of the drum 6 . By doing so, the amount of particles adhering to the substrate to be processed H1 can be greatly reduced.
 <アンテナ8>
 また、ドラム6の内部には、図2に示すように、誘導結合性のプラズマを処理室2の内部に発生させるためのアンテナ8が設けられている。具体的には、アンテナ8は直線状のアンテナであり、ドラム6と同軸となるように設けられており、両端部が各々パッキンP1を介して取付構造Tに気密に取り付けられている。つまり、本開示のプラズマ処理装置1は、アンテナ8に高周波電流を流してアンテナ8の近傍に高周波誘導電界を発生させ、誘導結合性のプラズマを生成させる。
<Antenna 8>
Further, inside the drum 6, as shown in FIG. 2, an antenna 8 for generating inductively coupled plasma inside the processing chamber 2 is provided. Specifically, the antenna 8 is a linear antenna, is provided so as to be coaxial with the drum 6, and both end portions thereof are airtightly attached to the mounting structure T via packings P1. That is, the plasma processing apparatus 1 of the present disclosure causes a high-frequency induction electric field to be generated in the vicinity of the antenna 8 by passing a high-frequency current through the antenna 8, thereby generating inductively coupled plasma.
 また、アンテナ8の両端部は、各々処理室2の外部に引き出されている。また、アンテナ8の一方の端部及び他方の端部には、図3に示すように、インピーダンス調整部12及びインピーダンス調整部14がそれぞれ設けられている。 Also, both ends of the antenna 8 are pulled out to the outside of the processing chamber 2 . 3, impedance adjusters 12 and 14 are provided at one end and the other end of the antenna 8, respectively.
 インピーダンス調整部12は、整合回路を備えており、インピーダンス調整部12を介してアンテナ8の一方の端部が電源13に接続されている。また、インピーダンス調整部14は、可変コンデンサを備えている。アンテナ8の他方の端部は、インピーダンス調整部14を介して接地されている。 The impedance adjuster 12 has a matching circuit, and one end of the antenna 8 is connected to the power supply 13 via the impedance adjuster 12 . Also, the impedance adjustment unit 14 has a variable capacitor. The other end of the antenna 8 is grounded via the impedance adjuster 14 .
 電源13は、例えば、13.56MHzの高周波電力を、インピーダンス調整部12を介してアンテナ8の一方の端部に供給する。上記制御部がインピーダンス調整部14の上記可変コンデンサの容量を変更することにより、処理室2の内部のアンテナ8に高周波電力が効率的に供給されるように制御する。そして、アンテナ8は、ドラム6と同軸となるように設けられていることから、ドラム6の外周面に向かう方向で周方向に均一にプラズマを発生させることができる。この結果、本実施形態のプラズマ処理装置1では、被処理基板H1への成膜の均一性を高めることができる。 The power supply 13 supplies high-frequency power of, for example, 13.56 MHz to one end of the antenna 8 via the impedance adjustment section 12 . The controller changes the capacitance of the variable capacitor of the impedance adjuster 14 so that the high-frequency power is efficiently supplied to the antenna 8 inside the processing chamber 2 . Since the antenna 8 is provided so as to be coaxial with the drum 6 , plasma can be generated uniformly in the circumferential direction toward the outer peripheral surface of the drum 6 . As a result, in the plasma processing apparatus 1 of this embodiment, the uniformity of film formation on the substrate H1 to be processed can be improved.
 また、上記のようにアンテナ8がドラム6の内部に同軸となるように設けられているので、プラズマ処理装置1において、部材のばらつき等により、量産前の試作段階で、成膜レート等の分布が確認された場合、その分布を補償する方向にアンテナ8の位置を調整することができる。例えば、アンテナ8の長手方向において、アンテナ8の片側端部付近の成膜レートが低い場合、当該端部をプラズマ生成領域PAの方向(図1の紙面下方)に近づけるような調整を行うことができ、上述の分布を解消することができる。 In addition, since the antenna 8 is coaxially provided inside the drum 6 as described above, the distribution of the film formation rate, etc., may not be obtained in the trial production stage prior to mass production due to variations in the members of the plasma processing apparatus 1 . is identified, the position of the antenna 8 can be adjusted in a direction that compensates for that distribution. For example, in the longitudinal direction of the antenna 8, when the film formation rate near one end of the antenna 8 is low, the end can be adjusted to approach the direction of the plasma generation area PA (lower side of the paper surface of FIG. 1). and the above distribution can be eliminated.
 なお、上記の説明以外に、処理室2に対して、アンテナ8を回動可能に構成してもよい。但し、アンテナ8を固定する場合の方が、プラズマ処理装置1の構成を簡略化することができる点で好ましい。 In addition to the above description, the antenna 8 may be configured to be rotatable with respect to the processing chamber 2. However, the case where the antenna 8 is fixed is preferable in that the configuration of the plasma processing apparatus 1 can be simplified.
 <内部電極10>
 処理室2の内部には、内部電極10がドラム6の外部でプラズマ生成領域PA内に設けられている。具体的には、内部電極10は、ドラム6の外周面に沿うように、断面形状が略円弧状に構成されている。内部電極10は、絶縁スペーサー11を介してマスク9に固定されることにより、プラズマ生成領域PA内でドラム6の外周面及び当該外周面上の被処理基板H1に対向して配置されている。
<Internal electrode 10>
Inside the processing chamber 2, an internal electrode 10 is provided outside the drum 6 and within the plasma generation area PA. Specifically, the internal electrode 10 has a substantially arcuate cross-sectional shape along the outer peripheral surface of the drum 6 . The internal electrode 10 is fixed to the mask 9 via the insulating spacer 11, and is arranged in the plasma generation area PA so as to face the outer peripheral surface of the drum 6 and the substrate H1 to be processed on the outer peripheral surface.
 内部電極10は、例えば、カーボン板または金属板を用いて構成されている。内部電極10は、処理室2の内部において、上記プラズマに含まれた荷電粒子を制御する制御電極である。すなわち、内部電極10には、内部電極10に接続された電源を含み、当該電源を制御することにより、内部電極10の電位を制御する電極電位制御部10E(図5)が接続されている。電極電位制御部10Eは、上記制御部からの指示に従って、電極電源から内部電極10に印加する印加電圧を可変に調整することにより、内部電極10の電位を所定の電位に制御する。 The internal electrode 10 is configured using, for example, a carbon plate or a metal plate. The internal electrode 10 is a control electrode that controls the charged particles contained in the plasma inside the processing chamber 2 . That is, the internal electrode 10 is connected to an electrode potential control section 10E (FIG. 5) that includes a power supply connected to the internal electrode 10 and controls the potential of the internal electrode 10 by controlling the power supply. The electrode potential controller 10E controls the potential of the internal electrode 10 to a predetermined potential by variably adjusting the applied voltage applied from the electrode power source to the internal electrode 10 according to instructions from the control unit.
 尚、カーボン板を用いて内部電極10を構成した場合には、カーボン板は、金属板に比べて密度が小さいにもかかわらず、強度が強く、たわみ等が内部電極10に発生しにくい。このため、内部電極10を大型化したときでも、たわみ等に起因した、プラズマの面内不均一性を生じ難くすることができる。 When the internal electrode 10 is formed using a carbon plate, the carbon plate has a high strength even though the density is lower than that of a metal plate, and the internal electrode 10 is less likely to bend or the like. Therefore, even when the size of the internal electrode 10 is increased, in-plane non-uniformity of plasma due to deflection or the like can be prevented from occurring.
