JPH01173313A - Magnetic recording medium - Google Patents

Magnetic recording medium

Info

Publication number
JPH01173313A
JPH01173313A JP33051687A JP33051687A JPH01173313A JP H01173313 A JPH01173313 A JP H01173313A JP 33051687 A JP33051687 A JP 33051687A JP 33051687 A JP33051687 A JP 33051687A JP H01173313 A JPH01173313 A JP H01173313A
Authority
JP
Japan
Prior art keywords
magnetic
layer
thickness
recording medium
magnetic layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33051687A
Other languages
Japanese (ja)
Other versions
JPH0416851B2 (en
Inventor
Hiroyuki Tokushige
徳重 裕之
Taiichi Mori
泰一 森
Takaharu Yonemoto
米本 隆治
Hideaki Murata
秀明 村田
Tsugio Miyagawa
宮川 亜夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RAIMUZU KK
Original Assignee
RAIMUZU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RAIMUZU KK filed Critical RAIMUZU KK
Priority to JP33051687A priority Critical patent/JPH01173313A/en
Publication of JPH01173313A publication Critical patent/JPH01173313A/en
Publication of JPH0416851B2 publication Critical patent/JPH0416851B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To provide a magnetic recording medium which exhibits high coercive force, high squareness ratio and high residual magnetization by laminating two-layered structures each combined with a magnetic layer consisting of a Co-Ni alloy having 20-500Angstrom thickness and an underlying layer consisting of Cr thicker than said magnetic layer 2-50 times on a nonmagnetic substrate. CONSTITUTION:The two-layered structures each combined with the magnetic layer having 20-500Angstrom thickness and the underlying layer thicker than said magnetic layer are laminated 2-50 times on the nonmagnetic substrate of the magnetic recording medium which is formed with the underlying layers consisting of the Cr and the magnetic layers consisting of the Co-Ni alloy on said substrate. The coercive force of the magnetic layers consisting of the Co-Ni alloy is generally larger as the thickness thereof is smaller. The magnetic layers are, thereupon, divided to the thin layers and the Cr layers which are the underlying layers are interposed between the respective magnetic layers to increase the coercive force as the recording medium. However, the saturation magnetization and eventually the residual magnetization are extremely degraded if the thickness of the magnetic layers is below 20Angstrom .

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は磁気ディスク、磁気ドラムなどに用いられる薄
膜型磁気記録媒体に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a thin film magnetic recording medium used for magnetic disks, magnetic drums, etc.

〔従来の技術〕[Conventional technology]

近年、磁気記録の高密度化の要請に伴い、これまでの塗
布型の磁気記録媒体に代わって、スパッタリング、真空
蒸着などによる金属薄膜型磁気記録媒体の開発が進めら
れている。塗布型媒体に主として用いられてきた酸化鉄
と比較すると、金属薄膜媒体ははるかに大きい自発磁化
と固有保磁力とを有するため、記録層の厚さを薄くし、
記録波長を短くすることが可能となり、その結果飛躍的
に高い記録密度が得られると考えられている。
In recent years, with the demand for higher density magnetic recording, development of metal thin film type magnetic recording media using sputtering, vacuum deposition, etc. has been progressing in place of the conventional coated type magnetic recording media. Compared to iron oxide, which has been mainly used in coated media, metal thin film media have much greater spontaneous magnetization and intrinsic coercivity, so it is possible to reduce the thickness of the recording layer.
It is believed that this makes it possible to shorten the recording wavelength, resulting in dramatically higher recording densities.

現在までのところ、スパッタリング法で作製される薄膜
型磁気記録媒体の磁気記録層の候補として検討されてい
る材料のうち、原子比で15〜40%のNiを含むCo
−Ni合金又は若干量のCr、W、希土類金属などを添
加したCo−Ni系合金は、磁気特性と材料コストとの
バランスが優れているため最も有望視されている。
Among the materials currently being considered as candidates for the magnetic recording layer of thin-film magnetic recording media manufactured by sputtering, Co containing 15 to 40% Ni in atomic ratio has been used.
-Ni alloys or Co--Ni alloys to which some amounts of Cr, W, rare earth metals, etc. are added are considered the most promising because they have an excellent balance between magnetic properties and material cost.

