JPH01217723A - Magnetic recording medium - Google Patents

Magnetic recording medium

Info

Publication number
JPH01217723A
JPH01217723A JP4108388A JP4108388A JPH01217723A JP H01217723 A JPH01217723 A JP H01217723A JP 4108388 A JP4108388 A JP 4108388A JP 4108388 A JP4108388 A JP 4108388A JP H01217723 A JPH01217723 A JP H01217723A
Authority
JP
Japan
Prior art keywords
magnetic
layer
recording medium
alloy
layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4108388A
Other languages
Japanese (ja)
Inventor
Seiya Funatsu
船津 誠也
Mitsumasa Umezaki
梅崎 光政
Hisatoshi Hata
久敏 秦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP4108388A priority Critical patent/JPH01217723A/en
Publication of JPH01217723A publication Critical patent/JPH01217723A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To obtain a magnetic recording medium having a high recording density and high reproduced output by providing a magnetic Co alloy layer on an underlying layer consisting of Cr on a nonmagnetic substrate and alternately laminating the magnetic Co alloy layers and nonmagnetic layers thereon. CONSTITUTION:The magnetic Co alloy layer 3 is provided as a 1st layer on the underlying layer 2 consisting of the Cr provided on the nonmagnetic substrate 1 and the magnetic Co alloy layers 3 and the nonmagnetic layer 4 are alternately laminated thereon. Since the magnetic layers are laminated in such a manner, the film thicknesses of the respective layers are thinner than in the case of a single layer and the coercive force increases (high recording density). The high output is obtd. by totaling the film thicknesses of the respective layers. Since the Co alloy is used, the magnetic characteristics stabilize at the nonmagnetic substrate temp. (250 deg.C) than heretofore. The magnetic recording medium having the high recording density and the high reproduced output is thereby obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、特に高記録密度、高出力の磁気記録媒体に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] This invention particularly relates to a high recording density, high output magnetic recording medium.

〔従来の技術〕[Conventional technology]

近年、磁気記録媒体の高密度記録化に伴って、磁気記録
媒体の高保磁力化が要求されて来ている。
In recent years, with the increase in recording density of magnetic recording media, there has been a demand for magnetic recording media with higher coercive force.

この要求を涌足させるために磁性媒体も従来の酸化鉄か
ら、薄膜媒体が使用されようとしている。
In order to meet this demand, thin film media are being used as magnetic media instead of conventional iron oxide.

しかし、薄膜媒体において、磁気特性の向上、特に高い
保磁力を得ようとすれば、必然的により一層の薄膜化を
促進しなければならない。高い保磁力を得るために薄膜
化を更に進めると、残留磁束密度と膜厚の積が小さくな
る。残留磁束密度と膜厚の積は、再生出力に関係してお
り、この値が大きいほど出力も大きい。従って高出力を
得ようとすると膜厚を厚くしなければならず、その分だ
け保磁力が小さくなり、記録密度が低下する。反対に記
録密度を上げようとすると、出力が小さくなる。出力と
記録密度とをある程度両立させたもの七して、単層のC
o合金系磁性層を備えた磁気記録媒体がある。
However, in order to improve the magnetic properties of a thin film medium, particularly to obtain a high coercive force, it is necessary to promote further thinning of the film. If the film is further made thinner in order to obtain a high coercive force, the product of residual magnetic flux density and film thickness becomes smaller. The product of residual magnetic flux density and film thickness is related to reproduction output, and the larger this value is, the greater the output is. Therefore, in order to obtain high output, the film thickness must be increased, which reduces the coercive force and reduces the recording density. Conversely, if you try to increase the recording density, the output will decrease. Single-layer C that achieves both output and recording density to some extent.
There is a magnetic recording medium provided with an o-alloy magnetic layer.

また、例えば特公昭52−18396号公報や刊行物(
IEEE Tran@s Mag、 MAG−15s 
No−3* July 1979eP1135〜113
7)に純Co磁性層および非磁性層を交互に積層する磁
気記録媒体が示されている。
In addition, for example, Japanese Patent Publication No. 52-18396 and publications (
IEEE Tran@s Mag, MAG-15s
No-3* July 1979eP1135-113
7) shows a magnetic recording medium in which pure Co magnetic layers and nonmagnetic layers are alternately laminated.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、上記単層のCo合金系磁性層を備えた磁気記録
媒体は記録密度と出力が現在では、はソその限界に達し
ている°。
However, the recording density and output of the magnetic recording medium having the single-layer Co alloy magnetic layer have now reached their limits.