 また、金属板には、密度が低く、電気伝導度が高い金属材料を用いることが好ましく、具体的には、アルミニウムまたはアルミニウム合金を用いることが好ましい。また、このような金属材料の金属板を用いて内部電極10を構成した場合には、カーボン板を用いた内部電極10よりも、機械的衝撃に優れた内部電極10を構成することができ、プラズマ処理装置1の耐衝撃性を高めることができる。この結果、例えば、プラズマ処理装置1に対し、不図示のバルブの開閉等に起因する振動等が伝わる場合には、上述の金属板を用いて内部電極10を構成する場合の方が好ましい。 For the metal plate, it is preferable to use a metal material with low density and high electrical conductivity. Specifically, it is preferable to use aluminum or an aluminum alloy. In addition, when the internal electrode 10 is configured using a metal plate of such a metal material, the internal electrode 10 can be configured to be more excellent in mechanical impact than the internal electrode 10 using a carbon plate. The impact resistance of the plasma processing apparatus 1 can be enhanced. As a result, for example, when vibration or the like caused by opening and closing a valve (not shown) is transmitted to the plasma processing apparatus 1, it is preferable to form the internal electrode 10 using the metal plate described above.
 内部電極10は、図4に示すように、例えば、各々円形状に形成された、複数の開口10aを有するパンチングメタル形状のグリッド電極によって構成されている。内部電極10では、上記荷電粒子の極性に応じて、選択的に運動エネルギーを荷電粒子に与えたり、被処理基板H1への荷電粒子の到達量を低減させたりする(詳細は後述。)。 As shown in FIG. 4, the internal electrode 10 is composed of, for example, a punching metal-shaped grid electrode having a plurality of circular openings 10a. The internal electrode 10 selectively imparts kinetic energy to the charged particles according to the polarity of the charged particles and reduces the amount of charged particles reaching the substrate H1 to be processed (details will be described later).
 なお、上記の説明以外に、例えば、メッシュ状のグリッド電極を内部電極10に用いる構成でもよい。 In addition to the above description, for example, a mesh-like grid electrode may be used as the internal electrode 10 .
 また、上記の説明以外に、開口10aを設けていない、平板状の内部電極10を用いることもできる。この場合、プラズマ生成領域PAは、ドラム6と内部電極10の間に限定される傾向となる。これにより、高密度なプラズマを生成でき、成膜レートやエッチングレートを向上させることが可能となってタクトタイムを短くできる。但し、処理ガスが、プラズマ生成領域PAに効率よく供給されるように、処理ガスの噴出位置および噴出角度を調整することが好ましい。 In addition to the above description, it is also possible to use flat internal electrodes 10 without openings 10a. In this case, the plasma generation area PA tends to be limited between the drum 6 and the internal electrode 10 . As a result, high-density plasma can be generated, the film formation rate and the etching rate can be improved, and the tact time can be shortened. However, it is preferable to adjust the ejection position and ejection angle of the processing gas so that the processing gas is efficiently supplied to the plasma generation area PA.
 一方、開口10aを設けている場合、処理ガスの噴出位置や噴出角度によらず、開口10aによって処理室2の内部に導入された処理ガスをドラム6上の領域に円滑に供給することができる。このため、開口10aを設けている場合、内部電極10を処理室2の内部に配置したことによるプラズマ処理の処理効率の低下を抑えることができる。 On the other hand, when the opening 10a is provided, the processing gas introduced into the processing chamber 2 through the opening 10a can be smoothly supplied to the area above the drum 6 regardless of the ejection position or ejection angle of the processing gas. . Therefore, when the opening 10a is provided, it is possible to suppress the reduction in the processing efficiency of the plasma processing due to the arrangement of the internal electrode 10 inside the processing chamber 2 .
 <動作例>
 図5も用いて、本実施形態1のプラズマ処理装置1の動作について具体的に説明する。図5は、上記内部電極10の機能を説明する図である。なお、以下の説明では、内部電極10の動作について主に説明する。また、図5では、被処理基板H1、ドラム6、及びアンテナ8などの図示は省略する。
<Operation example>
Also using FIG. 5, the operation of the plasma processing apparatus 1 of the first embodiment will be specifically described. FIG. 5 is a diagram for explaining the function of the internal electrode 10. As shown in FIG. In the following description, operations of the internal electrodes 10 are mainly described. Also, in FIG. 5, illustration of the substrate to be processed H1, the drum 6, the antenna 8, and the like is omitted.
 図5に示すように、アンテナ8(図1)が動作して処理室2の内部にプラズマが発生すると、当該プラズマに含まれた荷電粒子kは、中性粒子nと異なり、内部電極10への印加電圧に応じて、移動する。つまり、処理室2の内部では、図5に示すように、処理室2は接地されているので、プラスイオンp及び電子あるいはマイナスイオンeからなる荷電粒子kは、内部電極10への印加電圧に応じて、運動する。つまり、処理室2の内部では、上記荷電粒子kは、その極性に応じて、内部電極10から選択的に運動エネルギーを与えられたり、被処理基板H1への到達量を低減させられたりする。 As shown in FIG. 5, when the antenna 8 (FIG. 1) operates and plasma is generated inside the processing chamber 2, the charged particles k contained in the plasma reach the internal electrode 10 unlike the neutral particles n. moves according to the applied voltage. That is, inside the processing chamber 2, as shown in FIG. 5, the processing chamber 2 is grounded. Exercise accordingly. That is, inside the processing chamber 2, the charged particles k are selectively imparted with kinetic energy from the internal electrode 10 according to their polarities, or the amount of the particles reaching the substrate H1 to be processed is reduced.
 具体的にいえば、図5の矢印Eにて示すように、電極電位制御部10Eが、例えば、内部電極10の電位がプラズマ電位よりも低電位となるように、内部電極10に対して負の電圧を印加する。この場合、プラスイオンpは、図5の矢印に示すように、被処理基板H1へ向かう方向での運動エネルギーが大きくされる。この結果、被処理基板H1の表面でのプラスイオンpの反応を促進することができ、高品質な膜を当該表面上に成膜することができる。 Specifically, as indicated by an arrow E in FIG. 5, the electrode potential control unit 10E controls the internal electrode 10 so that the potential of the internal electrode 10 is lower than the plasma potential, for example. voltage is applied. In this case, the positive ions p have increased kinetic energy in the direction toward the substrate to be processed H1, as indicated by the arrow in FIG. As a result, the reaction of the positive ions p on the surface of the substrate H1 to be processed can be promoted, and a high-quality film can be formed on the surface.
 一方、電子あるいはマイナスイオンeは、図5の矢印に示すように、被処理基板H1とは反対側へ向かう方向での運動エネルギーが大きくされる。これにより、電子あるいはマイナスイオンeの被処理基板H1への到達量を低減することができる。この結果、電子あるいはマイナスイオンeがプラズマ処理による被処理基板H1の表面に形成される被膜の膜質を低下させる場合などにおいて、膜質の低下を抑えることができる。 On the other hand, electrons or negative ions e have increased kinetic energy in the direction opposite to the substrate H1 to be processed, as indicated by the arrow in FIG. As a result, the amount of electrons or negative ions e reaching the substrate to be processed H1 can be reduced. As a result, when the electrons or negative ions e degrade the film quality of the film formed on the surface of the substrate H1 to be processed by the plasma processing, the deterioration of the film quality can be suppressed.