ところで、従来の磁気記録媒体、例えば磁気ディスクは
、メツキを施したAfL合金からなる非磁性基板上にC
rなどからなる下地層と上記Co−Ni系合金からなる
磁性層とを形成し、更に使用時の耐食性、潤滑性などを
付与するための保護層を設けた構造を有している。
By the way, conventional magnetic recording media, such as magnetic disks, are made by recording C on a non-magnetic substrate made of a plated AfL alloy.
It has a structure in which a base layer made of R or the like and a magnetic layer made of the Co--Ni alloy mentioned above are formed, and a protective layer is further provided to provide corrosion resistance, lubricity, etc. during use.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、上述した構造の従来のIi1気記録媒体
では、高密度記録に適した優れた磁気特性を得ようとす
ると、以下のような種々の問題が生じていた。
However, in the conventional Ii1 recording medium having the above-described structure, when trying to obtain excellent magnetic properties suitable for high-density recording, various problems such as those described below have occurred.

■ 高い保磁力を得るためには、磁性層の3〜5倍の厚
さのCr下地層が必要となるが、Cr下地層の厚さが厚
くなりすぎると、記録媒体の角形比(=残留磁化/飽和
磁化)の低下を招く。
■ In order to obtain a high coercive force, a Cr underlayer that is 3 to 5 times thicker than the magnetic layer is required, but if the Cr underlayer becomes too thick, the squareness ratio (= residual magnetization/saturation magnetization).

■ 高い再生出力を得るためには、磁性層の厚さを増し
、残留磁化の値を大きくすることが必要であるが、磁性
層の厚さの増加とともに保磁力が低下する。
(2) In order to obtain high reproduction output, it is necessary to increase the thickness of the magnetic layer and increase the value of residual magnetization, but as the thickness of the magnetic layer increases, the coercive force decreases.

■ スパッタ時のAr圧力が低いほど、突起やピンホー
ルなどの欠陥の少ない良質の薄膜が形成され、残留磁化
の値も増加するが、Ar圧力の低下とともに保磁力が低
下する。
(2) The lower the Ar pressure during sputtering, the better quality thin film is formed with fewer defects such as protrusions and pinholes, and the value of residual magnetization increases, but as the Ar pressure decreases, the coercive force decreases.

本発明は上記問題点を解決し、高保磁力、高角形比、高
残留磁化を示し、かつ成膜条件の余裕度が大きい磁気記
録媒体を提供することを目的とする。
An object of the present invention is to solve the above-mentioned problems and provide a magnetic recording medium that exhibits high coercive force, high squareness ratio, and high residual magnetization, and has a large latitude in film formation conditions.

〔問題点を解決するための手段と作用〕本発明の磁気記
録媒体は、非磁性基板上にCrからなる下地層とCo−
Ni系合金からなる磁性層とを形成し、更に保護層を設
けた磁気記録媒体において、20〜500人の厚さの磁
性層と該磁性層より厚い下地層とを組合せた二層構造を
、2〜50回積層したことを特徴とするものである。
[Means and effects for solving the problems] The magnetic recording medium of the present invention has an underlayer made of Cr and a Co-layer on a non-magnetic substrate.
In a magnetic recording medium formed with a magnetic layer made of a Ni-based alloy and further provided with a protective layer, a two-layer structure combining a magnetic layer with a thickness of 20 to 500 nm and an underlayer thicker than the magnetic layer, It is characterized by being laminated 2 to 50 times.