まえ、純Co磁性層と非磁性層とを交互に積層したもの
(特公昭52−18396号公報)は、純Coを磁性層
に使用したものであり、基体温度を250’C以上に加
熱する必要があり、蒸着による成膜で成膜速度も1んへ
と非常に遅い。
The one in which pure Co magnetic layers and non-magnetic layers are alternately laminated (Japanese Patent Publication No. 18396/1983) uses pure Co for the magnetic layer, and the substrate temperature is heated to 250'C or higher. However, the film formation speed is very slow at only 1 minute when the film is formed by vapor deposition.

また、別のもの(IEEE Tran@、 Mag+ 
MAG−15No。
Also, another one (IEEE Tran@, Mag+
MAG-15No.

3、 July 1979. P1135〜1137)
は、スパッタリング法により成膜を行っているが、純C
o (i7使用しているので保磁力は低く、非磁性層(
Cr)の膜厚もかなり厚くする必要があり、高記録密度
が得られないなどの問題点があった。
3, July 1979. P1135-1137)
The film is formed by sputtering method, but pure C
o (Since i7 is used, the coercive force is low, and the non-magnetic layer (
The film thickness of Cr) also needs to be considerably thick, which poses problems such as a high recording density cannot be obtained.

この発明は、かかる課題を解決するためになされたもの
で、高保磁力(高記録密度)および高残留磁束密度×膜
L’l (高再生出力)の磁気記録媒体を得ること全目
的とする。
The present invention was made to solve these problems, and its entire purpose is to obtain a magnetic recording medium with high coercive force (high recording density) and high residual magnetic flux density x film L'l (high reproduction output).

〔課題を解決するための手段〕[Means to solve the problem]

この発明の磁気記録媒体は、非磁性基体、この非磁性基
体に設けたCrからなる下地層、およびこの下地層に第
1層としてCo合金系磁性層を設け、上記Co合金系磁
性層と非磁性層とを交互に積層した積層体を備えたもの
である。
The magnetic recording medium of the present invention includes a non-magnetic substrate, an underlayer made of Cr provided on the non-magnetic substrate, and a Co alloy magnetic layer provided as a first layer on the underlayer, which is non-magnetic with the Co alloy magnetic layer. It is equipped with a laminate in which magnetic layers are alternately laminated.

〔作用〕[Effect]

単層の磁性層を用いた場合、膜厚により保磁力が変化す
るため同時に高記録密度および高出力のものは得難い。
When a single magnetic layer is used, it is difficult to achieve high recording density and high output at the same time because the coercive force changes depending on the film thickness.

しかし、この発明においては、磁性層を積層しているた
め各層の膜厚は単層の場合より薄くなり保磁力大(高記
録密度)となり、各層の膜厚を合計することにより高出
力が得られる。
However, in this invention, since the magnetic layers are laminated, the thickness of each layer is thinner than in the case of a single layer, resulting in a large coercive force (high recording density), and high output can be achieved by adding up the thickness of each layer. It will be done.

また、CO合金を用いることにより、純COを用いる場
合の課題を解決できる。
Furthermore, by using a CO alloy, problems associated with using pure CO can be solved.

〔実施例〕〔Example〕

実施例1 @119はこの発明の一実施例の磁気記録媒体の断面図
であり、111は非磁性基体、(2)はCrからなる下
地層、(31はCo合金系磁性層、(41は非磁性層、
(6)はCo合金系磁性層(31および非磁性層(4)
を交互に積層する積層体である。
Example 1 @119 is a cross-sectional view of a magnetic recording medium according to an embodiment of the present invention, in which 111 is a nonmagnetic substrate, (2) is an underlayer made of Cr, (31 is a Co alloy magnetic layer, (41 is a non-magnetic layer,
(6) is a Co alloy magnetic layer (31) and a nonmagnetic layer (4).
It is a laminate in which 2 layers are alternately layered.