 以上のように構成された本実施形態1のプラズマ処理装置1は、被処理基板(フィルム)H1に対して所定のプラズマ処理を行う処理室2を備えている。処理室2の内部は、処理室2に連続して供給される被処理基板H1をガイドするドラム6と、処理室2の内部に誘導結合性のプラズマを発生させるためのアンテナ8と、を備えている。アンテナ8は、ドラム6の内部に配置され、プラズマ処理はドラム6上の被処理基板H1に対して行われている。これにより、本実施形態1では、処理室2に連続して供給される長尺の被処理基板H1に対してプラズマ処理を連続的に行う場合でも、高品質のプラズマ処理を行うことができるコンパクトなプラズマ処理装置1を構成することができる。 The plasma processing apparatus 1 of Embodiment 1 configured as described above includes a processing chamber 2 for performing a predetermined plasma processing on the substrate (film) H1 to be processed. The interior of the processing chamber 2 includes a drum 6 for guiding substrates H1 to be processed which are continuously supplied to the processing chamber 2, and an antenna 8 for generating inductively coupled plasma inside the processing chamber 2. ing. The antenna 8 is arranged inside the drum 6, and the substrate H1 to be processed on the drum 6 is subjected to plasma processing. As a result, in the first embodiment, even when plasma processing is continuously performed on long substrates H1 to be processed which are continuously supplied to the processing chamber 2, a compact plasma processing apparatus capable of performing high-quality plasma processing can be performed. It is possible to configure a plasma processing apparatus 1 with a
 つまり、本実施形態1のプラズマ処理装置1は、長尺の被処理基板H1をガイドする円筒状のドラム6を用いているので、長尺の被処理基板H1に対してプラズマ処理を行うことができる。また、本実施形態1のプラズマ処理装置1は、アンテナ8をドラム6と同軸となるようにドラム6の内部に設けている。この結果、本実施形態1のプラズマ処理装置1は、処理室2の内部でドラム6の外周近傍にプラズマを効率よく生成できる。更に、本実施形態1のプラズマ処理装置1では、上記従来例と異なり、処理室2の内部に、アンテナ8専用の設置スペースを確保する必要がない。したがって、本実施形態1のプラズマ処理装置1は、上記従来例と異なり、構造の大型化や複雑化することを抑えることができ、コンパクトなプラズマ処理装置1を構成することができる。 That is, since the plasma processing apparatus 1 of Embodiment 1 uses the cylindrical drum 6 for guiding the elongated substrate H1 to be processed, the elongated substrate H1 to be processed can be plasma-processed. can. Further, in the plasma processing apparatus 1 of Embodiment 1, the antenna 8 is provided inside the drum 6 so as to be coaxial with the drum 6 . As a result, the plasma processing apparatus 1 of Embodiment 1 can efficiently generate plasma in the vicinity of the outer circumference of the drum 6 inside the processing chamber 2 . Furthermore, in the plasma processing apparatus 1 of Embodiment 1, unlike the conventional example, it is not necessary to secure an installation space exclusively for the antenna 8 inside the processing chamber 2 . Therefore, unlike the conventional example, the plasma processing apparatus 1 of Embodiment 1 can prevent the structure from becoming large and complicated, and can constitute a compact plasma processing apparatus 1 .
 すなわち、上記従来例では、アンテナがドラムの周面に対向するように設けられていた。このため、従来例では、その構成の大型化や複雑化することを抑えるコンパクトに構成することが困難であった。また、従来例では、ドラムの周面に対して、アンテナを精度よく位置決めする必要があった。それ故、従来例では、ドラムの周方向におけるプラズマの均一性を容易に確保することができずに、フィルムでの成膜の均一性をも向上させることが難しいことがあった。特に、従来例において、ドラムの外周で周方向に沿って広い領域で成膜をさせる場合には、従来例ではアンテナを周方向に並べる必要があった。このため。従来例では、その構成が複雑化し、更には処理室の壁に沿ってアンテナの取付構造などを色々と設ける必要を生じた。 That is, in the conventional example described above, the antenna was provided so as to face the peripheral surface of the drum. For this reason, in the conventional example, it is difficult to achieve a compact configuration that prevents the configuration from becoming large and complicated. Further, in the conventional example, it was necessary to position the antenna with high accuracy with respect to the peripheral surface of the drum. Therefore, in the conventional example, it has been difficult to easily ensure plasma uniformity in the circumferential direction of the drum, and it has been difficult to improve the uniformity of film formation on the film. In particular, in the conventional example, when forming a film over a wide area along the circumferential direction on the outer circumference of the drum, in the conventional example, it was necessary to arrange the antennas in the circumferential direction. For this reason. In the conventional example, the structure is complicated, and it is necessary to provide various antenna mounting structures along the wall of the processing chamber.
 一方、本実施形態1のプラズマ処理装置1では、アンテナ8専用の設置スペースを処理室2の内部に設けることなく、長尺の被処理基板H1に対しても高品質のプラズマ処理を行うことができる。このため、本実施形態1では、ドラム6の外周で周方向に沿って広い領域で成膜を行うことができるコンパクトなプラズマ処理装置1を構成することができる。 On the other hand, in the plasma processing apparatus 1 of Embodiment 1, high-quality plasma processing can be performed even on the long substrate H1 to be processed without providing an installation space exclusively for the antenna 8 inside the processing chamber 2. can. Therefore, in Embodiment 1, it is possible to configure a compact plasma processing apparatus 1 capable of forming a film over a wide area along the circumferential direction on the outer circumference of the drum 6 .
 また、本実施形態1のプラズマ処理装置1では、ドラム6の内部における、アンテナ8の位置を調整することにより、ドラム6の外周面からプラズマ生成領域PAに向かって生じるプラズマを制御することが可能となる。これにより、本実施形態1のプラズマ処理装置1では、アンテナ8からのプラズマをドラム6の外周面に向かって均一に発生させることが可能となる。この結果、本実施形態1のプラズマ処理装置1では、被処理基板H1での成膜の均一性を高めることができる。従って、本実施形態1のプラズマ処理装置1では、長尺の被処理基板H1に対してプラズマ処理を連続的に行う場合でも、高品質のプラズマ処理を行うことができる。 Further, in the plasma processing apparatus 1 of Embodiment 1, by adjusting the position of the antenna 8 inside the drum 6, it is possible to control the plasma generated from the outer peripheral surface of the drum 6 toward the plasma generation area PA. becomes. Thus, in the plasma processing apparatus 1 of Embodiment 1, the plasma from the antenna 8 can be uniformly generated toward the outer peripheral surface of the drum 6 . As a result, in the plasma processing apparatus 1 of Embodiment 1, the uniformity of film formation on the substrate H1 to be processed can be improved. Therefore, in the plasma processing apparatus 1 of Embodiment 1, high-quality plasma processing can be performed even when the long substrate H1 to be processed is continuously subjected to plasma processing.
 また、本実施形態1のプラズマ処理装置1では、内部電極10を処理室2の内部に備えているため、上記プラズマの荷電粒子のドラム6上の被処理基板H1に対する運動や到達量を直接的に制御することができる。さらに、本実施形態1のプラズマ処理装置1では、内部電極10とプラズマ処理中の被処理基板H1との間での電位勾配を大きく形成することができる。 Further, in the plasma processing apparatus 1 of Embodiment 1, since the internal electrode 10 is provided inside the processing chamber 2, the movement and arrival amount of the charged particles of the plasma to the substrate H1 to be processed on the drum 6 can be directly measured. can be controlled to Furthermore, in the plasma processing apparatus 1 of Embodiment 1, a large potential gradient can be formed between the internal electrode 10 and the substrate H1 to be processed during plasma processing.