本発明において、Co−Ni系合金磁性層については、
一般にその厚さが小さくなるほど、保磁力が大きくなる
。そこで、磁性層を従来より薄い層に分割し、各磁性層
の間に下地層であるCr層を介在させて積層すれば、各
磁性層の高い保磁力が記録層全体にわたって維持される
ことになり、磁性層が単層である場合と比較して、記録
媒体としての保磁力は増加するものと考えられる。この
場合、上述したようにCo−Ni系合金の保磁力がCr
の下地層が存在してはじめて記録媒体に適用できる高い
値を示すのであるから、各磁性層の間には必ずCr下地
層を介在させなければならない、換言すれば、Go−N
i系合金磁性層とCr下地層とを組合わせた二層構造を
積層した場合に、保磁力を最も効果的に増大させること
ができる。ただし、Cr下地層の厚さがCo−Ni系合
金磁性層の厚さを上回っていなければ、従来より高い保
磁力を得ることはできない。
In the present invention, regarding the Co-Ni alloy magnetic layer,
Generally, the smaller the thickness, the larger the coercive force. Therefore, by dividing the magnetic layer into thinner layers than before and stacking them with a Cr layer as an underlayer interposed between each magnetic layer, the high coercive force of each magnetic layer can be maintained throughout the entire recording layer. Therefore, it is considered that the coercive force as a recording medium increases compared to the case where the magnetic layer is a single layer. In this case, as mentioned above, the coercive force of the Co-Ni alloy is Cr
Go-N exhibits a high value that can be applied to recording media only when there is an underlayer, so a Cr underlayer must be interposed between each magnetic layer.In other words, Go-N
The coercive force can be increased most effectively when a two-layer structure is laminated, which is a combination of an i-based alloy magnetic layer and a Cr underlayer. However, unless the thickness of the Cr underlayer exceeds the thickness of the Co--Ni alloy magnetic layer, it is not possible to obtain a higher coercive force than in the past.

本発明において、磁性層の厚さを20〜500人と規定
したのは以下のような理由による。すなわち、Co−N
i系合金とCrとは界面近傍で相互に拡散して非磁性層
を形成するため、磁性層の厚さが20人未満と薄すぎる
場合には、飽和磁化ひいては残留磁化の著しい低下を招
く。°一方、各磁性層の厚さが厚ければ厚いほど残留磁
化は大きくなるが、磁性層の厚さが500人を超えるほ
ど厚くなると、記録媒体全体の厚さを増加させてしまい
、本来の目的である高密度磁気記録に適さなくなる。
In the present invention, the thickness of the magnetic layer is defined as 20 to 500 for the following reason. That is, Co-N
Since the i-based alloy and Cr diffuse into each other near the interface to form a nonmagnetic layer, if the thickness of the magnetic layer is too thin, such as less than 20 mm, the saturation magnetization and thus the residual magnetization will significantly decrease. °On the other hand, the thicker each magnetic layer is, the larger the residual magnetization will be. However, if the thickness of the magnetic layer becomes thicker than 500, the thickness of the entire recording medium will increase, and the original thickness will increase. This makes it unsuitable for the purpose of high-density magnetic recording.

本発明において、磁性層と下地層との二層構造の積層回
数を2〜50回としたのは、以下のような理由による。
In the present invention, the number of laminations of the two-layer structure of the magnetic layer and the underlayer is set to 2 to 50 times for the following reasons.

まず、繰返し積層構造ということから、当然積層回数は
2回以上でなければならないが、実際わずか2回の積層
でも保磁力を増加させる効果を得ることができる。一方
、記録媒体全体の厚さをあまり大きくすることは適当で
ないという前提のもとでは、積層回数が増加するほど必
然的にCo−Ni系合金磁性層及びCr下地層の厚さが
減少することになる。特に、Cr下地層の厚さが薄くな
ると、上下の磁性層間に磁気的結合が起り、保磁力が低
下してくる。そして、スパッタリング時の圧力にもよる
が、積層回数が50回を超えると、従来の磁気記録媒体
を上回る保磁力を得・ることはできない、なお、以上で
は保磁力の増加についてのみ述べてきたが、積層回数が
2〜20回の範囲では、従来の磁気記録媒体と比較して
、角形比も向上させることができる。
First, because of the repeated lamination structure, the number of laminations must be two or more times, but in fact, even with just two laminations, the effect of increasing coercive force can be obtained. On the other hand, on the premise that it is not appropriate to increase the overall thickness of the recording medium too much, the thickness of the Co-Ni alloy magnetic layer and the Cr underlayer will inevitably decrease as the number of layers increases. become. In particular, when the thickness of the Cr underlayer becomes thinner, magnetic coupling occurs between the upper and lower magnetic layers, and the coercive force decreases. Although it depends on the pressure during sputtering, if the number of laminations exceeds 50, it will not be possible to obtain a coercive force that exceeds that of conventional magnetic recording media.The above has only discussed the increase in coercive force. However, when the number of laminations is in the range of 2 to 20 times, the squareness ratio can also be improved compared to conventional magnetic recording media.