即ち、200℃に加熱したAL、ガラス、セラミック等
の非磁性基体(11上に下地層(21としてCr f2
000Aスパッタリングした後、@1Mとして直ちに続
けて1001y’n l nの速度で同一スパッタリン
グ槽内でCo合金系非磁層(3)としてCo−Nu合金
を200Aの厚さに形成した後、同一槽内で練けて非磁
性/1lt41としてCr 50Aをスパッタリングし
、更に続けて同一槽内で磁性層(3)としてCo−Ni
をスパッタリングして、積層体(5)を設H1この発明
の一実施例の磁気記録媒体を得九〇 上記のようにして得られた磁気記録媒体の保磁力(、H
c)は9000eであり、上記磁性層の一層を用いた従
来の磁気記録媒体が約700〜8000eであるのと比
べて高い唾を示している。
That is, a base layer (as 21 of Cr f2
After 000A sputtering, a Co-Nu alloy was formed to a thickness of 200A as a Co alloy non-magnetic layer (3) in the same sputtering tank at a speed of 1001y'n ln as @1M, and then sputtered in the same tank. Cr 50A was kneaded in a tank and sputtered as a non-magnetic layer (1lt41), and then Co-Ni was sputtered as a magnetic layer (3) in the same tank.
A laminate (5) was prepared by sputtering H1 to obtain a magnetic recording medium according to an embodiment of the present invention.
c) is 9000e, which is higher than that of the conventional magnetic recording medium using a single magnetic layer, which is approximately 700 to 8000e.

また、従来He−9000eのものなら、Brδが50
0であるのに比べ、上記この発明の一実施例の磁気記録
媒体は930を示しているように、高い値を示している
In addition, for the conventional He-9000e, Brδ is 50
0, whereas the magnetic recording medium of the embodiment of the present invention shows a high value of 930.

実施例2 実施例1と同様にして下地層(21まで成膜した後、直
ちに続けて同一槽内で第1層の磁性層(3)としてCo
−N1−Cr合金を200Aの厚さに形成した後、同一
槽内で続けて非磁性層(4)としてCr 50Aをスパ
ッタリングし、更に続けて同−槽内で磁性層(3)とし
てCo −Nl−Crをスパッタリングして、この発明
の池の実施例の磁気記録媒体を得、これは実施例1と同
程度の特性を示した。
Example 2 After forming the underlayer (up to 21) in the same manner as in Example 1, Co was immediately added as the first magnetic layer (3) in the same tank.
After forming a -N1-Cr alloy to a thickness of 200A, 50A of Cr was sputtered as a non-magnetic layer (4) in the same tank, and then Co- A magnetic recording medium of this embodiment of the present invention was obtained by sputtering Nl-Cr, and exhibited properties comparable to those of embodiment 1.

実施例3 実施例1と同様にして下地層(2)まで成膜した後、直
ちに続けて同−僧門で第1層の磁性NI(31としてC
o−Ni合金を20OAの厚さに形成した後、同一槽内
で続けて非磁性m(4+としてCr 50A Itスパ
ッタリングし、更に続けて同一槽内で磁性層(3)とし
てGo −Ni−Crをスパッタリングして、この発明
のさらに他の実施例の磁気記録媒体を得、これは実施例
1と同程度の特性を示した。
Example 3 After forming a film up to the base layer (2) in the same manner as in Example 1, the first layer of magnetic NI (C as 31) was immediately added in the same manner.
After forming the o-Ni alloy to a thickness of 20OA, sputtering was continued in the same tank with Cr 50A It as a non-magnetic layer (4+), and then Go-Ni-Cr was sputtered as a magnetic layer (3) in the same tank. was sputtered to obtain a magnetic recording medium of yet another example of the present invention, which exhibited properties comparable to those of Example 1.

この発明の磁気記録媒体に係る非磁性基体としては、例
えばΔヱ、ガラスおよびセラミックなどが用いられ、例
えば250℃以下の/aKに加熱して磁性層および非磁
性層を成膜するのが望ましい。
As the nonmagnetic substrate for the magnetic recording medium of the present invention, for example, Δヱ, glass, ceramic, etc. are used, and it is desirable to form the magnetic layer and the nonmagnetic layer by heating to /aK of 250° C. or less, for example. .

第2図(a) * (b) 、 (e)は、非磁性基体
6λを変化させる以外は実施例1と同様にして、この発
明の実施例の磁気記録媒体を得たものにぷいて、成jj
(時の非磁性基体6λ度(°C)による保磁力(He)
変化(第2図(a) ) 、非磁性基体温度(’C)に
よる残留磁束密度×磁性層膜厚(BrJ)変化(N2図
(b))、ヤよび非磁性基体M度(’C)による角形比
(So)変化(第2図(C))を示す特性図であり、横
軸は非磁性基体温度(”C)を縦軸は各磁気特性を示す
。それによると、非磁性基体温度が従来(250℃以上
)より低い温度で、磁気特性が安定することが解る。
FIGS. 2(a)*(b) and (e) show the magnetic recording medium of the embodiment of this invention obtained in the same manner as in embodiment 1 except that the nonmagnetic substrate 6λ was changed. Seijj
(Coercive force (He) due to non-magnetic substrate 6λ degrees (°C)
Change (Figure 2 (a)), Change in residual magnetic flux density × magnetic layer thickness (BrJ) due to nonmagnetic substrate temperature ('C) (N2 figure (b)), Ya and nonmagnetic substrate M degree ('C) This is a characteristic diagram showing the squareness ratio (So) change (Figure 2 (C)) due to It can be seen that the magnetic properties are stable at a temperature lower than the conventional temperature (250° C. or higher).