 この結果、本実施形態1のプラズマ処理装置1では、図5に例示したように、プラズマに含まれた荷電粒子kの極性に応じて、選択的に運動エネルギーを荷電粒子kに与えることができる。このため、本実施形態1のプラズマ処理装置1では、被処理基板H1への荷電粒子kの到達量を増減することができる。従って、本実施形態1のプラズマ処理装置1では、荷電粒子kの動作を適切に制御することができ、被処理基板H1に対する高精度なプラズマ処理を容易に行うことができる。 As a result, in the plasma processing apparatus 1 of the first embodiment, as illustrated in FIG. 5, kinetic energy can be selectively applied to the charged particles k contained in the plasma according to the polarity of the charged particles k. . Therefore, in the plasma processing apparatus 1 of Embodiment 1, it is possible to increase or decrease the amount of charged particles k reaching the substrate H1 to be processed. Therefore, in the plasma processing apparatus 1 of Embodiment 1, the movement of the charged particles k can be appropriately controlled, and highly accurate plasma processing can be easily performed on the substrate H1 to be processed.
 また、本実施形態1のプラズマ処理装置1では、内部電極10はアンテナ8との間で被処理基板H1を挟むように配置される。そのため、ドラム6上の被処理基板H1に対してプラズマ処理を行うプラズマに対して、内部電極10により被処理基板H1との間に付与される電界を作用させることができるようになる。よって、本実施形態1のプラズマ処理装置1では、プラズマの荷電粒子の被処理基板H1に対する運動や到達量の制御を効率的に行うことができる。この結果、本実施形態1のプラズマ処理装置1では、被処理基板H1に対する高精度なプラズマ処理をより容易に行うことができる。 Further, in the plasma processing apparatus 1 of Embodiment 1, the internal electrode 10 and the antenna 8 are arranged so as to sandwich the substrate H1 to be processed. Therefore, the electric field applied between the internal electrode 10 and the substrate H1 to be processed can act on the plasma for plasma-processing the substrate H1 to be processed on the drum 6 . Therefore, in the plasma processing apparatus 1 of Embodiment 1, it is possible to efficiently control the movement and arrival amount of the plasma charged particles to the substrate H1 to be processed. As a result, in the plasma processing apparatus 1 of Embodiment 1, highly accurate plasma processing can be more easily performed on the substrate H1 to be processed.
 また、本実施形態1のプラズマ処理装置1では、プラズマ処理として、被処理基板H1に対してプラズマを使用した化学気相堆積法を行っている。これにより、本実施形態1のプラズマ処理装置1では、被処理基板H1に対し、高品質な成膜を施すことができる。 Further, in the plasma processing apparatus 1 of Embodiment 1, a chemical vapor deposition method using plasma is performed on the substrate H1 to be processed as plasma processing. Accordingly, in the plasma processing apparatus 1 of the first embodiment, high-quality film formation can be performed on the substrate H1 to be processed.
 〔変形例〕
 本開示の変形例について、図6を用いて具体的に説明する。図6は、上記プラズマ処理装置1の変形例の要部構成を説明する図である。なお、説明の便宜上、上記実施形態1にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を繰り返さない。
[Modification]
A modification of the present disclosure will be specifically described with reference to FIG. FIG. 6 is a diagram for explaining the main configuration of a modified example of the plasma processing apparatus 1. As shown in FIG. For convenience of explanation, members having the same functions as the members explained in the first embodiment are denoted by the same reference numerals, and the explanation thereof will not be repeated.
 本変形例と上記実施形態1との主な相違点は、アンテナ8の長手方向の一端部8a及び他端部8bをドラム6の径方向に移動可能に処理室2に設けて、一端部8a及び他端部8bの各位置を制御する位置制御部80を設けた点である。 The main difference between this modification and Embodiment 1 is that one end 8a and the other end 8b in the longitudinal direction of the antenna 8 are provided in the processing chamber 2 so as to be movable in the radial direction of the drum 6, and the one end 8a and a position control section 80 for controlling each position of the other end portion 8b.
 本変形例のプラズマ処理装置1では、図6に示すように、処理室2において、ドラム6(図1)の径方向に開口した長孔2aが壁面に形成されている。また、アンテナ8は、一端部8a及び他端部8bが各々長孔2aを挿通するように処理室2の壁面に取り付けられており、一端部8a及び他端部8bは各々長孔2a内を上記径方向に移動可能となっている。つまり、線状のアンテナ8は、ドラム6の軸に略平行に配置されるとともに、ドラム6の軸と平行な方向からの角度のずれが調整可能であるように、処理室2に支持されている。 In the plasma processing apparatus 1 of this modified example, as shown in FIG. 6, in the processing chamber 2, long holes 2a opening in the radial direction of the drum 6 (FIG. 1) are formed in the wall surface. The antenna 8 is attached to the wall surface of the processing chamber 2 so that one end 8a and the other end 8b are inserted through the long hole 2a. It is movable in the radial direction. That is, the linear antenna 8 is arranged substantially parallel to the axis of the drum 6 and is supported by the processing chamber 2 so that the angular deviation from the direction parallel to the axis of the drum 6 can be adjusted. there is
 また、本変形例のプラズマ処理装置1では、位置制御部80が、例えば、アンテナ8の一端部8aに接続されている。この位置制御部80は、アンテナ8の一端部8aを上記径方向に移動させるためのモータ等の可動機構(図示せず)を備えている。そして、位置制御部80は、上記制御部からの指示に従って、上記可動機構を動作させることにより、一端部8a及び他端部8bの各位置を制御する。これにより、アンテナ8は、ドラム6に対して、長手方向で傾いた状態で配置されることが可能となる。すなわち、本変形例では、アンテナ8は、ドラム6の内部でドラム6と同軸に配置された状態から、アンテナ8の中心軸がドラム6の中心軸に対して長手方向で傾斜した状態とされることができる。 Further, in the plasma processing apparatus 1 of this modified example, the position control section 80 is connected to the one end portion 8a of the antenna 8, for example. The position control unit 80 has a movable mechanism (not shown) such as a motor for moving the one end 8a of the antenna 8 in the radial direction. The position control section 80 controls the positions of the one end portion 8a and the other end portion 8b by operating the movable mechanism according to instructions from the control section. This allows the antenna 8 to be arranged in a longitudinally inclined state with respect to the drum 6 . That is, in this modification, the antenna 8 is arranged coaxially with the drum 6 inside the drum 6, and the central axis of the antenna 8 is inclined with respect to the central axis of the drum 6 in the longitudinal direction. be able to.
 以上のように、本変形例のプラズマ処理装置1では、位置制御部80がアンテナ8の長手方向での傾きを調整することが可能である。このため、本変形例のプラズマ処理装置1では、上記長手方向における、アンテナ8とドラム6の外周面上の被処理基板H1との間の距離をアンテナ8の一端部8a側と他端部8b側とで異なる値に設定することができる。従って、本変形例のプラズマ処理装置1では、被処理基板H1への成膜分布に偏りができた場合に、アンテナ8の取付けの上記調整を行うことで、偏りを調整して均一性を容易に確保することができる。この結果、本変形例のプラズマ処理装置1では、被処理基板H1に対する高精度なプラズマ処理を確実に行うことができる。 As described above, in the plasma processing apparatus 1 of this modification, the position control section 80 can adjust the inclination of the antenna 8 in the longitudinal direction. Therefore, in the plasma processing apparatus 1 of this modified example, the distance between the antenna 8 and the substrate to be processed H1 on the outer peripheral surface of the drum 6 in the longitudinal direction is set to the one end portion 8a side of the antenna 8 and the other end portion 8b. can be set to different values on each side. Therefore, in the plasma processing apparatus 1 of this modified example, when the distribution of film formation on the substrate H1 to be processed is uneven, the adjustment of the mounting of the antenna 8 described above adjusts the unevenness and facilitates uniformity. can be secured to As a result, in the plasma processing apparatus 1 of this modified example, highly accurate plasma processing can be reliably performed on the substrate H1 to be processed.