以上のように本発明の磁気記録媒体によれば、高保磁力
、高角形比、高残留磁化を示す磁気記録媒体を提供する
ことができ、しかもこのような良好な磁気特性のバラン
スを得ることができるスパッタリング条件の範囲が従来
より広がる。
As described above, according to the magnetic recording medium of the present invention, it is possible to provide a magnetic recording medium exhibiting high coercive force, high squareness ratio, and high residual magnetization, and it is possible to obtain such a good balance of magnetic properties. The range of possible sputtering conditions is wider than before.

〔実施例〕〔Example〕

以下、本発明の実施例を図面を参照して説明する。 Embodiments of the present invention will be described below with reference to the drawings.

最初に、磁性層及び下地層の成膜に用いた第3図図示の
直流マグネトロンスパッタ装置について説明する。第3
図において、真空槽1内には基板ホルダ2が回転可能に
支持されている。この基板ホルダ2はギア3.4を介し
てモータ5に連結され、基板ホルダ回転制御部6によっ
てモータ5の回転が制御される。この基板ホルダ2の一
部に基板7が保持される。また、真空槽1内には、基板
ホルダ2に対向するように2個のグーゲット8.9(C
o−Ni系合金及びCr)が設けられ、これらターゲッ
ト8.9はそれぞれ直流電源1O111に接続されてい
る。また、基板ホルダ2とターゲット8,9との間には
シャッタ12が回転可能に設けられ、このシャッタ12
はシャッタ駆動部13により駆動される。上記直流電源
10.11及びシャッタ駆動部12はスイッチング制御
部14によって制御される。
First, the DC magnetron sputtering apparatus shown in FIG. 3 used for forming the magnetic layer and the underlayer will be described. Third
In the figure, a substrate holder 2 is rotatably supported within a vacuum chamber 1 . This substrate holder 2 is connected to a motor 5 via a gear 3.4, and the rotation of the motor 5 is controlled by a substrate holder rotation control section 6. A substrate 7 is held in a part of this substrate holder 2. Also, in the vacuum chamber 1, two googets 8.9 (C
o-Ni alloy and Cr), and these targets 8.9 are each connected to a DC power source 1O111. Further, a shutter 12 is rotatably provided between the substrate holder 2 and the targets 8 and 9.
is driven by the shutter drive section 13. The DC power supply 10.11 and the shutter drive section 12 are controlled by a switching control section 14.

このような構成の直流マグネトロンスパッタ装置を用い
、基板ホルダ2に基板7を装着し、真空槽1内を所定圧
力のスパッタガス(例えばAr)雰囲気とし、基板ホル
ダ2を連続回転させながら、スイッチング制御部14で
直流電源10.11を制御して2個のターゲット8.9
に交互にスパッタ放電を生じさせ、これと連動して放電
していない一方のターゲットをシャッタ12で遮蔽し、
基板7上にCo−Ni系合金磁性層とCr下地層との二
層構造を積層する。
Using a DC magnetron sputtering apparatus with such a configuration, the substrate 7 is mounted on the substrate holder 2, the vacuum chamber 1 is made into a sputtering gas (for example, Ar) atmosphere at a predetermined pressure, and the switching control is performed while continuously rotating the substrate holder 2. The unit 14 controls the DC power supply 10.11 to generate two targets 8.9.
sputter discharge is caused alternately, and in conjunction with this, one target that is not being discharged is shielded with a shutter 12,
A two-layer structure consisting of a Co--Ni alloy magnetic layer and a Cr underlayer is laminated on the substrate 7.

実施例1 第3図図示の装置を用い、基板としてコーニング705
8ガラス、ターゲットとしてCrと70%C。
Example 1 Using the apparatus shown in FIG. 3, Corning 705 was used as the substrate.
8 glass, Cr and 70% C as targets.