この発明の磁気記録媒体に係るCo合金系磁性層として
は、例えばCo−Ni5 Co −N%−Cry Co
 −Nl−Mow Co −N1−WおよびCo−Pt
の内の少なくとも一種が用いられ、その膜厚は200〜
600Aの範囲が望ましい。200八以下では成膜困蝉
となり、600A以上では保磁力が小さくなる。
As the Co alloy magnetic layer according to the magnetic recording medium of the present invention, for example, Co-Ni5 Co -N%-Cry Co
-Nl-Mow Co -N1-W and Co-Pt
At least one of these is used, and the film thickness is 200~
A range of 600A is desirable. If it is less than 200A, it becomes difficult to form a film, and if it is more than 600A, the coercive force becomes small.

この発明の磁気記録媒体に係る非磁性層としては、例え
ばCrs Cu、 Au、 Age Pde Pte 
Aje VおよびTIの内の少なくとも一種が用いられ
、その膜厚は50〜300への範囲が望ましい。50A
以下では成膜困嬉となり、300A以上では、各磁性層
を独立させ単層化させる。N3図(1) 、 (b) 
、 (p)は、非磁性層(4)にCrを用い、その膜厚
を変える以外は実施例1と同様にして、この発明の実施
例の磁気記録媒体を得たものにおいて、Cr膜厚(A)
による保磁力(Hc)変化(第3図(a))、cr膜厚
(A)による残留磁束密度×磁性層1換厚(BrJ)変
化(第3図(b) ) %およびCr膜厚(A)による
角形比(So)変化(第3図(C))を示す特性図であ
り、因において、横軸はCr膜厚を、縦軸は各磁気特性
を示す。それによると、非磁性膜厚は50A以上で、各
磁気特性が安定することが解る。
Examples of the nonmagnetic layer of the magnetic recording medium of the present invention include Crs Cu, Au, Age Pde Pte
At least one of Aje V and TI is used, and the film thickness is preferably in the range of 50 to 300 mm. 50A
Below that, the film formation becomes difficult, and above 300 A, each magnetic layer is made independent and becomes a single layer. N3 diagram (1), (b)
, (p) is a magnetic recording medium of an example of the present invention obtained in the same manner as in Example 1 except that Cr was used for the nonmagnetic layer (4) and the film thickness was changed. (A)
Coercive force (Hc) change due to (Figure 3 (a)), residual magnetic flux density x magnetic layer 1 equivalent thickness (BrJ) change due to Cr film thickness (A) (Figure 3 (b))% and Cr film thickness ( FIG. 3 is a characteristic diagram showing changes in squareness ratio (So) due to A) (FIG. 3(C)), in which the horizontal axis shows the Cr film thickness and the vertical axis shows each magnetic property. According to this, it can be seen that each magnetic property is stable when the nonmagnetic film thickness is 50A or more.

なお、上記実施例では、磁性1111全2層積層してい
るが、それ以上積層することは可能で、所期目的を達成
することができる。
In the above embodiment, a total of two layers of magnetic material 1111 are laminated, but it is possible to laminate more layers and the desired purpose can be achieved.

また、上記実施例では、スパッタリングによる成膜を示
したが、蒸着等による成膜でも良い。
Further, in the above embodiment, film formation was performed by sputtering, but film formation by vapor deposition or the like may be used.