 〔実施形態2〕
 本開示の実施形態2について、図7及び図8を用いて具体的に説明する。図7は、本開示の実施形態2に係るプラズマ処理装置1の構成を説明する図である。図8は、図7に示したアンテナ18a、18b、18cの具体的な構成例を説明する図である。なお、説明の便宜上、上記実施形態1にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を繰り返さない。
[Embodiment 2]
Embodiment 2 of the present disclosure will be specifically described with reference to FIGS. 7 and 8. FIG. FIG. 7 is a diagram illustrating the configuration of the plasma processing apparatus 1 according to Embodiment 2 of the present disclosure. FIG. 8 is a diagram illustrating a specific configuration example of the antennas 18a, 18b, and 18c shown in FIG. For convenience of explanation, members having the same functions as the members explained in the first embodiment are denoted by the same reference numerals, and the explanation thereof will not be repeated.
 本実施形態2と上記実施形態1との主な相違点は、複数のアンテナ18a、18b、18cをドラム6の内周面に沿うようにドラム6の内部に並べて設けた点である。 The main difference between the second embodiment and the first embodiment is that a plurality of antennas 18a, 18b, and 18c are arranged inside the drum 6 along the inner peripheral surface of the drum 6. FIG.
 本実施形態2のプラズマ処理装置1では、図7に示すように、複数、例えば、3つのアンテナ18a、18b、18cがドラム6の内部に設けられている。また、これらのアンテナ18a、18b、18cは、ドラム6の内周面に沿うように並べて設けられている。また、これらのアンテナ18a、18b、18cは、例えば、上記内周面に対する離間距離が同じとなるように、配置されている。更に、アンテナ18bは、図7の上下方向において、アンテナ18a、18cよりも下側の位置で、かつ、アンテナ18aとの距離及びアンテナ18cとの距離が同一距離となるように、処理室2に取り付けられている。 In the plasma processing apparatus 1 of Embodiment 2, a plurality of, for example, three antennas 18a, 18b, and 18c are provided inside the drum 6, as shown in FIG. Further, these antennas 18a, 18b, 18c are arranged side by side along the inner peripheral surface of the drum 6. As shown in FIG. Further, these antennas 18a, 18b, and 18c are arranged, for example, so that the separation distance from the inner peripheral surface is the same. Further, the antenna 18b is positioned below the antennas 18a and 18c in the vertical direction of FIG. installed.
 図8に示すように、アンテナ18aの一方の端部には、インピーダンス調整部12及び電源13が順次接続されている。また、アンテナ18aの他方の端部及びアンテナ18bの他方の端部には、インピーダンス調整部14aが接続されている。また、アンテナ18bの一方の端部及びアンテナ18cの一方の端部には、インピーダンス調整部14bが接続されている。また、アンテナ18cの他方の端部には、インピーダンス調整部14cが接続されている。 As shown in FIG. 8, the impedance adjuster 12 and the power supply 13 are sequentially connected to one end of the antenna 18a. An impedance adjuster 14a is connected to the other end of the antenna 18a and the other end of the antenna 18b. An impedance adjuster 14b is connected to one end of the antenna 18b and one end of the antenna 18c. An impedance adjuster 14c is connected to the other end of the antenna 18c.
 インピーダンス調整部14a、14b、14cは、各々可変コンデンサを備えている。アンテナ18a、18b、18cは、インピーダンス調整部14a、14bを介在させて直列に接続されており、インピーダンス調整部14cを介して接地されている。そして、本実施形態2のプラズマ処理装置1では、上記制御部がインピーダンス調整部14a、14b、14cの各可変コンデンサの容量を変更することにより、アンテナ18a、18b、18cに高周波電力が効率的に供給されるように制御する。 The impedance adjusters 14a, 14b, and 14c each have a variable capacitor. The antennas 18a, 18b, 18c are connected in series via the impedance adjusters 14a, 14b, and grounded via the impedance adjuster 14c. In the plasma processing apparatus 1 of Embodiment 2, the controller changes the capacity of each variable capacitor of the impedance adjusters 14a, 14b, and 14c, thereby efficiently supplying high-frequency power to the antennas 18a, 18b, and 18c. control to be supplied.
 以上の構成により、本実施形態2のプラズマ処理装置1では、上記実施形態1のものと同様な効果を奏する。また、本実施形態2のプラズマ処理装置1では、ドラム6の内部において、アンテナ18a、18b、18cがドラム6の内周面に沿って均一に並べて設けられている。これにより、本実施形態2のプラズマ処理装置1では、アンテナ18a、18b、18cは、プラズマ生成領域PAにおいて、ドラム6の外周面上に生じるプラズマが均一になるように発生させることができる。従って、本実施形態2のプラズマ処理装置1では、ドラム6の外周面上のプラズマ処理中の被処理基板H1に対して、プラズマを均一に付与することができる。 With the above configuration, the plasma processing apparatus 1 of the second embodiment has the same effects as those of the first embodiment. Further, in the plasma processing apparatus 1 of Embodiment 2, the antennas 18 a , 18 b , 18 c are arranged uniformly along the inner peripheral surface of the drum 6 inside the drum 6 . Thus, in the plasma processing apparatus 1 of Embodiment 2, the antennas 18a, 18b, and 18c can generate uniform plasma on the outer peripheral surface of the drum 6 in the plasma generation area PA. Therefore, in the plasma processing apparatus 1 of Embodiment 2, plasma can be applied uniformly to the substrate H1 to be processed on the outer peripheral surface of the drum 6 during plasma processing.
 この結果、本実施形態2のプラズマ処理装置1では、実施形態1のものに比べて、被処理基板H1に対するプラズマの均一性をより確実に確保することができ、被処理基板H1に対する高精度なプラズマ処理をより確実に行うことができる。 As a result, in the plasma processing apparatus 1 of the second embodiment, compared with the first embodiment, the uniformity of the plasma to the substrate H1 to be processed can be ensured more reliably, and the plasma processing apparatus 1 to the substrate H1 to be processed can be processed with high accuracy. Plasma processing can be performed more reliably.
 〔まとめ〕
 上記の課題を解決するために、本開示の一側面に係るプラズマ処理装置は、処理室を備え、前記処理室に連続して供給されるフィルムに対して、プラズマを用いた処理を行うプラズマ処理装置であって、前記処理室の内部に、前記処理室に連続して供給される前記フィルムをガイドするドラムと、前記処理室の内部に誘導結合性のプラズマを発生させるためのアンテナと、を備え、前記アンテナは、前記ドラムの内部に配置され、前記プラズマ処理は、前記ドラム上の前記フィルムに対して行われている。
〔summary〕
In order to solve the above problems, a plasma processing apparatus according to one aspect of the present disclosure includes a processing chamber, and plasma processing that performs processing using plasma on films continuously supplied to the processing chamber. An apparatus comprising: a drum for guiding the film continuously supplied to the processing chamber; and an antenna for generating an inductively coupled plasma inside the processing chamber. The antenna is positioned inside the drum, and the plasma treatment is performed on the film on the drum.
 上記構成によれば、プラズマ処理装置が、処理室に連続して供給されるフィルムをガイドするドラムを処理室の内部に備えているため、当該フィルムに対してプラズマ処理を行うことができる。その上、ドラムの内部にアンテナが配置されているため、ドラム上のフィルムに対してプラズマ処理を行うプラズマを効率よく生成できる。また、処理室が大型化や複雑化することを抑えて、高品質のプラズマ処理を行えるコンパクトなプラズマ処理装置を提供することができる。 According to the above configuration, the plasma processing apparatus includes a drum inside the processing chamber that guides the film that is continuously supplied to the processing chamber, so that the film can be plasma-processed. Moreover, since the antenna is arranged inside the drum, plasma can be efficiently generated for performing plasma processing on the film on the drum. In addition, it is possible to provide a compact plasma processing apparatus capable of performing high-quality plasma processing without increasing the size and complexity of the processing chamber.