−30%Ni合金とを装着し、Cr下地層と70%Co
−30%Ni合金磁性層との膜厚比及びこの二層構造の
積層回数を種々変化させて積層した7、なお、いずれの
場合も、70%Go−30%Ni合金磁性層の合計膜厚
(目標値)が1000人となるようにスパッタ時間を制
御して積層した0例えば、70%Co−30%N i 
/ Crの膜厚比が1=5、積層回数10回の場合につ
いて説明すれば、膜厚100人ノア0%Go−30%N
i合金磁性層が、膜厚500人のCr下地層上に積層さ
れた二層構造が100回積されていることになり、70
%Co−30%Ni合金磁性層の合計膜厚は1000人
、Cr下地層の合計膜厚は5000人である。
- 30% Ni alloy, Cr underlayer and 70% Co
-The total film thickness of the 70% Go-30% Ni alloy magnetic layer was laminated by varying the thickness ratio with the 30% Ni alloy magnetic layer and the number of laminations of this two-layer structure. For example, 70%Co-30%Ni
/ To explain the case where the film thickness ratio of Cr is 1 = 5 and the number of laminations is 10 times, the film thickness is 100 people Noah 0% Go - 30% N
This means that the two-layer structure in which the i-alloy magnetic layer is laminated 100 times on the Cr underlayer with a thickness of 500 mm is 70 times.
The total thickness of the %Co-30%Ni alloy magnetic layer is 1000 mm, and the total thickness of the Cr underlayer is 5000 mm.

また、主なスパッタリング条件は以下の通りである。Moreover, the main sputtering conditions are as follows.

スパッタガス:Ar、 Ar圧カニ 1〜7 X 1O−3Torr、基板温度
:水冷、基板回転数: 40 rp11スパッタ電流:
 0.5 A 作製した全ての薄膜の磁気特性を振動試料型磁力計で測
定し、積層回数と、保磁力Hc、飽和磁化Ms・δ(δ
は磁性層の合計膜厚)及び角形比Sとの関係を第1図及
び第2図に示す、なお、第1図はAr圧力I X 1O
−3Torrの場合、第2図はAr圧カフ X 10=
 Torn)場合である。
Sputtering gas: Ar, Ar pressure crab 1 to 7 x 1O-3Torr, substrate temperature: water cooling, substrate rotation speed: 40 rp11 sputtering current:
0.5 A The magnetic properties of all the thin films produced were measured using a vibrating sample magnetometer, and the number of laminations, coercive force Hc, and saturation magnetization Ms δ (δ
is the total thickness of the magnetic layer) and the squareness ratio S is shown in Figs. 1 and 2. Fig. 1 shows the relationship between the total thickness of the magnetic layer
In the case of -3 Torr, Figure 2 shows the Ar pressure cuff X 10=
Torn) case.

第1図及び第2図から明らかなように、Ar圧力によっ
て多少挙動の差があるが、いずれもCr下地層の厚さが
70%Co−30%Ni合金磁性層の厚さを上回ってい
る場合にのみ積層による保磁力の増加が認められる。
As is clear from Figures 1 and 2, there are some differences in behavior depending on the Ar pressure, but in both cases the thickness of the Cr underlayer exceeds the thickness of the 70%Co-30%Ni alloy magnetic layer. An increase in coercive force due to lamination is observed only in cases where

また、70%Co−30%Ni合金磁性層とCr下地層
とを1回積層した場合(比較例1)と比較すると、第1
図では積層回数2〜50回の範囲で、第2図では積層回
数2〜20回の範囲でそれぞれ保磁力が増加している。
Moreover, when compared with the case where the 70% Co-30% Ni alloy magnetic layer and the Cr underlayer are laminated once (Comparative Example 1), the first
In the figure, the coercive force increases in the range of 2 to 50 laminations, and in FIG. 2, the coercive force increases in the range of 2 to 20 laminations.

また、第1図、第2図のいずれでも、積層回数2〜20
回の範囲で角形比の向上が認められる一方、この範囲で
は飽和磁化はほぼ一定のレベルにある。
In addition, in both Fig. 1 and Fig. 2, the number of laminations is 2 to 20.
While an improvement in the squareness ratio is observed in the range of 200 nm, the saturation magnetization remains at a nearly constant level in this range.