〔発明の効果〕〔Effect of the invention〕

以上説明したとおり、この発明は非磁性基体、この非磁
性基体に設けたCrから成る下地層、およびこの下地層
に9;1層としてCo合金系磁性層を設け、上記Co合
金系磁性層と非磁性層とを交互に積層した積層体を備え
たものを用いることKより、高記録密度および高再生出
力の磁気記録媒体を得ることができる。
As explained above, the present invention includes a non-magnetic substrate, an underlayer made of Cr provided on the non-magnetic substrate, and a Co alloy magnetic layer provided as a 9:1 layer on the underlayer, and the above Co alloy magnetic layer. By using a laminate in which non-magnetic layers are alternately laminated, a magnetic recording medium with high recording density and high reproduction output can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例の磁気記録媒体の断面図、
第2図(a) 、 (b) 、 (C)はこの発明の実
施例の磁気記録媒体において、成膜時の非磁性基体温度
による各磁気特性変化を示す特性図、第3図(a)。 (b)、 (C)は、この発明の実施例の磁気記録媒体
において、非磁性層膜厚による各磁気特性変化を示す特
性図である。 図において、+11は非磁性基体、(2)はCrから成
る下地層、(3)はCo合金系磁性層、(4)は非磁性
層、1filは積層体である。
FIG. 1 is a cross-sectional view of a magnetic recording medium according to an embodiment of the present invention.
FIGS. 2(a), (b), and (C) are characteristic diagrams showing changes in magnetic properties depending on the temperature of the nonmagnetic substrate during film formation in the magnetic recording medium of the embodiment of the present invention, and FIG. 3(a) . (b) and (C) are characteristic diagrams showing changes in magnetic properties depending on the thickness of the nonmagnetic layer in the magnetic recording medium of the example of the present invention. In the figure, +11 is a nonmagnetic substrate, (2) is an underlayer made of Cr, (3) is a Co alloy magnetic layer, (4) is a nonmagnetic layer, and 1fil is a laminate.

Claims (1)

【特許請求の範囲】[Claims]  非磁性基体、この非磁性基体に設けたCrから成る下
地層、およびこの下地層に第1層としてCo合金系磁性
層を設け、上記Co合金系磁性層と非磁性層とを交互に
積層した積層体を備えた磁気記録媒体。
A nonmagnetic substrate, an underlayer made of Cr provided on the nonmagnetic substrate, and a Co alloy magnetic layer provided as a first layer on the underlayer, and the Co alloy magnetic layer and the nonmagnetic layer were alternately laminated. A magnetic recording medium with a laminate.
JP4108388A 1988-02-24 1988-02-24 Magnetic recording medium Pending JPH01217723A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4108388A JPH01217723A (en) 1988-02-24 1988-02-24 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4108388A JPH01217723A (en) 1988-02-24 1988-02-24 Magnetic recording medium

Publications (1)

Publication Number Publication Date
JPH01217723A true JPH01217723A (en) 1989-08-31

Family

ID=12598572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4108388A Pending JPH01217723A (en) 1988-02-24 1988-02-24 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JPH01217723A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05120662A (en) * 1991-03-26 1993-05-18 Hiroyasu Fujimori Magnetic recording medium
US5587235A (en) * 1993-02-19 1996-12-24 Hitachi, Ltd. Magnetic recording medium and magnetic recording apparatus
US5605733A (en) * 1992-01-22 1997-02-25 Hitachi, Ltd. Magnetic recording medium, method for its production, and system for its use

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05120662A (en) * 1991-03-26 1993-05-18 Hiroyasu Fujimori Magnetic recording medium
US5605733A (en) * 1992-01-22 1997-02-25 Hitachi, Ltd. Magnetic recording medium, method for its production, and system for its use
US5587235A (en) * 1993-02-19 1996-12-24 Hitachi, Ltd. Magnetic recording medium and magnetic recording apparatus

Similar Documents

Publication Publication Date Title
JP2001101645A (en) High density information recording medium and method for manufacturing the medium
JPH01217723A (en) Magnetic recording medium
JPS60239916A (en) Vertical magnetic recording medium
JPS58166531A (en) Vertical magnetic recording medium
JPH06215325A (en) Laminate type core of magnetic head
JPS58100412A (en) Manufacture of soft magnetic material
JPS63293707A (en) Multi-layered fe-co magnetic film and magnetic head
JP2570337B2 (en) Soft magnetic laminated film
JPH03132005A (en) Magnetic thin film and magnetic head using this film
JPS5868211A (en) Thin film magnetic head
JP2707560B2 (en) Artificial lattice magneto-optical recording medium
JPS61153813A (en) Magnetic pole for thin film magnetic head
JP2696120B2 (en) Magnetic multilayer film
JPH0389502A (en) Magnetic multilayer film
JPH01143312A (en) Amorphous soft magnetic laminated film
JP2551008B2 (en) Soft magnetic thin film
JPH06150236A (en) Magnetic head
JPH0485716A (en) Thin magnetic film for magnetic head
JPH03130915A (en) Perpendicular magnetic recording medium and its production
JPH0380421A (en) Perpendicular magnetic recording medium
JP2000311327A (en) Magnetic recording medium
JPH01102721A (en) Perpendicular magnetic recording medium
JPH04362160A (en) Ferromagnetic material
JPS58155516A (en) Vertical magnetic recording medium
JPH0251205A (en) Multilayer ferromagnetic substance