 上記一側面に係るプラズマ処理装置において、前記処理室の内部に、所定の電位が印加される内部電極をさらに備えてもよい。 In the plasma processing apparatus according to one aspect described above, an internal electrode to which a predetermined potential is applied may be further provided inside the processing chamber.
 上記構成によれば、プラズマ処理装置が、所定の電位が印加される内部電極を処理室の内部に備えているため、上記プラズマの荷電粒子のドラム上のフィルムに対する運動や到達量を直接的に制御することができる。この結果、フィルムに対する高精度なプラズマ処理を容易に行うことができる。 According to the above configuration, since the plasma processing apparatus includes an internal electrode to which a predetermined potential is applied inside the processing chamber, the movement and arrival amount of the charged particles of the plasma with respect to the film on the drum can be directly measured. can be controlled. As a result, highly accurate plasma processing can be easily performed on the film.
 上記一側面に係るプラズマ処理装置において、前記内部電極は、前記ドラムの外に配置されてもよい。 In the plasma processing apparatus according to one aspect, the internal electrode may be arranged outside the drum.
 上記構成によれば、内部電極がアンテナとの間にフィルムを挟むように配置される。そのため、ドラム上のフィルムに対してプラズマ処理を行うプラズマに対して、内部電極によりフィルムとの間に付与される電界を作用させることができるようになる。よって、プラズマの荷電粒子のフィルムに対する運動や到達量の制御を行うことができる。この結果、フィルムに対する高精度なプラズマ処理を容易に行うことができる。 According to the above configuration, the internal electrodes are arranged so as to sandwich the film between them and the antenna. Therefore, the electric field applied between the internal electrode and the film can act on the plasma for plasma processing the film on the drum. Therefore, it is possible to control the motion of the charged particles of the plasma with respect to the film and the amount of arrival. As a result, highly accurate plasma processing can be easily performed on the film.
 上記一側面に係るプラズマ処理装置において、前記内部電極は、複数の開口を有するカーボン板または金属板からなってもよい。 In the plasma processing apparatus according to one aspect described above, the internal electrode may be made of a carbon plate or a metal plate having a plurality of openings.
 上記構成によれば、開口によって処理室の内部に導入された処理ガスをドラム上の領域に円滑に移動させることができ、内部電極を処理室内部に配置したことによるプラズマ処理の処理効率の低下を抑えることができる。 According to the above configuration, the processing gas introduced into the processing chamber through the opening can be smoothly moved to the area above the drum, and the processing efficiency of the plasma processing is lowered by arranging the internal electrode inside the processing chamber. can be suppressed.
 上記一側面に係るプラズマ処理装置において、前記アンテナは、線状のアンテナであって、前記ドラムの軸に略平行に配置されるとともに、前記ドラムの軸と平行な方向からの角度のずれが調整可能であるように、前記処理室に支持されてもよい。 In the plasma processing apparatus according to the above aspect, the antenna is a linear antenna that is arranged substantially parallel to the axis of the drum and whose angular deviation from the direction parallel to the axis of the drum is adjusted. It may be supported in said processing chamber as is possible.
 上記構成によれば、ドラムの内部に線状のアンテナを容易に配置することができる。また、アンテナは、ドラムの軸と平行な方向からの角度のずれが調整可能であるので、フィルムに対するプラズマの均一性をより容易に確保することができる。この結果、フィルムに対する高精度なプラズマ処理を確実に行うことができる。 According to the above configuration, the linear antenna can be easily arranged inside the drum. Also, since the antenna can be adjusted in angular deviation from the direction parallel to the axis of the drum, it is possible to more easily ensure the uniformity of the plasma with respect to the film. As a result, highly accurate plasma processing can be reliably performed on the film.
 上記一側面に係るプラズマ処理装置において、複数の前記アンテナが、前記ドラムの内部で当該ドラムの内周面に沿うように、並べて設けられてもよい。 In the plasma processing apparatus according to the above aspect, the plurality of antennas may be arranged side by side inside the drum along the inner peripheral surface of the drum.
 上記構成によれば、複数の各アンテナがプラズマをドラムの外周面に向かって発生させるので、ドラムの外周面上のプラズマ処理中のフィルムに対して、プラズマを均一に付与することができる。この結果、フィルムに対する高精度なプラズマ処理をより確実に行うことができる。 According to the above configuration, since each of the plurality of antennas generates plasma toward the outer peripheral surface of the drum, the plasma can be applied uniformly to the film being plasma-processed on the outer peripheral surface of the drum. As a result, highly accurate plasma processing of the film can be performed more reliably.
 上記一側面に係るプラズマ処理装置において、前記処理室に連続して供給される前記フィルムの、前記ドラムよりも上流側において前記フィルムを予備加熱する加熱部が設けられてもよい。 In the plasma processing apparatus according to the above aspect, a heating unit may be provided for preheating the film, which is continuously supplied to the processing chamber, upstream of the drum.
 上記構成によれば、フィルムに対する高品質のプラズマ処理を施すことができる。 According to the above configuration, high-quality plasma processing can be applied to the film.
 上記一側面に係るプラズマ処理装置において、前記ドラムは、回動可能に前記処理室に支持されてもよい。 In the plasma processing apparatus according to one aspect described above, the drum may be rotatably supported in the processing chamber.
 上記構成によれば、ドラムがフィルムをガイドしつつ、搬送するので、フィルムを円滑に搬送させることができるようになる。この結果、フィルムに対するプラズマ処理をより適切に施すことができる。 According to the above configuration, the drum guides and transports the film, so the film can be transported smoothly. As a result, the film can be more appropriately plasma-treated.
 上記一側面に係るプラズマ処理装置において、前記プラズマ処理では、前記プラズマを用いた化学気相堆積法による成膜処理であってもよい。 In the plasma processing apparatus according to the above aspect, the plasma processing may be film formation processing by a chemical vapor deposition method using the plasma.
 上記構成によれば、被処理物に対し、高品質な成膜を施すことができる。 According to the above configuration, a high-quality film can be formed on the object to be processed.
 本開示は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態に開示された技術的手段を適宜組み合わせて得られる実施形態についても本開示の技術的範囲に含まれる。 The present disclosure is not limited to each embodiment described above, various modifications are possible within the scope shown in the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments are also included in the technical scope of the present disclosure.
 1 プラズマ処理装置
 2 処理室
 5 第1の内部ローラ(送出部)
 6 ドラム
 8、18a、18b、18c アンテナ
 8a 一端部
 8b 他端部
 10 内部電極
 10a 開口
 80 位置制御部
 H1 被処理基板(フィルム)
 PA プラズマの生成領域
 HA 加熱部
 HAC 加熱制御部
 k 荷電粒子
 p プラスイオン
 e 電子あるいはマイナスイオン
1 plasma processing apparatus 2 processing chamber 5 first internal roller (delivering unit)
6 drum 8, 18a, 18b, 18c antenna 8a one end 8b other end 10 internal electrode 10a opening 80 position control unit H1 substrate to be processed (film)
PA Plasma generation area HA Heating unit HAC Heating control unit k Charged particles p Positive ions e Electrons or negative ions