以上のように本発明によれば、良好な磁気特性のバラン
スが得られることがわかる。
As described above, it can be seen that according to the present invention, a good balance of magnetic properties can be obtained.

実施例2 第3図図示の装置を用い、N1−P無電解メツキを施し
たディスク用アルミニウム基板上に、厚さ1000人の
Cr下地層と厚さ200人の70%Co−30%Ni合
金磁性層との二層構造を5回積層した後、保護膜として
厚さ500人の0層をスパッタリングで成膜して磁気記
録媒体を試作した。
Example 2 Using the apparatus shown in FIG. 3, a 1000-thick Cr underlayer and a 200-thick 70% Co-30% Ni alloy were deposited on an aluminum disk substrate plated with N1-P electroless plating. After laminating the two-layer structure with the magnetic layer five times, a 0 layer with a thickness of 500 layers was deposited as a protective film by sputtering to fabricate a magnetic recording medium.

比較例2 実施例2と同一の基板上濃厚さ5000人のCr下地層
、厚さ1000人の70%Co−30%Ni合金磁性層
及び厚さ500人の0層をスパッタリングにより順次積
層して磁気記録媒体を試作した。
Comparative Example 2 On the same substrate as in Example 2, a 5,000-thick Cr underlayer, a 1,000-thick 70% Co-30% Ni alloy magnetic layer, and a 500-thick zero layer were sequentially laminated by sputtering. We prototyped a magnetic recording medium.

実施例2及び比較例2の磁気記録媒体の磁気特性を測定
したところ、第1表のような結果が得られた。
When the magnetic properties of the magnetic recording media of Example 2 and Comparative Example 2 were measured, the results shown in Table 1 were obtained.

実施例3 実施例2と同一の基板上に厚さ300人のCr下地層と
厚さ75人の62.5%Co−30%Ni−7,5%C
r合金磁性層との二層構造をlO回積層した後、厚さ5
00人の0層をスパッタリングにより成膜して磁気記録
媒体を試作した。
Example 3 A 300-thick Cr underlayer and a 75-thick 62.5%Co-30%Ni-7.5%C were formed on the same substrate as in Example 2.
After laminating the two-layer structure with the r-alloy magnetic layer 10 times, a thickness of 5
A magnetic recording medium was prototyped by forming a 0 layer of 0.00 by sputtering.

比較例3 実施例2と同一の基板上に厚さ3000人のCr下地層
、厚さ750人の62.5%Co−30%Ni−7,5
%Cr合金磁性層及び厚さ500人の0層をスパッタリ
ングにより順次積層して磁気記録媒体を試作した。
Comparative Example 3 On the same substrate as in Example 2, a 3000-thick Cr underlayer and a 750-thick 62.5% Co-30% Ni-7,5
A magnetic recording medium was prototyped by sequentially laminating a %Cr alloy magnetic layer and a 0 layer with a thickness of 500 mm by sputtering.

実施例3及び比較例3の磁気記録媒体の磁気特性を測定
したところ、第2表のような結果が得られた。
When the magnetic properties of the magnetic recording media of Example 3 and Comparative Example 3 were measured, the results shown in Table 2 were obtained.

第1表 第  2  表 〔発明の効果〕 以上詳述したように本発明の磁気記録媒体によれば、飽
和磁化を損なうことなく、保磁力及び角形比の向上を図
ることができる。また、■Cr下地層の合計膜厚が厚く
ても角形比は低下せず、保磁力が増加する、■従来より
Cr下地層の合計膜厚を減らしても保磁力は低下せず、
角形比が向上する、■Co−Ni系合金磁性層の合計膜
厚を大きくして飽和磁化を増加させても保磁力は減少せ
ず、かつ角形比が向上するので残留磁化は更に増大する
、■薄膜内の欠陥が少なく、かつ残留磁化の値が高くな
るような低Ar圧力でのスパッタリングを行っても、高
い保磁力を維持でき、膜質や歩留りが向上する。など従
来の技術と比較して製造上の余裕度を大きくとれるとい
う効果も期待できる。
Table 1 Table 2 [Effects of the Invention] As detailed above, according to the magnetic recording medium of the present invention, coercive force and squareness ratio can be improved without impairing saturation magnetization. In addition, ■ Even if the total thickness of the Cr underlayer is thicker, the squareness ratio does not decrease and the coercive force increases.■ Even if the total thickness of the Cr underlayer is reduced than before, the coercive force does not decrease.
The squareness ratio improves. ■ Even if the total thickness of the Co-Ni alloy magnetic layer is increased to increase the saturation magnetization, the coercive force does not decrease, and the squareness ratio improves, so the residual magnetization further increases. (2) Even when sputtering is performed at a low Ar pressure that reduces defects in the thin film and increases the value of residual magnetization, a high coercive force can be maintained, improving film quality and yield. It can also be expected to have the effect of allowing a greater margin in manufacturing compared to conventional technologies.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はAr圧力I X 1O−3Torrテア0%C
o−30%Ni合金磁性層とCr下地層と°の二層構造
を積層した場合の積層回数と磁気特性との関係を膜厚比
をパラメータとして示す特性図、第2図はAr圧カフ 
X 1O−3Torrで70%Co−30%Ni合金磁
性層とCr下地層との二層構造を積層した場合の積層回
数と磁気特性との関係を膜厚比をパラメータとして示す
特性図、第3図は本発明の実施例で用いられた直流マグ
ネトロンスパッタリング装置の構成図である。 1・・・真空槽、2・・・基板ホルダ、3.4・・・ギ
ア、5・・・モータ、6・・・基板ホルダ回転制御部、
7・・・基板、8.9・・・ターゲット、10.11・
・・直流電源、12・・・シャッタ、13・・・シャッ
タ駆動部、14・・・スイッチング制御部。 出願人代理人 弁理士 鈴江武彦 (It怜LIJ1)          積4回収(r
膿例1)          積層回数。 第3図 特許庁長官  小  川   邦  夫 殿1.事件の
表示 特願昭62−330516号 2、発明の名称 磁気記録媒体 3、補正をする者 事件との関係   特許出願人 株式会社 ライムズ 4、代理人 6、補正の対象 明細書、図面 7、補正の内容 (1)明細書第9頁第12行目にr M s・δ」とあ
るを、「4πMs・δ」と訂正する。 (2)明細書第12頁の第1表及び第2表を下記の通り
訂正する。 記 第1表 第  2  表 (3)第1図及び第2図を別紙の通り訂正する。 (k応イF111)             祖層回
り第 2 図
Figure 1 shows Ar pressure I x 1O-3Torr tare 0%C
A characteristic diagram showing the relationship between the number of laminations and magnetic properties using the film thickness ratio as a parameter when a two-layer structure of an o-30% Ni alloy magnetic layer and a Cr underlayer is laminated. Figure 2 shows an Ar pressure cuff.
Characteristic diagram 3 showing the relationship between the number of laminations and magnetic properties when a two-layer structure of a 70% Co-30% Ni alloy magnetic layer and a Cr underlayer is laminated at X 1O-3 Torr using the film thickness ratio as a parameter. The figure is a configuration diagram of a DC magnetron sputtering apparatus used in an embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... Vacuum chamber, 2... Substrate holder, 3.4... Gear, 5... Motor, 6... Substrate holder rotation control unit,
7... Substrate, 8.9... Target, 10.11.
...DC power supply, 12...Shutter, 13...Shutter drive section, 14...Switching control section. Applicant's agent Patent attorney Takehiko Suzue (Itrei LIJ1) 4 collections (r
Pus example 1) Number of layers. Figure 3: Mr. Kunio Ogawa, Commissioner of the Patent Office 1. Indication of the case Japanese Patent Application No. 62-330516 2, Name of the invention Magnetic recording medium 3, Person making the amendment Relationship to the case Patent applicant Co., Ltd. Limes 4, Agent 6, Specification to be amended, Drawings 7, Amendment Contents (1) On page 9, line 12 of the specification, the phrase "r M s・δ" is corrected to "4πMs・δ". (2) Tables 1 and 2 on page 12 of the specification are corrected as follows. Table 1, Table 2 (3) Figures 1 and 2 are corrected as shown in the attached sheet. (k response F111) Sojyo circle Figure 2