Claims (9)

  1.  処理室を備え、前記処理室に連続して供給されるフィルムに対して、プラズマを用いた処理を行うプラズマ処理装置であって、
     前記処理室の内部に、
     前記処理室に連続して供給される前記フィルムをガイドするドラムと、
     前記処理室の内部に誘導結合性のプラズマを発生させるためのアンテナと、を備え、
     前記アンテナは、前記ドラムの内部に配置され、
     前記プラズマ処理は、前記ドラム上の前記フィルムに対して行われている、プラズマ処理装置。
    A plasma processing apparatus comprising a processing chamber and performing plasma processing on a film continuously supplied to the processing chamber,
    Inside the processing chamber,
    a drum for guiding the film continuously supplied to the processing chamber;
    an antenna for generating an inductively coupled plasma inside the processing chamber;
    The antenna is positioned inside the drum,
    A plasma processing apparatus, wherein the plasma processing is performed on the film on the drum.
  2.  前記処理室の内部に、
     所定の電位が印加される内部電極をさらに備えている、請求項1に記載のプラズマ処理装置。
    Inside the processing chamber,
    2. The plasma processing apparatus according to claim 1, further comprising internal electrodes to which a predetermined potential is applied.
  3.  前記内部電極は、前記ドラムの外に配置されている、請求項2に記載のプラズマ処理装置。 The plasma processing apparatus according to claim 2, wherein said internal electrode is arranged outside said drum.
  4.  前記内部電極は、複数の開口を有するカーボン板または金属板からなる、請求項2または3に記載のプラズマ処理装置。 The plasma processing apparatus according to claim 2 or 3, wherein the internal electrode is made of a carbon plate or a metal plate having a plurality of openings.
  5.  前記アンテナは、線状のアンテナであって、
     前記ドラムの軸に略平行に配置されるとともに、前記ドラムの軸と平行な方向からの角度のずれが調整可能であるように、前記処理室に支持されている、請求項1から4のいずれか1項に記載のプラズマ処理装置。
    The antenna is a linear antenna,
    5. Any of claims 1 to 4, arranged substantially parallel to the axis of the drum and supported in the processing chamber such that the angular deviation from parallel to the axis of the drum is adjustable. 1. The plasma processing apparatus according to claim 1.
  6.  複数の前記アンテナが、前記ドラムの内部で当該ドラムの内周面に沿うように、並べて設けられている、請求項1から5のいずれか1項に記載のプラズマ処理装置。 The plasma processing apparatus according to any one of claims 1 to 5, wherein a plurality of said antennas are arranged inside said drum along the inner peripheral surface of said drum.
  7.  前記処理室に連続して供給される前記フィルムの、前記ドラムよりも上流側において前記フィルムを予備加熱する加熱部が設けられている、請求項1から6のいずれか1項に記載のプラズマ処理装置。 7. The plasma processing according to any one of claims 1 to 6, further comprising a heating unit for preheating the film upstream of the drum, which is continuously supplied to the processing chamber. Device.
  8.  前記ドラムは、回動可能に前記処理室に支持されている、請求項1から7のいずれか1項に記載のプラズマ処理装置。 The plasma processing apparatus according to any one of claims 1 to 7, wherein said drum is rotatably supported in said processing chamber.
  9.  前記プラズマ処理は、前記プラズマを用いた化学気相堆積法による成膜処理である、請求項1から8のいずれか1項に記載のプラズマ処理装置。 The plasma processing apparatus according to any one of claims 1 to 8, wherein said plasma processing is film formation processing by a chemical vapor deposition method using said plasma.
PCT/JP2023/002364 2022-02-07 2023-01-26 Plasma treatment device WO2023149323A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-017343 2022-02-07
JP2022017343A JP2023114815A (en) 2022-02-07 2022-02-07 Plasma processing apparatus