Claims (1)

【特許請求の範囲】[Claims] 非磁性基板上にCrからなる下地層とCo−Ni系合金
からなる磁性層とを形成し、更に保護層を設けた磁気記
録媒体において、20〜500Åの厚さの磁性層と該磁
性層より厚い下地層とを組合せた二層構造を、2〜50
回積層したことを特徴とする磁気記録媒体。
In a magnetic recording medium in which an underlayer made of Cr and a magnetic layer made of a Co-Ni alloy are formed on a nonmagnetic substrate, and a protective layer is further provided, a magnetic layer with a thickness of 20 to 500 Å and a magnetic layer made of A two-layer structure combining a thick base layer with a thickness of 2 to 50
A magnetic recording medium characterized by being laminated twice.
JP33051687A 1987-12-26 1987-12-26 Magnetic recording medium Granted JPH01173313A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33051687A JPH01173313A (en) 1987-12-26 1987-12-26 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33051687A JPH01173313A (en) 1987-12-26 1987-12-26 Magnetic recording medium

Publications (2)

Publication Number Publication Date
JPH01173313A true JPH01173313A (en) 1989-07-10
JPH0416851B2 JPH0416851B2 (en) 1992-03-25

Family

ID=18233502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33051687A Granted JPH01173313A (en) 1987-12-26 1987-12-26 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JPH01173313A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5587235A (en) * 1993-02-19 1996-12-24 Hitachi, Ltd. Magnetic recording medium and magnetic recording apparatus
US5605733A (en) * 1992-01-22 1997-02-25 Hitachi, Ltd. Magnetic recording medium, method for its production, and system for its use

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5917826A (en) * 1982-07-20 1984-01-30 松下電工株式会社 Solar battery charging circuit
JPS59112427A (en) * 1982-12-17 1984-06-28 Sony Corp Magnetic recording medium

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5917826A (en) * 1982-07-20 1984-01-30 松下電工株式会社 Solar battery charging circuit
JPS59112427A (en) * 1982-12-17 1984-06-28 Sony Corp Magnetic recording medium

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5605733A (en) * 1992-01-22 1997-02-25 Hitachi, Ltd. Magnetic recording medium, method for its production, and system for its use
US5587235A (en) * 1993-02-19 1996-12-24 Hitachi, Ltd. Magnetic recording medium and magnetic recording apparatus

Also Published As

Publication number Publication date
JPH0416851B2 (en) 1992-03-25

Similar Documents

Publication Publication Date Title
JP2000207727A (en) Recording medium for horizontal recording
US5587235A (en) Magnetic recording medium and magnetic recording apparatus
JPH01173313A (en) Magnetic recording medium
JPH06349047A (en) Magnetic recording medium and magnetic storage device
JPS63317922A (en) Perpendicular magnetic recording medium
JPH01238106A (en) Corrosion-resistant ferromagnetic thin-film
US6090496A (en) Magnetic recording medium and non-magnetic alloy film
JPS58182129A (en) Magnetic recording medium
JP2527616B2 (en) Metal thin film magnetic recording medium
JPH06140247A (en) Magnetic recording medium
JPH05182171A (en) Magnetic recording medium
JPH0572015B2 (en)
JPH0514325B2 (en)
JPH01217723A (en) Magnetic recording medium
JP2551008B2 (en) Soft magnetic thin film
JPH05258278A (en) Magnetic recording medium
JPH06176341A (en) Magnetic recording medium and magnetic storage device
JPH05189739A (en) Magnetic recording medium
JPS62149024A (en) Magnetic recording medium
JPH0526250B2 (en)
JPH0421921A (en) Magnetic recording medium
JPH05205242A (en) Magnetic recording medium and its manufacture
JPH04311811A (en) Magnetic recording medium
JPH05258276A (en) Magnetic recording medium
JPH02226515A (en) Magnetic recording medium