Publications (1)

Publication Number Publication Date
WO2023149323A1 true WO2023149323A1 (en) 2023-08-10

Family

ID=87552305

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/002364 WO2023149323A1 (en) 2022-02-07 2023-01-26 Plasma treatment device

Country Status (3)

Country Link
JP (1) JP2023114815A (en)
TW (1) TW202333228A (en)
WO (1) WO2023149323A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003342734A (en) * 2002-05-24 2003-12-03 Konica Minolta Holdings Inc Transparent conductive film, method for depositing it, and article having it
EP1403902A1 (en) * 2002-09-30 2004-03-31 Fuji Photo Film B.V. Method and arrangement for generating an atmospheric pressure glow discharge plasma (APG)
JP2015086417A (en) * 2013-10-29 2015-05-07 株式会社 セルバック Inductively-coupled plasma cvd apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003342734A (en) * 2002-05-24 2003-12-03 Konica Minolta Holdings Inc Transparent conductive film, method for depositing it, and article having it
EP1403902A1 (en) * 2002-09-30 2004-03-31 Fuji Photo Film B.V. Method and arrangement for generating an atmospheric pressure glow discharge plasma (APG)
JP2015086417A (en) * 2013-10-29 2015-05-07 株式会社 セルバック Inductively-coupled plasma cvd apparatus

Also Published As

Publication number Publication date
TW202333228A (en) 2023-08-16
JP2023114815A (en) 2023-08-18

Similar Documents

Publication Publication Date Title
US9844126B2 (en) Plasma treatment apparatus
JP4812991B2 (en) Plasma processing equipment
WO2011143062A2 (en) Confined process volume pecvd chamber
US20070224364A1 (en) Plasma processing apparatus, plasma processing method, plasma film deposition apparatus, and plasma film deposition method
US20050211383A1 (en) Magnetron plasma-use magnetic field generation device
US20010037770A1 (en) Plasma processing apparatus and processing method
JP2009123929A (en) Plasma treatment apparatus
KR20070053213A (en) Thin-film forming apparatus
KR20200089342A (en) Geometrically selective deposition of dielectric films using low frequency bias
WO2013179548A1 (en) Magnetron sputtering device, magnetron sputtering method, and storage medium
WO2023149323A1 (en) Plasma treatment device
US20200027708A1 (en) Sputtering device
CN110880447B (en) Plasma deposition method and plasma deposition apparatus
WO2023047960A1 (en) Plasma processing device and plasma processing method
JP2019044216A (en) Film deposition apparatus and film deposition method
WO2023149322A1 (en) Plasma treatment device
WO2020080016A1 (en) Plasma film formation apparatus and plasma film formation method
JP4437347B2 (en) Pretreatment etching apparatus and thin film forming apparatus
CN113366604A (en) Method and apparatus for generating ions
JP4031691B2 (en) Plasma processing apparatus and plasma processing method
JP7111380B2 (en) Sputtering device and film forming method using the same
JP7017832B1 (en) Bias application device
JPH06280000A (en) Plasma surface treatment method and device
EP3748668B1 (en) Reactive ion etching device
KR20200009647A (en) Multi rotation type plasma generating apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23749639

Country of ref document: EP

Kind code of ref document: A1